LiveVariables.cpp revision 749c6f6b5ed301c84aac562e414486549d7b98eb
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/Target/MRegisterInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/Config/alloca.h"
39#include <algorithm>
40using namespace llvm;
41
42char LiveVariables::ID = 0;
43static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
44
45void LiveVariables::VarInfo::dump() const {
46  cerr << "Register Defined by: ";
47  if (DefInst)
48    cerr << *DefInst;
49  else
50    cerr << "<null>\n";
51  cerr << "  Alive in blocks: ";
52  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
53    if (AliveBlocks[i]) cerr << i << ", ";
54  cerr << "  Used in blocks: ";
55  for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i)
56    if (UsedBlocks[i]) cerr << i << ", ";
57  cerr << "\n  Killed by:";
58  if (Kills.empty())
59    cerr << " No instructions.\n";
60  else {
61    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62      cerr << "\n    #" << i << ": " << *Kills[i];
63    cerr << "\n";
64  }
65}
66
67LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
68  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
69         "getVarInfo: not a virtual register!");
70  RegIdx -= MRegisterInfo::FirstVirtualRegister;
71  if (RegIdx >= VirtRegInfo.size()) {
72    if (RegIdx >= 2*VirtRegInfo.size())
73      VirtRegInfo.resize(RegIdx*2);
74    else
75      VirtRegInfo.resize(2*VirtRegInfo.size());
76  }
77  VarInfo &VI = VirtRegInfo[RegIdx];
78  VI.AliveBlocks.resize(MF->getNumBlockIDs());
79  VI.UsedBlocks.resize(MF->getNumBlockIDs());
80  return VI;
81}
82
83bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
84  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
85    MachineOperand &MO = MI->getOperand(i);
86    if (MO.isRegister() && MO.isKill()) {
87      if ((MO.getReg() == Reg) ||
88          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
89           MRegisterInfo::isPhysicalRegister(Reg) &&
90           RegInfo->isSubRegister(MO.getReg(), Reg)))
91        return true;
92    }
93  }
94  return false;
95}
96
97bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
98  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
99    MachineOperand &MO = MI->getOperand(i);
100    if (MO.isRegister() && MO.isDead()) {
101      if ((MO.getReg() == Reg) ||
102          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
103           MRegisterInfo::isPhysicalRegister(Reg) &&
104           RegInfo->isSubRegister(MO.getReg(), Reg)))
105        return true;
106    }
107  }
108  return false;
109}
110
111bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
112  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
113    MachineOperand &MO = MI->getOperand(i);
114    if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg)
115      return true;
116  }
117  return false;
118}
119
120void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
121                                            MachineBasicBlock *MBB,
122                                    std::vector<MachineBasicBlock*> &WorkList) {
123  unsigned BBNum = MBB->getNumber();
124
125  // Check to see if this basic block is one of the killing blocks.  If so,
126  // remove it...
127  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
128    if (VRInfo.Kills[i]->getParent() == MBB) {
129      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
130      break;
131    }
132
133  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
134
135  if (VRInfo.AliveBlocks[BBNum])
136    return;  // We already know the block is live
137
138  // Mark the variable known alive in this bb
139  VRInfo.AliveBlocks[BBNum] = true;
140
141  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
142         E = MBB->pred_rend(); PI != E; ++PI)
143    WorkList.push_back(*PI);
144}
145
146void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
147                                            MachineBasicBlock *MBB) {
148  std::vector<MachineBasicBlock*> WorkList;
149  MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
150  while (!WorkList.empty()) {
151    MachineBasicBlock *Pred = WorkList.back();
152    WorkList.pop_back();
153    MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
154  }
155}
156
157
158void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
159                                     MachineInstr *MI) {
160  assert(VRInfo.DefInst && "Register use before def!");
161
162  unsigned BBNum = MBB->getNumber();
163
164  VRInfo.UsedBlocks[BBNum] = true;
165  VRInfo.NumUses++;
166
167  // Check to see if this basic block is already a kill block...
168  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
169    // Yes, this register is killed in this basic block already.  Increase the
170    // live range by updating the kill instruction.
171    VRInfo.Kills.back() = MI;
172    return;
173  }
174
175#ifndef NDEBUG
176  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
177    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
178#endif
179
180  assert(MBB != VRInfo.DefInst->getParent() &&
181         "Should have kill for defblock!");
182
183  // Add a new kill entry for this basic block.
184  // If this virtual register is already marked as alive in this basic block,
185  // that means it is alive in at least one of the successor block, it's not
186  // a kill.
187  if (!VRInfo.AliveBlocks[BBNum])
188    VRInfo.Kills.push_back(MI);
189
190  // Update all dominating blocks to mark them known live.
191  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
192         E = MBB->pred_end(); PI != E; ++PI)
193    MarkVirtRegAliveInBlock(VRInfo, *PI);
194}
195
196bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
197                                      const MRegisterInfo *RegInfo,
198                                      bool AddIfNotFound) {
199  bool Found = false;
200  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
201    MachineOperand &MO = MI->getOperand(i);
202    if (MO.isRegister() && MO.isUse()) {
203      unsigned Reg = MO.getReg();
204      if (!Reg)
205        continue;
206      if (Reg == IncomingReg) {
207        MO.setIsKill();
208        Found = true;
209        break;
210      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
211                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
212                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
213                 MO.isKill())
214        // A super-register kill already exists.
215        Found = true;
216    }
217  }
218
219  // If not found, this means an alias of one of the operand is killed. Add a
220  // new implicit operand if required.
221  if (!Found && AddIfNotFound) {
222    MI->addOperand(MachineOperand::CreateReg(IncomingReg, false/*IsDef*/,
223                                             true/*IsImp*/,true/*IsKill*/));
224    return true;
225  }
226  return Found;
227}
228
229bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
230                                    const MRegisterInfo *RegInfo,
231                                    bool AddIfNotFound) {
232  bool Found = false;
233  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234    MachineOperand &MO = MI->getOperand(i);
235    if (MO.isRegister() && MO.isDef()) {
236      unsigned Reg = MO.getReg();
237      if (!Reg)
238        continue;
239      if (Reg == IncomingReg) {
240        MO.setIsDead();
241        Found = true;
242        break;
243      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
244                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
245                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
246                 MO.isDead())
247        // There exists a super-register that's marked dead.
248        return true;
249    }
250  }
251
252  // If not found, this means an alias of one of the operand is dead. Add a
253  // new implicit operand.
254  if (!Found && AddIfNotFound) {
255    MI->addOperand(MachineOperand::CreateReg(IncomingReg, true/*IsDef*/,
256                                             true/*IsImp*/,false/*IsKill*/,
257                                             true/*IsDead*/));
258    return true;
259  }
260  return Found;
261}
262
263void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
264  // Turn previous partial def's into read/mod/write.
265  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
266    MachineInstr *Def = PhysRegPartDef[Reg][i];
267    // First one is just a def. This means the use is reading some undef bits.
268    if (i != 0)
269      Def->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
270                                                true/*IsImp*/,true/*IsKill*/));
271    Def->addOperand(MachineOperand::CreateReg(Reg,true/*IsDef*/,true/*IsImp*/));
272  }
273  PhysRegPartDef[Reg].clear();
274
275  // There was an earlier def of a super-register. Add implicit def to that MI.
276  // A: EAX = ...
277  // B:     = AX
278  // Add implicit def to A.
279  if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
280      !PhysRegUsed[Reg]) {
281    MachineInstr *Def = PhysRegInfo[Reg];
282    if (!Def->findRegisterDefOperand(Reg))
283      Def->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
284                                                true/*IsImp*/));
285  }
286
287  // There is a now a proper use, forget about the last partial use.
288  PhysRegPartUse[Reg] = NULL;
289  PhysRegInfo[Reg] = MI;
290  PhysRegUsed[Reg] = true;
291
292  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
293       unsigned SubReg = *SubRegs; ++SubRegs) {
294    PhysRegInfo[SubReg] = MI;
295    PhysRegUsed[SubReg] = true;
296  }
297
298  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
299       unsigned SuperReg = *SuperRegs; ++SuperRegs) {
300    // Remember the partial use of this superreg if it was previously defined.
301    bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
302    if (!HasPrevDef) {
303      for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
304           unsigned SSReg = *SSRegs; ++SSRegs) {
305        if (PhysRegInfo[SSReg] != NULL) {
306          HasPrevDef = true;
307          break;
308        }
309      }
310    }
311    if (HasPrevDef) {
312      PhysRegInfo[SuperReg] = MI;
313      PhysRegPartUse[SuperReg] = MI;
314    }
315  }
316}
317
318bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI,
319                                      SmallSet<unsigned, 4> &SubKills) {
320  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
321       unsigned SubReg = *SubRegs; ++SubRegs) {
322    MachineInstr *LastRef = PhysRegInfo[SubReg];
323    if (LastRef != RefMI ||
324        !HandlePhysRegKill(SubReg, RefMI, SubKills))
325      SubKills.insert(SubReg);
326  }
327
328  if (*RegInfo->getImmediateSubRegisters(Reg) == 0) {
329    // No sub-registers, just check if reg is killed by RefMI.
330    if (PhysRegInfo[Reg] == RefMI)
331      return true;
332  } else if (SubKills.empty())
333    // None of the sub-registers are killed elsewhere...
334    return true;
335  return false;
336}
337
338void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
339                                     SmallSet<unsigned, 4> &SubKills) {
340  if (SubKills.count(Reg) == 0)
341    addRegisterKilled(Reg, MI, RegInfo, true);
342  else {
343    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
344         unsigned SubReg = *SubRegs; ++SubRegs)
345      addRegisterKills(SubReg, MI, SubKills);
346  }
347}
348
349bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
350  SmallSet<unsigned, 4> SubKills;
351  if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
352    addRegisterKilled(Reg, RefMI, RegInfo, true);
353    return true;
354  } else {
355    // Some sub-registers are killed by another MI.
356    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
357         unsigned SubReg = *SubRegs; ++SubRegs)
358      addRegisterKills(SubReg, RefMI, SubKills);
359    return false;
360  }
361}
362
363void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
364  // Does this kill a previous version of this register?
365  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
366    if (PhysRegUsed[Reg]) {
367      if (!HandlePhysRegKill(Reg, LastRef)) {
368        if (PhysRegPartUse[Reg])
369          addRegisterKilled(Reg, PhysRegPartUse[Reg], RegInfo, true);
370      }
371    } else if (PhysRegPartUse[Reg])
372      // Add implicit use / kill to last partial use.
373      addRegisterKilled(Reg, PhysRegPartUse[Reg], RegInfo, true);
374    else if (LastRef != MI)
375      // Defined, but not used. However, watch out for cases where a super-reg
376      // is also defined on the same MI.
377      addRegisterDead(Reg, LastRef, RegInfo);
378  }
379
380  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
381       unsigned SubReg = *SubRegs; ++SubRegs) {
382    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
383      if (PhysRegUsed[SubReg]) {
384        if (!HandlePhysRegKill(SubReg, LastRef)) {
385          if (PhysRegPartUse[SubReg])
386            addRegisterKilled(SubReg, PhysRegPartUse[SubReg], RegInfo, true);
387        }
388      } else if (PhysRegPartUse[SubReg])
389        // Add implicit use / kill to last use of a sub-register.
390        addRegisterKilled(SubReg, PhysRegPartUse[SubReg], RegInfo, true);
391      else if (LastRef != MI)
392        // This must be a def of the subreg on the same MI.
393        addRegisterDead(SubReg, LastRef, RegInfo);
394    }
395  }
396
397  if (MI) {
398    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
399         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
400      if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
401        // The larger register is previously defined. Now a smaller part is
402        // being re-defined. Treat it as read/mod/write.
403        // EAX =
404        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
405        MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
406                                                 true/*IsImp*/,true/*IsKill*/));
407        MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
408                                                 true/*IsImp*/));
409        PhysRegInfo[SuperReg] = MI;
410        PhysRegUsed[SuperReg] = false;
411        PhysRegPartUse[SuperReg] = NULL;
412      } else {
413        // Remember this partial def.
414        PhysRegPartDef[SuperReg].push_back(MI);
415      }
416    }
417
418    PhysRegInfo[Reg] = MI;
419    PhysRegUsed[Reg] = false;
420    PhysRegPartDef[Reg].clear();
421    PhysRegPartUse[Reg] = NULL;
422    for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
423         unsigned SubReg = *SubRegs; ++SubRegs) {
424      PhysRegInfo[SubReg] = MI;
425      PhysRegUsed[SubReg] = false;
426      PhysRegPartDef[SubReg].clear();
427      PhysRegPartUse[SubReg] = NULL;
428    }
429  }
430}
431
432bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
433  MF = &mf;
434  RegInfo = MF->getTarget().getRegisterInfo();
435  assert(RegInfo && "Target doesn't have register information?");
436
437  ReservedRegisters = RegInfo->getReservedRegs(mf);
438
439  unsigned NumRegs = RegInfo->getNumRegs();
440  PhysRegInfo = new MachineInstr*[NumRegs];
441  PhysRegUsed = new bool[NumRegs];
442  PhysRegPartUse = new MachineInstr*[NumRegs];
443  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
444  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
445  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
446  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
447  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
448
449  /// Get some space for a respectable number of registers...
450  VirtRegInfo.resize(64);
451
452  analyzePHINodes(mf);
453
454  // Calculate live variable information in depth first order on the CFG of the
455  // function.  This guarantees that we will see the definition of a virtual
456  // register before its uses due to dominance properties of SSA (except for PHI
457  // nodes, which are treated as a special case).
458  //
459  MachineBasicBlock *Entry = MF->begin();
460  SmallPtrSet<MachineBasicBlock*,16> Visited;
461  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
462         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
463       DFI != E; ++DFI) {
464    MachineBasicBlock *MBB = *DFI;
465
466    // Mark live-in registers as live-in.
467    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
468           EE = MBB->livein_end(); II != EE; ++II) {
469      assert(MRegisterInfo::isPhysicalRegister(*II) &&
470             "Cannot have a live-in virtual register!");
471      HandlePhysRegDef(*II, 0);
472    }
473
474    // Loop over all of the instructions, processing them.
475    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
476         I != E; ++I) {
477      MachineInstr *MI = I;
478
479      // Process all of the operands of the instruction...
480      unsigned NumOperandsToProcess = MI->getNumOperands();
481
482      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
483      // of the uses.  They will be handled in other basic blocks.
484      if (MI->getOpcode() == TargetInstrInfo::PHI)
485        NumOperandsToProcess = 1;
486
487      // Process all uses...
488      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
489        MachineOperand &MO = MI->getOperand(i);
490        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
491          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
492            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
493          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
494                     !ReservedRegisters[MO.getReg()]) {
495            HandlePhysRegUse(MO.getReg(), MI);
496          }
497        }
498      }
499
500      // Process all defs...
501      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
502        MachineOperand &MO = MI->getOperand(i);
503        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
504          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
505            VarInfo &VRInfo = getVarInfo(MO.getReg());
506
507            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
508            VRInfo.DefInst = MI;
509            // Defaults to dead
510            VRInfo.Kills.push_back(MI);
511          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
512                     !ReservedRegisters[MO.getReg()]) {
513            HandlePhysRegDef(MO.getReg(), MI);
514          }
515        }
516      }
517    }
518
519    // Handle any virtual assignments from PHI nodes which might be at the
520    // bottom of this basic block.  We check all of our successor blocks to see
521    // if they have PHI nodes, and if so, we simulate an assignment at the end
522    // of the current block.
523    if (!PHIVarInfo[MBB->getNumber()].empty()) {
524      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
525
526      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
527             E = VarInfoVec.end(); I != E; ++I) {
528        VarInfo& VRInfo = getVarInfo(*I);
529        assert(VRInfo.DefInst && "Register use before def (or no def)!");
530
531        // Only mark it alive only in the block we are representing.
532        MarkVirtRegAliveInBlock(VRInfo, MBB);
533      }
534    }
535
536    // Finally, if the last instruction in the block is a return, make sure to mark
537    // it as using all of the live-out values in the function.
538    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
539      MachineInstr *Ret = &MBB->back();
540      for (MachineRegisterInfo::liveout_iterator
541           I = MF->getRegInfo().liveout_begin(),
542           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
543        assert(MRegisterInfo::isPhysicalRegister(*I) &&
544               "Cannot have a live-in virtual register!");
545        HandlePhysRegUse(*I, Ret);
546        // Add live-out registers as implicit uses.
547        if (Ret->findRegisterUseOperandIdx(*I) == -1)
548          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
549      }
550    }
551
552    // Loop over PhysRegInfo, killing any registers that are available at the
553    // end of the basic block.  This also resets the PhysRegInfo map.
554    for (unsigned i = 0; i != NumRegs; ++i)
555      if (PhysRegInfo[i])
556        HandlePhysRegDef(i, 0);
557
558    // Clear some states between BB's. These are purely local information.
559    for (unsigned i = 0; i != NumRegs; ++i)
560      PhysRegPartDef[i].clear();
561    std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
562    std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
563    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
564  }
565
566  // Convert and transfer the dead / killed information we have gathered into
567  // VirtRegInfo onto MI's.
568  //
569  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
570    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
571      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
572        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
573                        VirtRegInfo[i].Kills[j], RegInfo);
574      else
575        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
576                          VirtRegInfo[i].Kills[j], RegInfo);
577    }
578
579  // Check to make sure there are no unreachable blocks in the MC CFG for the
580  // function.  If so, it is due to a bug in the instruction selector or some
581  // other part of the code generator if this happens.
582#ifndef NDEBUG
583  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
584    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
585#endif
586
587  delete[] PhysRegInfo;
588  delete[] PhysRegUsed;
589  delete[] PhysRegPartUse;
590  delete[] PhysRegPartDef;
591  delete[] PHIVarInfo;
592
593  return false;
594}
595
596/// instructionChanged - When the address of an instruction changes, this
597/// method should be called so that live variables can update its internal
598/// data structures.  This removes the records for OldMI, transfering them to
599/// the records for NewMI.
600void LiveVariables::instructionChanged(MachineInstr *OldMI,
601                                       MachineInstr *NewMI) {
602  // If the instruction defines any virtual registers, update the VarInfo,
603  // kill and dead information for the instruction.
604  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
605    MachineOperand &MO = OldMI->getOperand(i);
606    if (MO.isRegister() && MO.getReg() &&
607        MRegisterInfo::isVirtualRegister(MO.getReg())) {
608      unsigned Reg = MO.getReg();
609      VarInfo &VI = getVarInfo(Reg);
610      if (MO.isDef()) {
611        if (MO.isDead()) {
612          MO.setIsDead(false);
613          addVirtualRegisterDead(Reg, NewMI);
614        }
615        // Update the defining instruction.
616        if (VI.DefInst == OldMI)
617          VI.DefInst = NewMI;
618      }
619      if (MO.isKill()) {
620        MO.setIsKill(false);
621        addVirtualRegisterKilled(Reg, NewMI);
622      }
623      // If this is a kill of the value, update the VI kills list.
624      if (VI.removeKill(OldMI))
625        VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
626    }
627  }
628}
629
630/// transferKillDeadInfo - Similar to instructionChanged except it does not
631/// update live variables internal data structures.
632void LiveVariables::transferKillDeadInfo(MachineInstr *OldMI,
633                                         MachineInstr *NewMI,
634                                         const MRegisterInfo *RegInfo) {
635  // If the instruction defines any virtual registers, update the VarInfo,
636  // kill and dead information for the instruction.
637  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
638    MachineOperand &MO = OldMI->getOperand(i);
639    if (MO.isRegister() && MO.getReg() &&
640        MRegisterInfo::isVirtualRegister(MO.getReg())) {
641      unsigned Reg = MO.getReg();
642      if (MO.isDef()) {
643        if (MO.isDead()) {
644          MO.setIsDead(false);
645          addRegisterDead(Reg, NewMI, RegInfo);
646        }
647      }
648      if (MO.isKill()) {
649        MO.setIsKill(false);
650        addRegisterKilled(Reg, NewMI, RegInfo);
651      }
652    }
653  }
654}
655
656
657/// removeVirtualRegistersKilled - Remove all killed info for the specified
658/// instruction.
659void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
660  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
661    MachineOperand &MO = MI->getOperand(i);
662    if (MO.isRegister() && MO.isKill()) {
663      MO.setIsKill(false);
664      unsigned Reg = MO.getReg();
665      if (MRegisterInfo::isVirtualRegister(Reg)) {
666        bool removed = getVarInfo(Reg).removeKill(MI);
667        assert(removed && "kill not in register's VarInfo?");
668      }
669    }
670  }
671}
672
673/// removeVirtualRegistersDead - Remove all of the dead registers for the
674/// specified instruction from the live variable information.
675void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
676  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
677    MachineOperand &MO = MI->getOperand(i);
678    if (MO.isRegister() && MO.isDead()) {
679      MO.setIsDead(false);
680      unsigned Reg = MO.getReg();
681      if (MRegisterInfo::isVirtualRegister(Reg)) {
682        bool removed = getVarInfo(Reg).removeKill(MI);
683        assert(removed && "kill not in register's VarInfo?");
684      }
685    }
686  }
687}
688
689/// analyzePHINodes - Gather information about the PHI nodes in here. In
690/// particular, we want to map the variable information of a virtual
691/// register which is used in a PHI node. We map that to the BB the vreg is
692/// coming from.
693///
694void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
695  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
696       I != E; ++I)
697    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
698         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
699      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
700        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()].
701          push_back(BBI->getOperand(i).getReg());
702}
703