LiveVariables.cpp revision 7f2d3b8e464f669fa5a3cce3445ec5441eb7b02c
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Config/alloca.h"
38#include <algorithm>
39using namespace llvm;
40
41char LiveVariables::ID = 0;
42static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
43
44void LiveVariables::VarInfo::dump() const {
45  cerr << "Register Defined by: ";
46  if (DefInst)
47    cerr << *DefInst;
48  else
49    cerr << "<null>\n";
50  cerr << "  Alive in blocks: ";
51  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
52    if (AliveBlocks[i]) cerr << i << ", ";
53  cerr << "  Used in blocks: ";
54  for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i)
55    if (UsedBlocks[i]) cerr << i << ", ";
56  cerr << "\n  Killed by:";
57  if (Kills.empty())
58    cerr << " No instructions.\n";
59  else {
60    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
61      cerr << "\n    #" << i << ": " << *Kills[i];
62    cerr << "\n";
63  }
64}
65
66LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
67  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
68         "getVarInfo: not a virtual register!");
69  RegIdx -= MRegisterInfo::FirstVirtualRegister;
70  if (RegIdx >= VirtRegInfo.size()) {
71    if (RegIdx >= 2*VirtRegInfo.size())
72      VirtRegInfo.resize(RegIdx*2);
73    else
74      VirtRegInfo.resize(2*VirtRegInfo.size());
75  }
76  VarInfo &VI = VirtRegInfo[RegIdx];
77  VI.AliveBlocks.resize(MF->getNumBlockIDs());
78  VI.UsedBlocks.resize(MF->getNumBlockIDs());
79  return VI;
80}
81
82bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
83  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
84    MachineOperand &MO = MI->getOperand(i);
85    if (MO.isRegister() && MO.isKill()) {
86      if ((MO.getReg() == Reg) ||
87          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
88           MRegisterInfo::isPhysicalRegister(Reg) &&
89           RegInfo->isSubRegister(MO.getReg(), Reg)))
90        return true;
91    }
92  }
93  return false;
94}
95
96bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
97  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
98    MachineOperand &MO = MI->getOperand(i);
99    if (MO.isRegister() && MO.isDead()) {
100      if ((MO.getReg() == Reg) ||
101          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
102           MRegisterInfo::isPhysicalRegister(Reg) &&
103           RegInfo->isSubRegister(MO.getReg(), Reg)))
104        return true;
105    }
106  }
107  return false;
108}
109
110bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
111  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
112    MachineOperand &MO = MI->getOperand(i);
113    if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg)
114      return true;
115  }
116  return false;
117}
118
119void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
120                                            MachineBasicBlock *MBB,
121                                    std::vector<MachineBasicBlock*> &WorkList) {
122  unsigned BBNum = MBB->getNumber();
123
124  // Check to see if this basic block is one of the killing blocks.  If so,
125  // remove it...
126  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
127    if (VRInfo.Kills[i]->getParent() == MBB) {
128      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
129      break;
130    }
131
132  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
133
134  if (VRInfo.AliveBlocks[BBNum])
135    return;  // We already know the block is live
136
137  // Mark the variable known alive in this bb
138  VRInfo.AliveBlocks[BBNum] = true;
139
140  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
141         E = MBB->pred_rend(); PI != E; ++PI)
142    WorkList.push_back(*PI);
143}
144
145void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
146                                            MachineBasicBlock *MBB) {
147  std::vector<MachineBasicBlock*> WorkList;
148  MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
149  while (!WorkList.empty()) {
150    MachineBasicBlock *Pred = WorkList.back();
151    WorkList.pop_back();
152    MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
153  }
154}
155
156
157void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
158                                     MachineInstr *MI) {
159  assert(VRInfo.DefInst && "Register use before def!");
160
161  unsigned BBNum = MBB->getNumber();
162
163  VRInfo.UsedBlocks[BBNum] = true;
164  VRInfo.NumUses++;
165
166  // Check to see if this basic block is already a kill block...
167  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
168    // Yes, this register is killed in this basic block already.  Increase the
169    // live range by updating the kill instruction.
170    VRInfo.Kills.back() = MI;
171    return;
172  }
173
174#ifndef NDEBUG
175  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
176    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
177#endif
178
179  assert(MBB != VRInfo.DefInst->getParent() &&
180         "Should have kill for defblock!");
181
182  // Add a new kill entry for this basic block.
183  // If this virtual register is already marked as alive in this basic block,
184  // that means it is alive in at least one of the successor block, it's not
185  // a kill.
186  if (!VRInfo.AliveBlocks[BBNum])
187    VRInfo.Kills.push_back(MI);
188
189  // Update all dominating blocks to mark them known live.
190  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
191         E = MBB->pred_end(); PI != E; ++PI)
192    MarkVirtRegAliveInBlock(VRInfo, *PI);
193}
194
195bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
196                                      const MRegisterInfo *RegInfo,
197                                      bool AddIfNotFound) {
198  bool Found = false;
199  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
200    MachineOperand &MO = MI->getOperand(i);
201    if (MO.isRegister() && MO.isUse()) {
202      unsigned Reg = MO.getReg();
203      if (!Reg)
204        continue;
205      if (Reg == IncomingReg) {
206        MO.setIsKill();
207        Found = true;
208        break;
209      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
210                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
211                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
212                 MO.isKill())
213        // A super-register kill already exists.
214        Found = true;
215    }
216  }
217
218  // If not found, this means an alias of one of the operand is killed. Add a
219  // new implicit operand if required.
220  if (!Found && AddIfNotFound) {
221    MI->addOperand(MachineOperand::CreateReg(IncomingReg, false/*IsDef*/,
222                                             true/*IsImp*/,true/*IsKill*/));
223    return true;
224  }
225  return Found;
226}
227
228bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
229                                    const MRegisterInfo *RegInfo,
230                                    bool AddIfNotFound) {
231  bool Found = false;
232  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
233    MachineOperand &MO = MI->getOperand(i);
234    if (MO.isRegister() && MO.isDef()) {
235      unsigned Reg = MO.getReg();
236      if (!Reg)
237        continue;
238      if (Reg == IncomingReg) {
239        MO.setIsDead();
240        Found = true;
241        break;
242      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
243                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
244                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
245                 MO.isDead())
246        // There exists a super-register that's marked dead.
247        return true;
248    }
249  }
250
251  // If not found, this means an alias of one of the operand is dead. Add a
252  // new implicit operand.
253  if (!Found && AddIfNotFound) {
254    MI->addOperand(MachineOperand::CreateReg(IncomingReg, true/*IsDef*/,
255                                             true/*IsImp*/,false/*IsKill*/,
256                                             true/*IsDead*/));
257    return true;
258  }
259  return Found;
260}
261
262void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
263  // Turn previous partial def's into read/mod/write.
264  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
265    MachineInstr *Def = PhysRegPartDef[Reg][i];
266    // First one is just a def. This means the use is reading some undef bits.
267    if (i != 0)
268      Def->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
269                                                true/*IsImp*/,true/*IsKill*/));
270    Def->addOperand(MachineOperand::CreateReg(Reg,true/*IsDef*/,true/*IsImp*/));
271  }
272  PhysRegPartDef[Reg].clear();
273
274  // There was an earlier def of a super-register. Add implicit def to that MI.
275  // A: EAX = ...
276  // B:     = AX
277  // Add implicit def to A.
278  if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
279      !PhysRegUsed[Reg]) {
280    MachineInstr *Def = PhysRegInfo[Reg];
281    if (!Def->findRegisterDefOperand(Reg))
282      Def->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
283                                                true/*IsImp*/));
284  }
285
286  // There is a now a proper use, forget about the last partial use.
287  PhysRegPartUse[Reg] = NULL;
288  PhysRegInfo[Reg] = MI;
289  PhysRegUsed[Reg] = true;
290
291  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
292       unsigned SubReg = *SubRegs; ++SubRegs) {
293    PhysRegInfo[SubReg] = MI;
294    PhysRegUsed[SubReg] = true;
295  }
296
297  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
298       unsigned SuperReg = *SuperRegs; ++SuperRegs) {
299    // Remember the partial use of this superreg if it was previously defined.
300    bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
301    if (!HasPrevDef) {
302      for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
303           unsigned SSReg = *SSRegs; ++SSRegs) {
304        if (PhysRegInfo[SSReg] != NULL) {
305          HasPrevDef = true;
306          break;
307        }
308      }
309    }
310    if (HasPrevDef) {
311      PhysRegInfo[SuperReg] = MI;
312      PhysRegPartUse[SuperReg] = MI;
313    }
314  }
315}
316
317bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI,
318                                      SmallSet<unsigned, 4> &SubKills) {
319  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
320       unsigned SubReg = *SubRegs; ++SubRegs) {
321    MachineInstr *LastRef = PhysRegInfo[SubReg];
322    if (LastRef != RefMI ||
323        !HandlePhysRegKill(SubReg, RefMI, SubKills))
324      SubKills.insert(SubReg);
325  }
326
327  if (*RegInfo->getImmediateSubRegisters(Reg) == 0) {
328    // No sub-registers, just check if reg is killed by RefMI.
329    if (PhysRegInfo[Reg] == RefMI)
330      return true;
331  } else if (SubKills.empty())
332    // None of the sub-registers are killed elsewhere...
333    return true;
334  return false;
335}
336
337void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
338                                     SmallSet<unsigned, 4> &SubKills) {
339  if (SubKills.count(Reg) == 0)
340    addRegisterKilled(Reg, MI, RegInfo, true);
341  else {
342    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
343         unsigned SubReg = *SubRegs; ++SubRegs)
344      addRegisterKills(SubReg, MI, SubKills);
345  }
346}
347
348bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
349  SmallSet<unsigned, 4> SubKills;
350  if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
351    addRegisterKilled(Reg, RefMI, RegInfo, true);
352    return true;
353  } else {
354    // Some sub-registers are killed by another MI.
355    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
356         unsigned SubReg = *SubRegs; ++SubRegs)
357      addRegisterKills(SubReg, RefMI, SubKills);
358    return false;
359  }
360}
361
362void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
363  // Does this kill a previous version of this register?
364  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
365    if (PhysRegUsed[Reg]) {
366      if (!HandlePhysRegKill(Reg, LastRef)) {
367        if (PhysRegPartUse[Reg])
368          addRegisterKilled(Reg, PhysRegPartUse[Reg], RegInfo, true);
369      }
370    } else if (PhysRegPartUse[Reg])
371      // Add implicit use / kill to last partial use.
372      addRegisterKilled(Reg, PhysRegPartUse[Reg], RegInfo, true);
373    else if (LastRef != MI)
374      // Defined, but not used. However, watch out for cases where a super-reg
375      // is also defined on the same MI.
376      addRegisterDead(Reg, LastRef, RegInfo);
377  }
378
379  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
380       unsigned SubReg = *SubRegs; ++SubRegs) {
381    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
382      if (PhysRegUsed[SubReg]) {
383        if (!HandlePhysRegKill(SubReg, LastRef)) {
384          if (PhysRegPartUse[SubReg])
385            addRegisterKilled(SubReg, PhysRegPartUse[SubReg], RegInfo, true);
386        }
387      } else if (PhysRegPartUse[SubReg])
388        // Add implicit use / kill to last use of a sub-register.
389        addRegisterKilled(SubReg, PhysRegPartUse[SubReg], RegInfo, true);
390      else if (LastRef != MI)
391        // This must be a def of the subreg on the same MI.
392        addRegisterDead(SubReg, LastRef, RegInfo);
393    }
394  }
395
396  if (MI) {
397    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
398         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
399      if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
400        // The larger register is previously defined. Now a smaller part is
401        // being re-defined. Treat it as read/mod/write.
402        // EAX =
403        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
404        MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
405                                                 true/*IsImp*/,true/*IsKill*/));
406        MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
407                                                 true/*IsImp*/));
408        PhysRegInfo[SuperReg] = MI;
409        PhysRegUsed[SuperReg] = false;
410        PhysRegPartUse[SuperReg] = NULL;
411      } else {
412        // Remember this partial def.
413        PhysRegPartDef[SuperReg].push_back(MI);
414      }
415    }
416
417    PhysRegInfo[Reg] = MI;
418    PhysRegUsed[Reg] = false;
419    PhysRegPartDef[Reg].clear();
420    PhysRegPartUse[Reg] = NULL;
421    for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
422         unsigned SubReg = *SubRegs; ++SubRegs) {
423      PhysRegInfo[SubReg] = MI;
424      PhysRegUsed[SubReg] = false;
425      PhysRegPartDef[SubReg].clear();
426      PhysRegPartUse[SubReg] = NULL;
427    }
428  }
429}
430
431bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
432  MF = &mf;
433  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
434  RegInfo = MF->getTarget().getRegisterInfo();
435  assert(RegInfo && "Target doesn't have register information?");
436
437  ReservedRegisters = RegInfo->getReservedRegs(mf);
438
439  unsigned NumRegs = RegInfo->getNumRegs();
440  PhysRegInfo = new MachineInstr*[NumRegs];
441  PhysRegUsed = new bool[NumRegs];
442  PhysRegPartUse = new MachineInstr*[NumRegs];
443  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
444  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
445  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
446  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
447  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
448
449  /// Get some space for a respectable number of registers...
450  VirtRegInfo.resize(64);
451
452  analyzePHINodes(mf);
453
454  // Calculate live variable information in depth first order on the CFG of the
455  // function.  This guarantees that we will see the definition of a virtual
456  // register before its uses due to dominance properties of SSA (except for PHI
457  // nodes, which are treated as a special case).
458  //
459  MachineBasicBlock *Entry = MF->begin();
460  SmallPtrSet<MachineBasicBlock*,16> Visited;
461  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
462         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
463       DFI != E; ++DFI) {
464    MachineBasicBlock *MBB = *DFI;
465
466    // Mark live-in registers as live-in.
467    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
468           EE = MBB->livein_end(); II != EE; ++II) {
469      assert(MRegisterInfo::isPhysicalRegister(*II) &&
470             "Cannot have a live-in virtual register!");
471      HandlePhysRegDef(*II, 0);
472    }
473
474    // Loop over all of the instructions, processing them.
475    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
476         I != E; ++I) {
477      MachineInstr *MI = I;
478
479      // Process all of the operands of the instruction...
480      unsigned NumOperandsToProcess = MI->getNumOperands();
481
482      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
483      // of the uses.  They will be handled in other basic blocks.
484      if (MI->getOpcode() == TargetInstrInfo::PHI)
485        NumOperandsToProcess = 1;
486
487      // Process all uses...
488      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
489        MachineOperand &MO = MI->getOperand(i);
490        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
491          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
492            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
493          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
494                     !ReservedRegisters[MO.getReg()]) {
495            HandlePhysRegUse(MO.getReg(), MI);
496          }
497        }
498      }
499
500      // Process all defs...
501      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
502        MachineOperand &MO = MI->getOperand(i);
503        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
504          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
505            VarInfo &VRInfo = getVarInfo(MO.getReg());
506
507            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
508            VRInfo.DefInst = MI;
509            // Defaults to dead
510            VRInfo.Kills.push_back(MI);
511          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
512                     !ReservedRegisters[MO.getReg()]) {
513            HandlePhysRegDef(MO.getReg(), MI);
514          }
515        }
516      }
517    }
518
519    // Handle any virtual assignments from PHI nodes which might be at the
520    // bottom of this basic block.  We check all of our successor blocks to see
521    // if they have PHI nodes, and if so, we simulate an assignment at the end
522    // of the current block.
523    if (!PHIVarInfo[MBB->getNumber()].empty()) {
524      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
525
526      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
527             E = VarInfoVec.end(); I != E; ++I) {
528        VarInfo& VRInfo = getVarInfo(*I);
529        assert(VRInfo.DefInst && "Register use before def (or no def)!");
530
531        // Only mark it alive only in the block we are representing.
532        MarkVirtRegAliveInBlock(VRInfo, MBB);
533      }
534    }
535
536    // Finally, if the last instruction in the block is a return, make sure to mark
537    // it as using all of the live-out values in the function.
538    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
539      MachineInstr *Ret = &MBB->back();
540      for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
541             E = MF->liveout_end(); I != E; ++I) {
542        assert(MRegisterInfo::isPhysicalRegister(*I) &&
543               "Cannot have a live-in virtual register!");
544        HandlePhysRegUse(*I, Ret);
545        // Add live-out registers as implicit uses.
546        if (Ret->findRegisterUseOperandIdx(*I) == -1)
547          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
548      }
549    }
550
551    // Loop over PhysRegInfo, killing any registers that are available at the
552    // end of the basic block.  This also resets the PhysRegInfo map.
553    for (unsigned i = 0; i != NumRegs; ++i)
554      if (PhysRegInfo[i])
555        HandlePhysRegDef(i, 0);
556
557    // Clear some states between BB's. These are purely local information.
558    for (unsigned i = 0; i != NumRegs; ++i)
559      PhysRegPartDef[i].clear();
560    std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
561    std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
562    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
563  }
564
565  // Convert and transfer the dead / killed information we have gathered into
566  // VirtRegInfo onto MI's.
567  //
568  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
569    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
570      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
571        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
572                        VirtRegInfo[i].Kills[j], RegInfo);
573      else
574        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
575                          VirtRegInfo[i].Kills[j], RegInfo);
576    }
577
578  // Check to make sure there are no unreachable blocks in the MC CFG for the
579  // function.  If so, it is due to a bug in the instruction selector or some
580  // other part of the code generator if this happens.
581#ifndef NDEBUG
582  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
583    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
584#endif
585
586  delete[] PhysRegInfo;
587  delete[] PhysRegUsed;
588  delete[] PhysRegPartUse;
589  delete[] PhysRegPartDef;
590  delete[] PHIVarInfo;
591
592  return false;
593}
594
595/// instructionChanged - When the address of an instruction changes, this
596/// method should be called so that live variables can update its internal
597/// data structures.  This removes the records for OldMI, transfering them to
598/// the records for NewMI.
599void LiveVariables::instructionChanged(MachineInstr *OldMI,
600                                       MachineInstr *NewMI) {
601  // If the instruction defines any virtual registers, update the VarInfo,
602  // kill and dead information for the instruction.
603  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
604    MachineOperand &MO = OldMI->getOperand(i);
605    if (MO.isRegister() && MO.getReg() &&
606        MRegisterInfo::isVirtualRegister(MO.getReg())) {
607      unsigned Reg = MO.getReg();
608      VarInfo &VI = getVarInfo(Reg);
609      if (MO.isDef()) {
610        if (MO.isDead()) {
611          MO.setIsDead(false);
612          addVirtualRegisterDead(Reg, NewMI);
613        }
614        // Update the defining instruction.
615        if (VI.DefInst == OldMI)
616          VI.DefInst = NewMI;
617      }
618      if (MO.isKill()) {
619        MO.setIsKill(false);
620        addVirtualRegisterKilled(Reg, NewMI);
621      }
622      // If this is a kill of the value, update the VI kills list.
623      if (VI.removeKill(OldMI))
624        VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
625    }
626  }
627}
628
629/// transferKillDeadInfo - Similar to instructionChanged except it does not
630/// update live variables internal data structures.
631void LiveVariables::transferKillDeadInfo(MachineInstr *OldMI,
632                                         MachineInstr *NewMI,
633                                         const MRegisterInfo *RegInfo) {
634  // If the instruction defines any virtual registers, update the VarInfo,
635  // kill and dead information for the instruction.
636  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
637    MachineOperand &MO = OldMI->getOperand(i);
638    if (MO.isRegister() && MO.getReg() &&
639        MRegisterInfo::isVirtualRegister(MO.getReg())) {
640      unsigned Reg = MO.getReg();
641      if (MO.isDef()) {
642        if (MO.isDead()) {
643          MO.setIsDead(false);
644          addRegisterDead(Reg, NewMI, RegInfo);
645        }
646      }
647      if (MO.isKill()) {
648        MO.setIsKill(false);
649        addRegisterKilled(Reg, NewMI, RegInfo);
650      }
651    }
652  }
653}
654
655
656/// removeVirtualRegistersKilled - Remove all killed info for the specified
657/// instruction.
658void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
659  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
660    MachineOperand &MO = MI->getOperand(i);
661    if (MO.isRegister() && MO.isKill()) {
662      MO.setIsKill(false);
663      unsigned Reg = MO.getReg();
664      if (MRegisterInfo::isVirtualRegister(Reg)) {
665        bool removed = getVarInfo(Reg).removeKill(MI);
666        assert(removed && "kill not in register's VarInfo?");
667      }
668    }
669  }
670}
671
672/// removeVirtualRegistersDead - Remove all of the dead registers for the
673/// specified instruction from the live variable information.
674void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
675  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
676    MachineOperand &MO = MI->getOperand(i);
677    if (MO.isRegister() && MO.isDead()) {
678      MO.setIsDead(false);
679      unsigned Reg = MO.getReg();
680      if (MRegisterInfo::isVirtualRegister(Reg)) {
681        bool removed = getVarInfo(Reg).removeKill(MI);
682        assert(removed && "kill not in register's VarInfo?");
683      }
684    }
685  }
686}
687
688/// analyzePHINodes - Gather information about the PHI nodes in here. In
689/// particular, we want to map the variable information of a virtual
690/// register which is used in a PHI node. We map that to the BB the vreg is
691/// coming from.
692///
693void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
694  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
695       I != E; ++I)
696    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
697         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
698      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
699        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
700          push_back(BBI->getOperand(i).getReg());
701}
702