LiveVariables.cpp revision 81a038218171860ee4c382849c647d3dc841fe8b
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Config/alloca.h"
38#include <algorithm>
39using namespace llvm;
40
41char LiveVariables::ID = 0;
42static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
43
44void LiveVariables::VarInfo::dump() const {
45  cerr << "Register Defined by: ";
46  if (DefInst)
47    cerr << *DefInst;
48  else
49    cerr << "<null>\n";
50  cerr << "  Alive in blocks: ";
51  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
52    if (AliveBlocks[i]) cerr << i << ", ";
53  cerr << "  Used in blocks: ";
54  for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i)
55    if (UsedBlocks[i]) cerr << i << ", ";
56  cerr << "\n  Killed by:";
57  if (Kills.empty())
58    cerr << " No instructions.\n";
59  else {
60    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
61      cerr << "\n    #" << i << ": " << *Kills[i];
62    cerr << "\n";
63  }
64}
65
66LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
67  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
68         "getVarInfo: not a virtual register!");
69  RegIdx -= MRegisterInfo::FirstVirtualRegister;
70  if (RegIdx >= VirtRegInfo.size()) {
71    if (RegIdx >= 2*VirtRegInfo.size())
72      VirtRegInfo.resize(RegIdx*2);
73    else
74      VirtRegInfo.resize(2*VirtRegInfo.size());
75  }
76  VarInfo &VI = VirtRegInfo[RegIdx];
77  VI.AliveBlocks.resize(MF->getNumBlockIDs());
78  VI.UsedBlocks.resize(MF->getNumBlockIDs());
79  return VI;
80}
81
82bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
83  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
84    MachineOperand &MO = MI->getOperand(i);
85    if (MO.isRegister() && MO.isKill()) {
86      if ((MO.getReg() == Reg) ||
87          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
88           MRegisterInfo::isPhysicalRegister(Reg) &&
89           RegInfo->isSubRegister(MO.getReg(), Reg)))
90        return true;
91    }
92  }
93  return false;
94}
95
96bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
97  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
98    MachineOperand &MO = MI->getOperand(i);
99    if (MO.isRegister() && MO.isDead()) {
100      if ((MO.getReg() == Reg) ||
101          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
102           MRegisterInfo::isPhysicalRegister(Reg) &&
103           RegInfo->isSubRegister(MO.getReg(), Reg)))
104        return true;
105    }
106  }
107  return false;
108}
109
110bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
111  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
112    MachineOperand &MO = MI->getOperand(i);
113    if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg)
114      return true;
115  }
116  return false;
117}
118
119void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
120                                            MachineBasicBlock *MBB,
121                                    std::vector<MachineBasicBlock*> &WorkList) {
122  unsigned BBNum = MBB->getNumber();
123
124  // Check to see if this basic block is one of the killing blocks.  If so,
125  // remove it...
126  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
127    if (VRInfo.Kills[i]->getParent() == MBB) {
128      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
129      break;
130    }
131
132  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
133
134  if (VRInfo.AliveBlocks[BBNum])
135    return;  // We already know the block is live
136
137  // Mark the variable known alive in this bb
138  VRInfo.AliveBlocks[BBNum] = true;
139
140  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
141         E = MBB->pred_rend(); PI != E; ++PI)
142    WorkList.push_back(*PI);
143}
144
145void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
146                                            MachineBasicBlock *MBB) {
147  std::vector<MachineBasicBlock*> WorkList;
148  MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
149  while (!WorkList.empty()) {
150    MachineBasicBlock *Pred = WorkList.back();
151    WorkList.pop_back();
152    MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
153  }
154}
155
156
157void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
158                                     MachineInstr *MI) {
159  assert(VRInfo.DefInst && "Register use before def!");
160
161  unsigned BBNum = MBB->getNumber();
162
163  VRInfo.UsedBlocks[BBNum] = true;
164  VRInfo.NumUses++;
165
166  // Check to see if this basic block is already a kill block...
167  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
168    // Yes, this register is killed in this basic block already.  Increase the
169    // live range by updating the kill instruction.
170    VRInfo.Kills.back() = MI;
171    return;
172  }
173
174#ifndef NDEBUG
175  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
176    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
177#endif
178
179  assert(MBB != VRInfo.DefInst->getParent() &&
180         "Should have kill for defblock!");
181
182  // Add a new kill entry for this basic block.
183  // If this virtual register is already marked as alive in this basic block,
184  // that means it is alive in at least one of the successor block, it's not
185  // a kill.
186  if (!VRInfo.AliveBlocks[BBNum])
187    VRInfo.Kills.push_back(MI);
188
189  // Update all dominating blocks to mark them known live.
190  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
191         E = MBB->pred_end(); PI != E; ++PI)
192    MarkVirtRegAliveInBlock(VRInfo, *PI);
193}
194
195bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
196                                      const MRegisterInfo *RegInfo,
197                                      bool AddIfNotFound) {
198  bool Found = false;
199  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
200    MachineOperand &MO = MI->getOperand(i);
201    if (MO.isRegister() && MO.isUse()) {
202      unsigned Reg = MO.getReg();
203      if (!Reg)
204        continue;
205      if (Reg == IncomingReg) {
206        MO.setIsKill();
207        Found = true;
208        break;
209      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
210                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
211                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
212                 MO.isKill())
213        // A super-register kill already exists.
214        Found = true;
215    }
216  }
217
218  // If not found, this means an alias of one of the operand is killed. Add a
219  // new implicit operand if required.
220  if (!Found && AddIfNotFound) {
221    MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
222    return true;
223  }
224  return Found;
225}
226
227bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
228                                    const MRegisterInfo *RegInfo,
229                                    bool AddIfNotFound) {
230  bool Found = false;
231  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
232    MachineOperand &MO = MI->getOperand(i);
233    if (MO.isRegister() && MO.isDef()) {
234      unsigned Reg = MO.getReg();
235      if (!Reg)
236        continue;
237      if (Reg == IncomingReg) {
238        MO.setIsDead();
239        Found = true;
240        break;
241      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
242                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
243                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
244                 MO.isDead())
245        // There exists a super-register that's marked dead.
246        return true;
247    }
248  }
249
250  // If not found, this means an alias of one of the operand is dead. Add a
251  // new implicit operand.
252  if (!Found && AddIfNotFound) {
253    MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/,
254                      true/*IsDead*/);
255    return true;
256  }
257  return Found;
258}
259
260void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
261  // Turn previous partial def's into read/mod/write.
262  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
263    MachineInstr *Def = PhysRegPartDef[Reg][i];
264    // First one is just a def. This means the use is reading some undef bits.
265    if (i != 0)
266      Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
267    Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
268  }
269  PhysRegPartDef[Reg].clear();
270
271  // There was an earlier def of a super-register. Add implicit def to that MI.
272  // A: EAX = ...
273  // B:     = AX
274  // Add implicit def to A.
275  if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
276      !PhysRegUsed[Reg]) {
277    MachineInstr *Def = PhysRegInfo[Reg];
278    if (!Def->findRegisterDefOperand(Reg))
279      Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
280  }
281
282  // There is a now a proper use, forget about the last partial use.
283  PhysRegPartUse[Reg] = NULL;
284  PhysRegInfo[Reg] = MI;
285  PhysRegUsed[Reg] = true;
286
287  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
288       unsigned SubReg = *SubRegs; ++SubRegs) {
289    PhysRegInfo[SubReg] = MI;
290    PhysRegUsed[SubReg] = true;
291  }
292
293  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
294       unsigned SuperReg = *SuperRegs; ++SuperRegs) {
295    // Remember the partial use of this superreg if it was previously defined.
296    bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
297    if (!HasPrevDef) {
298      for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
299           unsigned SSReg = *SSRegs; ++SSRegs) {
300        if (PhysRegInfo[SSReg] != NULL) {
301          HasPrevDef = true;
302          break;
303        }
304      }
305    }
306    if (HasPrevDef) {
307      PhysRegInfo[SuperReg] = MI;
308      PhysRegPartUse[SuperReg] = MI;
309    }
310  }
311}
312
313bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI,
314                                      SmallSet<unsigned, 4> &SubKills) {
315  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
316       unsigned SubReg = *SubRegs; ++SubRegs) {
317    MachineInstr *LastRef = PhysRegInfo[SubReg];
318    if (LastRef != RefMI ||
319        !HandlePhysRegKill(SubReg, RefMI, SubKills))
320      SubKills.insert(SubReg);
321  }
322
323  if (*RegInfo->getImmediateSubRegisters(Reg) == 0) {
324    // No sub-registers, just check if reg is killed by RefMI.
325    if (PhysRegInfo[Reg] == RefMI)
326      return true;
327  } else if (SubKills.empty())
328    // None of the sub-registers are killed elsewhere...
329    return true;
330  return false;
331}
332
333void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
334                                     SmallSet<unsigned, 4> &SubKills) {
335  if (SubKills.count(Reg) == 0)
336    addRegisterKilled(Reg, MI, RegInfo, true);
337  else {
338    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
339         unsigned SubReg = *SubRegs; ++SubRegs)
340      addRegisterKills(SubReg, MI, SubKills);
341  }
342}
343
344bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
345  SmallSet<unsigned, 4> SubKills;
346  if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
347    addRegisterKilled(Reg, RefMI, RegInfo, true);
348    return true;
349  } else {
350    // Some sub-registers are killed by another MI.
351    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
352         unsigned SubReg = *SubRegs; ++SubRegs)
353      addRegisterKills(SubReg, RefMI, SubKills);
354    return false;
355  }
356}
357
358void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
359  // Does this kill a previous version of this register?
360  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
361    if (PhysRegUsed[Reg]) {
362      if (!HandlePhysRegKill(Reg, LastRef)) {
363        if (PhysRegPartUse[Reg])
364          addRegisterKilled(Reg, PhysRegPartUse[Reg], RegInfo, true);
365      }
366    } else if (PhysRegPartUse[Reg])
367      // Add implicit use / kill to last partial use.
368      addRegisterKilled(Reg, PhysRegPartUse[Reg], RegInfo, true);
369    else if (LastRef != MI)
370      // Defined, but not used. However, watch out for cases where a super-reg
371      // is also defined on the same MI.
372      addRegisterDead(Reg, LastRef, RegInfo);
373  }
374
375  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
376       unsigned SubReg = *SubRegs; ++SubRegs) {
377    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
378      if (PhysRegUsed[SubReg]) {
379        if (!HandlePhysRegKill(SubReg, LastRef)) {
380          if (PhysRegPartUse[SubReg])
381            addRegisterKilled(SubReg, PhysRegPartUse[SubReg], RegInfo, true);
382        }
383      } else if (PhysRegPartUse[SubReg])
384        // Add implicit use / kill to last use of a sub-register.
385        addRegisterKilled(SubReg, PhysRegPartUse[SubReg], RegInfo, true);
386      else if (LastRef != MI)
387        // This must be a def of the subreg on the same MI.
388        addRegisterDead(SubReg, LastRef, RegInfo);
389    }
390  }
391
392  if (MI) {
393    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
394         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
395      if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
396        // The larger register is previously defined. Now a smaller part is
397        // being re-defined. Treat it as read/mod/write.
398        // EAX =
399        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
400        MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
401        MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/);
402        PhysRegInfo[SuperReg] = MI;
403        PhysRegUsed[SuperReg] = false;
404        PhysRegPartUse[SuperReg] = NULL;
405      } else {
406        // Remember this partial def.
407        PhysRegPartDef[SuperReg].push_back(MI);
408      }
409    }
410
411    PhysRegInfo[Reg] = MI;
412    PhysRegUsed[Reg] = false;
413    PhysRegPartDef[Reg].clear();
414    PhysRegPartUse[Reg] = NULL;
415    for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
416         unsigned SubReg = *SubRegs; ++SubRegs) {
417      PhysRegInfo[SubReg] = MI;
418      PhysRegUsed[SubReg] = false;
419      PhysRegPartDef[SubReg].clear();
420      PhysRegPartUse[SubReg] = NULL;
421    }
422  }
423}
424
425bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
426  MF = &mf;
427  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
428  RegInfo = MF->getTarget().getRegisterInfo();
429  assert(RegInfo && "Target doesn't have register information?");
430
431  ReservedRegisters = RegInfo->getReservedRegs(mf);
432
433  unsigned NumRegs = RegInfo->getNumRegs();
434  PhysRegInfo = new MachineInstr*[NumRegs];
435  PhysRegUsed = new bool[NumRegs];
436  PhysRegPartUse = new MachineInstr*[NumRegs];
437  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
438  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
439  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
440  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
441  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
442
443  /// Get some space for a respectable number of registers...
444  VirtRegInfo.resize(64);
445
446  analyzePHINodes(mf);
447
448  // Calculate live variable information in depth first order on the CFG of the
449  // function.  This guarantees that we will see the definition of a virtual
450  // register before its uses due to dominance properties of SSA (except for PHI
451  // nodes, which are treated as a special case).
452  //
453  MachineBasicBlock *Entry = MF->begin();
454  SmallPtrSet<MachineBasicBlock*,16> Visited;
455  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
456         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
457       DFI != E; ++DFI) {
458    MachineBasicBlock *MBB = *DFI;
459
460    // Mark live-in registers as live-in.
461    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
462           EE = MBB->livein_end(); II != EE; ++II) {
463      assert(MRegisterInfo::isPhysicalRegister(*II) &&
464             "Cannot have a live-in virtual register!");
465      HandlePhysRegDef(*II, 0);
466    }
467
468    // Loop over all of the instructions, processing them.
469    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
470         I != E; ++I) {
471      MachineInstr *MI = I;
472
473      // Process all of the operands of the instruction...
474      unsigned NumOperandsToProcess = MI->getNumOperands();
475
476      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
477      // of the uses.  They will be handled in other basic blocks.
478      if (MI->getOpcode() == TargetInstrInfo::PHI)
479        NumOperandsToProcess = 1;
480
481      // Process all uses...
482      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
483        MachineOperand &MO = MI->getOperand(i);
484        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
485          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
486            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
487          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
488                     !ReservedRegisters[MO.getReg()]) {
489            HandlePhysRegUse(MO.getReg(), MI);
490          }
491        }
492      }
493
494      // Process all defs...
495      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
496        MachineOperand &MO = MI->getOperand(i);
497        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
498          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
499            VarInfo &VRInfo = getVarInfo(MO.getReg());
500
501            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
502            VRInfo.DefInst = MI;
503            // Defaults to dead
504            VRInfo.Kills.push_back(MI);
505          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
506                     !ReservedRegisters[MO.getReg()]) {
507            HandlePhysRegDef(MO.getReg(), MI);
508          }
509        }
510      }
511    }
512
513    // Handle any virtual assignments from PHI nodes which might be at the
514    // bottom of this basic block.  We check all of our successor blocks to see
515    // if they have PHI nodes, and if so, we simulate an assignment at the end
516    // of the current block.
517    if (!PHIVarInfo[MBB->getNumber()].empty()) {
518      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
519
520      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
521             E = VarInfoVec.end(); I != E; ++I) {
522        VarInfo& VRInfo = getVarInfo(*I);
523        assert(VRInfo.DefInst && "Register use before def (or no def)!");
524
525        // Only mark it alive only in the block we are representing.
526        MarkVirtRegAliveInBlock(VRInfo, MBB);
527      }
528    }
529
530    // Finally, if the last instruction in the block is a return, make sure to mark
531    // it as using all of the live-out values in the function.
532    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
533      MachineInstr *Ret = &MBB->back();
534      for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
535             E = MF->liveout_end(); I != E; ++I) {
536        assert(MRegisterInfo::isPhysicalRegister(*I) &&
537               "Cannot have a live-in virtual register!");
538        HandlePhysRegUse(*I, Ret);
539        // Add live-out registers as implicit uses.
540        if (Ret->findRegisterUseOperandIdx(*I) == -1)
541          Ret->addRegOperand(*I, false, true);
542      }
543    }
544
545    // Loop over PhysRegInfo, killing any registers that are available at the
546    // end of the basic block.  This also resets the PhysRegInfo map.
547    for (unsigned i = 0; i != NumRegs; ++i)
548      if (PhysRegInfo[i])
549        HandlePhysRegDef(i, 0);
550
551    // Clear some states between BB's. These are purely local information.
552    for (unsigned i = 0; i != NumRegs; ++i)
553      PhysRegPartDef[i].clear();
554    std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
555    std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
556    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
557  }
558
559  // Convert and transfer the dead / killed information we have gathered into
560  // VirtRegInfo onto MI's.
561  //
562  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
563    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
564      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
565        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
566                        VirtRegInfo[i].Kills[j], RegInfo);
567      else
568        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
569                          VirtRegInfo[i].Kills[j], RegInfo);
570    }
571
572  // Check to make sure there are no unreachable blocks in the MC CFG for the
573  // function.  If so, it is due to a bug in the instruction selector or some
574  // other part of the code generator if this happens.
575#ifndef NDEBUG
576  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
577    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
578#endif
579
580  delete[] PhysRegInfo;
581  delete[] PhysRegUsed;
582  delete[] PhysRegPartUse;
583  delete[] PhysRegPartDef;
584  delete[] PHIVarInfo;
585
586  return false;
587}
588
589/// instructionChanged - When the address of an instruction changes, this
590/// method should be called so that live variables can update its internal
591/// data structures.  This removes the records for OldMI, transfering them to
592/// the records for NewMI.
593void LiveVariables::instructionChanged(MachineInstr *OldMI,
594                                       MachineInstr *NewMI) {
595  // If the instruction defines any virtual registers, update the VarInfo,
596  // kill and dead information for the instruction.
597  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
598    MachineOperand &MO = OldMI->getOperand(i);
599    if (MO.isRegister() && MO.getReg() &&
600        MRegisterInfo::isVirtualRegister(MO.getReg())) {
601      unsigned Reg = MO.getReg();
602      VarInfo &VI = getVarInfo(Reg);
603      if (MO.isDef()) {
604        if (MO.isDead()) {
605          MO.unsetIsDead();
606          addVirtualRegisterDead(Reg, NewMI);
607        }
608        // Update the defining instruction.
609        if (VI.DefInst == OldMI)
610          VI.DefInst = NewMI;
611      }
612      if (MO.isKill()) {
613        MO.unsetIsKill();
614        addVirtualRegisterKilled(Reg, NewMI);
615      }
616      // If this is a kill of the value, update the VI kills list.
617      if (VI.removeKill(OldMI))
618        VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
619    }
620  }
621}
622
623/// transferKillDeadInfo - Similar to instructionChanged except it does not
624/// update live variables internal data structures.
625void LiveVariables::transferKillDeadInfo(MachineInstr *OldMI,
626                                         MachineInstr *NewMI,
627                                         const MRegisterInfo *RegInfo) {
628  // If the instruction defines any virtual registers, update the VarInfo,
629  // kill and dead information for the instruction.
630  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
631    MachineOperand &MO = OldMI->getOperand(i);
632    if (MO.isRegister() && MO.getReg() &&
633        MRegisterInfo::isVirtualRegister(MO.getReg())) {
634      unsigned Reg = MO.getReg();
635      if (MO.isDef()) {
636        if (MO.isDead()) {
637          MO.unsetIsDead();
638          addRegisterDead(Reg, NewMI, RegInfo);
639        }
640      }
641      if (MO.isKill()) {
642        MO.unsetIsKill();
643        addRegisterKilled(Reg, NewMI, RegInfo);
644      }
645    }
646  }
647}
648
649
650/// removeVirtualRegistersKilled - Remove all killed info for the specified
651/// instruction.
652void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
653  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
654    MachineOperand &MO = MI->getOperand(i);
655    if (MO.isRegister() && MO.isKill()) {
656      MO.unsetIsKill();
657      unsigned Reg = MO.getReg();
658      if (MRegisterInfo::isVirtualRegister(Reg)) {
659        bool removed = getVarInfo(Reg).removeKill(MI);
660        assert(removed && "kill not in register's VarInfo?");
661      }
662    }
663  }
664}
665
666/// removeVirtualRegistersDead - Remove all of the dead registers for the
667/// specified instruction from the live variable information.
668void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
669  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
670    MachineOperand &MO = MI->getOperand(i);
671    if (MO.isRegister() && MO.isDead()) {
672      MO.unsetIsDead();
673      unsigned Reg = MO.getReg();
674      if (MRegisterInfo::isVirtualRegister(Reg)) {
675        bool removed = getVarInfo(Reg).removeKill(MI);
676        assert(removed && "kill not in register's VarInfo?");
677      }
678    }
679  }
680}
681
682/// analyzePHINodes - Gather information about the PHI nodes in here. In
683/// particular, we want to map the variable information of a virtual
684/// register which is used in a PHI node. We map that to the BB the vreg is
685/// coming from.
686///
687void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
688  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
689       I != E; ++I)
690    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
691         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
692      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
693        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
694          push_back(BBI->getOperand(i).getReg());
695}
696