LiveVariables.cpp revision 9ab3dbe617af06627fed2455c93ab9dc6b459951
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45char &llvm::LiveVariablesID = LiveVariables::ID;
46INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47                "Live Variable Analysis", false, false)
48INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49INITIALIZE_PASS_END(LiveVariables, "livevars",
50                "Live Variable Analysis", false, false)
51
52
53void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54  AU.addRequiredID(UnreachableMachineBlockElimID);
55  AU.setPreservesAll();
56  MachineFunctionPass::getAnalysisUsage(AU);
57}
58
59MachineInstr *
60LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62    if (Kills[i]->getParent() == MBB)
63      return Kills[i];
64  return NULL;
65}
66
67void LiveVariables::VarInfo::dump() const {
68  dbgs() << "  Alive in blocks: ";
69  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
70           E = AliveBlocks.end(); I != E; ++I)
71    dbgs() << *I << ", ";
72  dbgs() << "\n  Killed by:";
73  if (Kills.empty())
74    dbgs() << " No instructions.\n";
75  else {
76    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
77      dbgs() << "\n    #" << i << ": " << *Kills[i];
78    dbgs() << "\n";
79  }
80}
81
82/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
83LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
84  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
85         "getVarInfo: not a virtual register!");
86  VirtRegInfo.grow(RegIdx);
87  return VirtRegInfo[RegIdx];
88}
89
90void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
91                                            MachineBasicBlock *DefBlock,
92                                            MachineBasicBlock *MBB,
93                                    std::vector<MachineBasicBlock*> &WorkList) {
94  unsigned BBNum = MBB->getNumber();
95
96  // Check to see if this basic block is one of the killing blocks.  If so,
97  // remove it.
98  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
99    if (VRInfo.Kills[i]->getParent() == MBB) {
100      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
101      break;
102    }
103
104  if (MBB == DefBlock) return;  // Terminate recursion
105
106  if (VRInfo.AliveBlocks.test(BBNum))
107    return;  // We already know the block is live
108
109  // Mark the variable known alive in this bb
110  VRInfo.AliveBlocks.set(BBNum);
111
112  assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
113  WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
114}
115
116void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
117                                            MachineBasicBlock *DefBlock,
118                                            MachineBasicBlock *MBB) {
119  std::vector<MachineBasicBlock*> WorkList;
120  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
121
122  while (!WorkList.empty()) {
123    MachineBasicBlock *Pred = WorkList.back();
124    WorkList.pop_back();
125    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
126  }
127}
128
129void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
130                                     MachineInstr *MI) {
131  assert(MRI->getVRegDef(reg) && "Register use before def!");
132
133  unsigned BBNum = MBB->getNumber();
134
135  VarInfo& VRInfo = getVarInfo(reg);
136
137  // Check to see if this basic block is already a kill block.
138  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
139    // Yes, this register is killed in this basic block already. Increase the
140    // live range by updating the kill instruction.
141    VRInfo.Kills.back() = MI;
142    return;
143  }
144
145#ifndef NDEBUG
146  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
147    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
148#endif
149
150  // This situation can occur:
151  //
152  //     ,------.
153  //     |      |
154  //     |      v
155  //     |   t2 = phi ... t1 ...
156  //     |      |
157  //     |      v
158  //     |   t1 = ...
159  //     |  ... = ... t1 ...
160  //     |      |
161  //     `------'
162  //
163  // where there is a use in a PHI node that's a predecessor to the defining
164  // block. We don't want to mark all predecessors as having the value "alive"
165  // in this case.
166  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
167
168  // Add a new kill entry for this basic block. If this virtual register is
169  // already marked as alive in this basic block, that means it is alive in at
170  // least one of the successor blocks, it's not a kill.
171  if (!VRInfo.AliveBlocks.test(BBNum))
172    VRInfo.Kills.push_back(MI);
173
174  // Update all dominating blocks to mark them as "known live".
175  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
176         E = MBB->pred_end(); PI != E; ++PI)
177    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
178}
179
180void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
181  VarInfo &VRInfo = getVarInfo(Reg);
182
183  if (VRInfo.AliveBlocks.empty())
184    // If vr is not alive in any block, then defaults to dead.
185    VRInfo.Kills.push_back(MI);
186}
187
188/// FindLastPartialDef - Return the last partial def of the specified register.
189/// Also returns the sub-registers that're defined by the instruction.
190MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
191                                            SmallSet<unsigned,4> &PartDefRegs) {
192  unsigned LastDefReg = 0;
193  unsigned LastDefDist = 0;
194  MachineInstr *LastDef = NULL;
195  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
196       unsigned SubReg = *SubRegs; ++SubRegs) {
197    MachineInstr *Def = PhysRegDef[SubReg];
198    if (!Def)
199      continue;
200    unsigned Dist = DistanceMap[Def];
201    if (Dist > LastDefDist) {
202      LastDefReg  = SubReg;
203      LastDef     = Def;
204      LastDefDist = Dist;
205    }
206  }
207
208  if (!LastDef)
209    return 0;
210
211  PartDefRegs.insert(LastDefReg);
212  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
213    MachineOperand &MO = LastDef->getOperand(i);
214    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
215      continue;
216    unsigned DefReg = MO.getReg();
217    if (TRI->isSubRegister(Reg, DefReg)) {
218      PartDefRegs.insert(DefReg);
219      for (const uint16_t *SubRegs = TRI->getSubRegisters(DefReg);
220           unsigned SubReg = *SubRegs; ++SubRegs)
221        PartDefRegs.insert(SubReg);
222    }
223  }
224  return LastDef;
225}
226
227/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
228/// implicit defs to a machine instruction if there was an earlier def of its
229/// super-register.
230void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
231  MachineInstr *LastDef = PhysRegDef[Reg];
232  // If there was a previous use or a "full" def all is well.
233  if (!LastDef && !PhysRegUse[Reg]) {
234    // Otherwise, the last sub-register def implicitly defines this register.
235    // e.g.
236    // AH =
237    // AL = ... <imp-def EAX>, <imp-kill AH>
238    //    = AH
239    // ...
240    //    = EAX
241    // All of the sub-registers must have been defined before the use of Reg!
242    SmallSet<unsigned, 4> PartDefRegs;
243    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
244    // If LastPartialDef is NULL, it must be using a livein register.
245    if (LastPartialDef) {
246      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
247                                                           true/*IsImp*/));
248      PhysRegDef[Reg] = LastPartialDef;
249      SmallSet<unsigned, 8> Processed;
250      for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
251           unsigned SubReg = *SubRegs; ++SubRegs) {
252        if (Processed.count(SubReg))
253          continue;
254        if (PartDefRegs.count(SubReg))
255          continue;
256        // This part of Reg was defined before the last partial def. It's killed
257        // here.
258        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
259                                                             false/*IsDef*/,
260                                                             true/*IsImp*/));
261        PhysRegDef[SubReg] = LastPartialDef;
262        for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
263          Processed.insert(*SS);
264      }
265    }
266  } else if (LastDef && !PhysRegUse[Reg] &&
267             !LastDef->findRegisterDefOperand(Reg))
268    // Last def defines the super register, add an implicit def of reg.
269    LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
270                                                  true/*IsImp*/));
271
272  // Remember this use.
273  PhysRegUse[Reg]  = MI;
274  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
275       unsigned SubReg = *SubRegs; ++SubRegs)
276    PhysRegUse[SubReg] =  MI;
277}
278
279/// FindLastRefOrPartRef - Return the last reference or partial reference of
280/// the specified register.
281MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
282  MachineInstr *LastDef = PhysRegDef[Reg];
283  MachineInstr *LastUse = PhysRegUse[Reg];
284  if (!LastDef && !LastUse)
285    return 0;
286
287  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
288  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
289  unsigned LastPartDefDist = 0;
290  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
291       unsigned SubReg = *SubRegs; ++SubRegs) {
292    MachineInstr *Def = PhysRegDef[SubReg];
293    if (Def && Def != LastDef) {
294      // There was a def of this sub-register in between. This is a partial
295      // def, keep track of the last one.
296      unsigned Dist = DistanceMap[Def];
297      if (Dist > LastPartDefDist)
298        LastPartDefDist = Dist;
299    } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
300      unsigned Dist = DistanceMap[Use];
301      if (Dist > LastRefOrPartRefDist) {
302        LastRefOrPartRefDist = Dist;
303        LastRefOrPartRef = Use;
304      }
305    }
306  }
307
308  return LastRefOrPartRef;
309}
310
311bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
312  MachineInstr *LastDef = PhysRegDef[Reg];
313  MachineInstr *LastUse = PhysRegUse[Reg];
314  if (!LastDef && !LastUse)
315    return false;
316
317  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
318  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
319  // The whole register is used.
320  // AL =
321  // AH =
322  //
323  //    = AX
324  //    = AL, AX<imp-use, kill>
325  // AX =
326  //
327  // Or whole register is defined, but not used at all.
328  // AX<dead> =
329  // ...
330  // AX =
331  //
332  // Or whole register is defined, but only partly used.
333  // AX<dead> = AL<imp-def>
334  //    = AL<kill>
335  // AX =
336  MachineInstr *LastPartDef = 0;
337  unsigned LastPartDefDist = 0;
338  SmallSet<unsigned, 8> PartUses;
339  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
340       unsigned SubReg = *SubRegs; ++SubRegs) {
341    MachineInstr *Def = PhysRegDef[SubReg];
342    if (Def && Def != LastDef) {
343      // There was a def of this sub-register in between. This is a partial
344      // def, keep track of the last one.
345      unsigned Dist = DistanceMap[Def];
346      if (Dist > LastPartDefDist) {
347        LastPartDefDist = Dist;
348        LastPartDef = Def;
349      }
350      continue;
351    }
352    if (MachineInstr *Use = PhysRegUse[SubReg]) {
353      PartUses.insert(SubReg);
354      for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
355        PartUses.insert(*SS);
356      unsigned Dist = DistanceMap[Use];
357      if (Dist > LastRefOrPartRefDist) {
358        LastRefOrPartRefDist = Dist;
359        LastRefOrPartRef = Use;
360      }
361    }
362  }
363
364  if (!PhysRegUse[Reg]) {
365    // Partial uses. Mark register def dead and add implicit def of
366    // sub-registers which are used.
367    // EAX<dead>  = op  AL<imp-def>
368    // That is, EAX def is dead but AL def extends pass it.
369    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
371         unsigned SubReg = *SubRegs; ++SubRegs) {
372      if (!PartUses.count(SubReg))
373        continue;
374      bool NeedDef = true;
375      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
376        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
377        if (MO) {
378          NeedDef = false;
379          assert(!MO->isDead());
380        }
381      }
382      if (NeedDef)
383        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
384                                                 true/*IsDef*/, true/*IsImp*/));
385      MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
386      if (LastSubRef)
387        LastSubRef->addRegisterKilled(SubReg, TRI, true);
388      else {
389        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
390        PhysRegUse[SubReg] = LastRefOrPartRef;
391        for (const uint16_t *SSRegs = TRI->getSubRegisters(SubReg);
392             unsigned SSReg = *SSRegs; ++SSRegs)
393          PhysRegUse[SSReg] = LastRefOrPartRef;
394      }
395      for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
396        PartUses.erase(*SS);
397    }
398  } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
399    if (LastPartDef)
400      // The last partial def kills the register.
401      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
402                                                true/*IsImp*/, true/*IsKill*/));
403    else {
404      MachineOperand *MO =
405        LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
406      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
407      // If the last reference is the last def, then it's not used at all.
408      // That is, unless we are currently processing the last reference itself.
409      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
410      if (NeedEC) {
411        // If we are adding a subreg def and the superreg def is marked early
412        // clobber, add an early clobber marker to the subreg def.
413        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
414        if (MO)
415          MO->setIsEarlyClobber();
416      }
417    }
418  } else
419    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
420  return true;
421}
422
423void LiveVariables::HandleRegMask(const MachineOperand &MO) {
424  // Call HandlePhysRegKill() for all live registers clobbered by Mask.
425  // Clobbered registers are always dead, sp there is no need to use
426  // HandlePhysRegDef().
427  for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
428    // Skip dead regs.
429    if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
430      continue;
431    // Skip mask-preserved regs.
432    if (!MO.clobbersPhysReg(Reg))
433      continue;
434    // Kill the largest clobbered super-register.
435    // This avoids needless implicit operands.
436    unsigned Super = Reg;
437    for (const uint16_t *SR = TRI->getSuperRegisters(Reg); *SR; ++SR)
438      if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
439        Super = *SR;
440    HandlePhysRegKill(Super, 0);
441  }
442}
443
444void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
445                                     SmallVector<unsigned, 4> &Defs) {
446  // What parts of the register are previously defined?
447  SmallSet<unsigned, 32> Live;
448  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
449    Live.insert(Reg);
450    for (const uint16_t *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
451      Live.insert(*SS);
452  } else {
453    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
454         unsigned SubReg = *SubRegs; ++SubRegs) {
455      // If a register isn't itself defined, but all parts that make up of it
456      // are defined, then consider it also defined.
457      // e.g.
458      // AL =
459      // AH =
460      //    = AX
461      if (Live.count(SubReg))
462        continue;
463      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
464        Live.insert(SubReg);
465        for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
466          Live.insert(*SS);
467      }
468    }
469  }
470
471  // Start from the largest piece, find the last time any part of the register
472  // is referenced.
473  HandlePhysRegKill(Reg, MI);
474  // Only some of the sub-registers are used.
475  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
476       unsigned SubReg = *SubRegs; ++SubRegs) {
477    if (!Live.count(SubReg))
478      // Skip if this sub-register isn't defined.
479      continue;
480    HandlePhysRegKill(SubReg, MI);
481  }
482
483  if (MI)
484    Defs.push_back(Reg);  // Remember this def.
485}
486
487void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
488                                      SmallVector<unsigned, 4> &Defs) {
489  while (!Defs.empty()) {
490    unsigned Reg = Defs.back();
491    Defs.pop_back();
492    PhysRegDef[Reg]  = MI;
493    PhysRegUse[Reg]  = NULL;
494    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
495         unsigned SubReg = *SubRegs; ++SubRegs) {
496      PhysRegDef[SubReg]  = MI;
497      PhysRegUse[SubReg]  = NULL;
498    }
499  }
500}
501
502bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
503  MF = &mf;
504  MRI = &mf.getRegInfo();
505  TRI = MF->getTarget().getRegisterInfo();
506
507  ReservedRegisters = TRI->getReservedRegs(mf);
508
509  unsigned NumRegs = TRI->getNumRegs();
510  PhysRegDef  = new MachineInstr*[NumRegs];
511  PhysRegUse  = new MachineInstr*[NumRegs];
512  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
513  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
514  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
515  PHIJoins.clear();
516
517  // FIXME: LiveIntervals will be updated to remove its dependence on
518  // LiveVariables to improve compilation time and eliminate bizarre pass
519  // dependencies. Until then, we can't change much in -O0.
520  if (!MRI->isSSA())
521    report_fatal_error("regalloc=... not currently supported with -O0");
522
523  analyzePHINodes(mf);
524
525  // Calculate live variable information in depth first order on the CFG of the
526  // function.  This guarantees that we will see the definition of a virtual
527  // register before its uses due to dominance properties of SSA (except for PHI
528  // nodes, which are treated as a special case).
529  MachineBasicBlock *Entry = MF->begin();
530  SmallPtrSet<MachineBasicBlock*,16> Visited;
531
532  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
533         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
534       DFI != E; ++DFI) {
535    MachineBasicBlock *MBB = *DFI;
536
537    // Mark live-in registers as live-in.
538    SmallVector<unsigned, 4> Defs;
539    for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
540           EE = MBB->livein_end(); II != EE; ++II) {
541      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
542             "Cannot have a live-in virtual register!");
543      HandlePhysRegDef(*II, 0, Defs);
544    }
545
546    // Loop over all of the instructions, processing them.
547    DistanceMap.clear();
548    unsigned Dist = 0;
549    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
550         I != E; ++I) {
551      MachineInstr *MI = I;
552      if (MI->isDebugValue())
553        continue;
554      DistanceMap.insert(std::make_pair(MI, Dist++));
555
556      // Process all of the operands of the instruction...
557      unsigned NumOperandsToProcess = MI->getNumOperands();
558
559      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
560      // of the uses.  They will be handled in other basic blocks.
561      if (MI->isPHI())
562        NumOperandsToProcess = 1;
563
564      // Clear kill and dead markers. LV will recompute them.
565      SmallVector<unsigned, 4> UseRegs;
566      SmallVector<unsigned, 4> DefRegs;
567      SmallVector<unsigned, 1> RegMasks;
568      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
569        MachineOperand &MO = MI->getOperand(i);
570        if (MO.isRegMask()) {
571          RegMasks.push_back(i);
572          continue;
573        }
574        if (!MO.isReg() || MO.getReg() == 0)
575          continue;
576        unsigned MOReg = MO.getReg();
577        if (MO.isUse()) {
578          MO.setIsKill(false);
579          UseRegs.push_back(MOReg);
580        } else /*MO.isDef()*/ {
581          MO.setIsDead(false);
582          DefRegs.push_back(MOReg);
583        }
584      }
585
586      // Process all uses.
587      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
588        unsigned MOReg = UseRegs[i];
589        if (TargetRegisterInfo::isVirtualRegister(MOReg))
590          HandleVirtRegUse(MOReg, MBB, MI);
591        else if (!ReservedRegisters[MOReg])
592          HandlePhysRegUse(MOReg, MI);
593      }
594
595      // Process all masked registers. (Call clobbers).
596      for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
597        HandleRegMask(MI->getOperand(RegMasks[i]));
598
599      // Process all defs.
600      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
601        unsigned MOReg = DefRegs[i];
602        if (TargetRegisterInfo::isVirtualRegister(MOReg))
603          HandleVirtRegDef(MOReg, MI);
604        else if (!ReservedRegisters[MOReg])
605          HandlePhysRegDef(MOReg, MI, Defs);
606      }
607      UpdatePhysRegDefs(MI, Defs);
608    }
609
610    // Handle any virtual assignments from PHI nodes which might be at the
611    // bottom of this basic block.  We check all of our successor blocks to see
612    // if they have PHI nodes, and if so, we simulate an assignment at the end
613    // of the current block.
614    if (!PHIVarInfo[MBB->getNumber()].empty()) {
615      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
616
617      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
618             E = VarInfoVec.end(); I != E; ++I)
619        // Mark it alive only in the block we are representing.
620        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
621                                MBB);
622    }
623
624    // Finally, if the last instruction in the block is a return, make sure to
625    // mark it as using all of the live-out values in the function.
626    // Things marked both call and return are tail calls; do not do this for
627    // them.  The tail callee need not take the same registers as input
628    // that it produces as output, and there are dependencies for its input
629    // registers elsewhere.
630    if (!MBB->empty() && MBB->back().isReturn()
631        && !MBB->back().isCall()) {
632      MachineInstr *Ret = &MBB->back();
633
634      for (MachineRegisterInfo::liveout_iterator
635           I = MF->getRegInfo().liveout_begin(),
636           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
637        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
638               "Cannot have a live-out virtual register!");
639        HandlePhysRegUse(*I, Ret);
640
641        // Add live-out registers as implicit uses.
642        if (!Ret->readsRegister(*I))
643          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
644      }
645    }
646
647    // MachineCSE may CSE instructions which write to non-allocatable physical
648    // registers across MBBs. Remember if any reserved register is liveout.
649    SmallSet<unsigned, 4> LiveOuts;
650    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
651           SE = MBB->succ_end(); SI != SE; ++SI) {
652      MachineBasicBlock *SuccMBB = *SI;
653      if (SuccMBB->isLandingPad())
654        continue;
655      for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
656             LE = SuccMBB->livein_end(); LI != LE; ++LI) {
657        unsigned LReg = *LI;
658        if (!TRI->isInAllocatableClass(LReg))
659          // Ignore other live-ins, e.g. those that are live into landing pads.
660          LiveOuts.insert(LReg);
661      }
662    }
663
664    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
665    // available at the end of the basic block.
666    for (unsigned i = 0; i != NumRegs; ++i)
667      if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
668        HandlePhysRegDef(i, 0, Defs);
669
670    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
671    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
672  }
673
674  // Convert and transfer the dead / killed information we have gathered into
675  // VirtRegInfo onto MI's.
676  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
677    const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
678    for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
679      if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
680        VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
681      else
682        VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
683  }
684
685  // Check to make sure there are no unreachable blocks in the MC CFG for the
686  // function.  If so, it is due to a bug in the instruction selector or some
687  // other part of the code generator if this happens.
688#ifndef NDEBUG
689  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
690    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
691#endif
692
693  delete[] PhysRegDef;
694  delete[] PhysRegUse;
695  delete[] PHIVarInfo;
696
697  return false;
698}
699
700/// replaceKillInstruction - Update register kill info by replacing a kill
701/// instruction with a new one.
702void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
703                                           MachineInstr *NewMI) {
704  VarInfo &VI = getVarInfo(Reg);
705  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
706}
707
708/// removeVirtualRegistersKilled - Remove all killed info for the specified
709/// instruction.
710void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
711  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
712    MachineOperand &MO = MI->getOperand(i);
713    if (MO.isReg() && MO.isKill()) {
714      MO.setIsKill(false);
715      unsigned Reg = MO.getReg();
716      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
717        bool removed = getVarInfo(Reg).removeKill(MI);
718        assert(removed && "kill not in register's VarInfo?");
719        (void)removed;
720      }
721    }
722  }
723}
724
725/// analyzePHINodes - Gather information about the PHI nodes in here. In
726/// particular, we want to map the variable information of a virtual register
727/// which is used in a PHI node. We map that to the BB the vreg is coming from.
728///
729void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
730  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
731       I != E; ++I)
732    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
733         BBI != BBE && BBI->isPHI(); ++BBI)
734      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
735        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
736          .push_back(BBI->getOperand(i).getReg());
737}
738
739bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
740                                      unsigned Reg,
741                                      MachineRegisterInfo &MRI) {
742  unsigned Num = MBB.getNumber();
743
744  // Reg is live-through.
745  if (AliveBlocks.test(Num))
746    return true;
747
748  // Registers defined in MBB cannot be live in.
749  const MachineInstr *Def = MRI.getVRegDef(Reg);
750  if (Def && Def->getParent() == &MBB)
751    return false;
752
753 // Reg was not defined in MBB, was it killed here?
754  return findKill(&MBB);
755}
756
757bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
758  LiveVariables::VarInfo &VI = getVarInfo(Reg);
759
760  // Loop over all of the successors of the basic block, checking to see if
761  // the value is either live in the block, or if it is killed in the block.
762  SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
763  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
764         E = MBB.succ_end(); SI != E; ++SI) {
765    MachineBasicBlock *SuccMBB = *SI;
766
767    // Is it alive in this successor?
768    unsigned SuccIdx = SuccMBB->getNumber();
769    if (VI.AliveBlocks.test(SuccIdx))
770      return true;
771    OpSuccBlocks.push_back(SuccMBB);
772  }
773
774  // Check to see if this value is live because there is a use in a successor
775  // that kills it.
776  switch (OpSuccBlocks.size()) {
777  case 1: {
778    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
779    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
780      if (VI.Kills[i]->getParent() == SuccMBB)
781        return true;
782    break;
783  }
784  case 2: {
785    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
786    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
787      if (VI.Kills[i]->getParent() == SuccMBB1 ||
788          VI.Kills[i]->getParent() == SuccMBB2)
789        return true;
790    break;
791  }
792  default:
793    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
794    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
795      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
796                             VI.Kills[i]->getParent()))
797        return true;
798  }
799  return false;
800}
801
802/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
803/// variables that are live out of DomBB will be marked as passing live through
804/// BB.
805void LiveVariables::addNewBlock(MachineBasicBlock *BB,
806                                MachineBasicBlock *DomBB,
807                                MachineBasicBlock *SuccBB) {
808  const unsigned NumNew = BB->getNumber();
809
810  // All registers used by PHI nodes in SuccBB must be live through BB.
811  for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
812         BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
813    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
814      if (BBI->getOperand(i+1).getMBB() == BB)
815        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
816
817  // Update info for all live variables
818  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
819    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
820    VarInfo &VI = getVarInfo(Reg);
821    if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
822      VI.AliveBlocks.set(NumNew);
823  }
824}
825