LiveVariables.cpp revision 9ebfbf8b9fd5f982e0db9293808bd32168615ba9
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45char &llvm::LiveVariablesID = LiveVariables::ID;
46INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47                "Live Variable Analysis", false, false)
48INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49INITIALIZE_PASS_END(LiveVariables, "livevars",
50                "Live Variable Analysis", false, false)
51
52
53void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54  AU.addRequiredID(UnreachableMachineBlockElimID);
55  AU.setPreservesAll();
56  MachineFunctionPass::getAnalysisUsage(AU);
57}
58
59MachineInstr *
60LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62    if (Kills[i]->getParent() == MBB)
63      return Kills[i];
64  return NULL;
65}
66
67void LiveVariables::VarInfo::dump() const {
68  dbgs() << "  Alive in blocks: ";
69  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
70           E = AliveBlocks.end(); I != E; ++I)
71    dbgs() << *I << ", ";
72  dbgs() << "\n  Killed by:";
73  if (Kills.empty())
74    dbgs() << " No instructions.\n";
75  else {
76    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
77      dbgs() << "\n    #" << i << ": " << *Kills[i];
78    dbgs() << "\n";
79  }
80}
81
82/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
83LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
84  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
85         "getVarInfo: not a virtual register!");
86  VirtRegInfo.grow(RegIdx);
87  return VirtRegInfo[RegIdx];
88}
89
90void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
91                                            MachineBasicBlock *DefBlock,
92                                            MachineBasicBlock *MBB,
93                                    std::vector<MachineBasicBlock*> &WorkList) {
94  unsigned BBNum = MBB->getNumber();
95
96  // Check to see if this basic block is one of the killing blocks.  If so,
97  // remove it.
98  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
99    if (VRInfo.Kills[i]->getParent() == MBB) {
100      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
101      break;
102    }
103
104  if (MBB == DefBlock) return;  // Terminate recursion
105
106  if (VRInfo.AliveBlocks.test(BBNum))
107    return;  // We already know the block is live
108
109  // Mark the variable known alive in this bb
110  VRInfo.AliveBlocks.set(BBNum);
111
112  WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
113}
114
115void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
116                                            MachineBasicBlock *DefBlock,
117                                            MachineBasicBlock *MBB) {
118  std::vector<MachineBasicBlock*> WorkList;
119  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
120
121  while (!WorkList.empty()) {
122    MachineBasicBlock *Pred = WorkList.back();
123    WorkList.pop_back();
124    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
125  }
126}
127
128void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
129                                     MachineInstr *MI) {
130  assert(MRI->getVRegDef(reg) && "Register use before def!");
131
132  unsigned BBNum = MBB->getNumber();
133
134  VarInfo& VRInfo = getVarInfo(reg);
135
136  // Check to see if this basic block is already a kill block.
137  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
138    // Yes, this register is killed in this basic block already. Increase the
139    // live range by updating the kill instruction.
140    VRInfo.Kills.back() = MI;
141    return;
142  }
143
144#ifndef NDEBUG
145  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
146    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
147#endif
148
149  // This situation can occur:
150  //
151  //     ,------.
152  //     |      |
153  //     |      v
154  //     |   t2 = phi ... t1 ...
155  //     |      |
156  //     |      v
157  //     |   t1 = ...
158  //     |  ... = ... t1 ...
159  //     |      |
160  //     `------'
161  //
162  // where there is a use in a PHI node that's a predecessor to the defining
163  // block. We don't want to mark all predecessors as having the value "alive"
164  // in this case.
165  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
166
167  // Add a new kill entry for this basic block. If this virtual register is
168  // already marked as alive in this basic block, that means it is alive in at
169  // least one of the successor blocks, it's not a kill.
170  if (!VRInfo.AliveBlocks.test(BBNum))
171    VRInfo.Kills.push_back(MI);
172
173  // Update all dominating blocks to mark them as "known live".
174  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
175         E = MBB->pred_end(); PI != E; ++PI)
176    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
177}
178
179void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
180  VarInfo &VRInfo = getVarInfo(Reg);
181
182  if (VRInfo.AliveBlocks.empty())
183    // If vr is not alive in any block, then defaults to dead.
184    VRInfo.Kills.push_back(MI);
185}
186
187/// FindLastPartialDef - Return the last partial def of the specified register.
188/// Also returns the sub-registers that're defined by the instruction.
189MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
190                                            SmallSet<unsigned,4> &PartDefRegs) {
191  unsigned LastDefReg = 0;
192  unsigned LastDefDist = 0;
193  MachineInstr *LastDef = NULL;
194  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
195       unsigned SubReg = *SubRegs; ++SubRegs) {
196    MachineInstr *Def = PhysRegDef[SubReg];
197    if (!Def)
198      continue;
199    unsigned Dist = DistanceMap[Def];
200    if (Dist > LastDefDist) {
201      LastDefReg  = SubReg;
202      LastDef     = Def;
203      LastDefDist = Dist;
204    }
205  }
206
207  if (!LastDef)
208    return 0;
209
210  PartDefRegs.insert(LastDefReg);
211  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
212    MachineOperand &MO = LastDef->getOperand(i);
213    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
214      continue;
215    unsigned DefReg = MO.getReg();
216    if (TRI->isSubRegister(Reg, DefReg)) {
217      PartDefRegs.insert(DefReg);
218      for (const uint16_t *SubRegs = TRI->getSubRegisters(DefReg);
219           unsigned SubReg = *SubRegs; ++SubRegs)
220        PartDefRegs.insert(SubReg);
221    }
222  }
223  return LastDef;
224}
225
226/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
227/// implicit defs to a machine instruction if there was an earlier def of its
228/// super-register.
229void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
230  MachineInstr *LastDef = PhysRegDef[Reg];
231  // If there was a previous use or a "full" def all is well.
232  if (!LastDef && !PhysRegUse[Reg]) {
233    // Otherwise, the last sub-register def implicitly defines this register.
234    // e.g.
235    // AH =
236    // AL = ... <imp-def EAX>, <imp-kill AH>
237    //    = AH
238    // ...
239    //    = EAX
240    // All of the sub-registers must have been defined before the use of Reg!
241    SmallSet<unsigned, 4> PartDefRegs;
242    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
243    // If LastPartialDef is NULL, it must be using a livein register.
244    if (LastPartialDef) {
245      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
246                                                           true/*IsImp*/));
247      PhysRegDef[Reg] = LastPartialDef;
248      SmallSet<unsigned, 8> Processed;
249      for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
250           unsigned SubReg = *SubRegs; ++SubRegs) {
251        if (Processed.count(SubReg))
252          continue;
253        if (PartDefRegs.count(SubReg))
254          continue;
255        // This part of Reg was defined before the last partial def. It's killed
256        // here.
257        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
258                                                             false/*IsDef*/,
259                                                             true/*IsImp*/));
260        PhysRegDef[SubReg] = LastPartialDef;
261        for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
262          Processed.insert(*SS);
263      }
264    }
265  } else if (LastDef && !PhysRegUse[Reg] &&
266             !LastDef->findRegisterDefOperand(Reg))
267    // Last def defines the super register, add an implicit def of reg.
268    LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
269                                                  true/*IsImp*/));
270
271  // Remember this use.
272  PhysRegUse[Reg]  = MI;
273  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
274       unsigned SubReg = *SubRegs; ++SubRegs)
275    PhysRegUse[SubReg] =  MI;
276}
277
278/// FindLastRefOrPartRef - Return the last reference or partial reference of
279/// the specified register.
280MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
281  MachineInstr *LastDef = PhysRegDef[Reg];
282  MachineInstr *LastUse = PhysRegUse[Reg];
283  if (!LastDef && !LastUse)
284    return 0;
285
286  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
287  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
288  unsigned LastPartDefDist = 0;
289  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
290       unsigned SubReg = *SubRegs; ++SubRegs) {
291    MachineInstr *Def = PhysRegDef[SubReg];
292    if (Def && Def != LastDef) {
293      // There was a def of this sub-register in between. This is a partial
294      // def, keep track of the last one.
295      unsigned Dist = DistanceMap[Def];
296      if (Dist > LastPartDefDist)
297        LastPartDefDist = Dist;
298    } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
299      unsigned Dist = DistanceMap[Use];
300      if (Dist > LastRefOrPartRefDist) {
301        LastRefOrPartRefDist = Dist;
302        LastRefOrPartRef = Use;
303      }
304    }
305  }
306
307  return LastRefOrPartRef;
308}
309
310bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
311  MachineInstr *LastDef = PhysRegDef[Reg];
312  MachineInstr *LastUse = PhysRegUse[Reg];
313  if (!LastDef && !LastUse)
314    return false;
315
316  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
317  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
318  // The whole register is used.
319  // AL =
320  // AH =
321  //
322  //    = AX
323  //    = AL, AX<imp-use, kill>
324  // AX =
325  //
326  // Or whole register is defined, but not used at all.
327  // AX<dead> =
328  // ...
329  // AX =
330  //
331  // Or whole register is defined, but only partly used.
332  // AX<dead> = AL<imp-def>
333  //    = AL<kill>
334  // AX =
335  MachineInstr *LastPartDef = 0;
336  unsigned LastPartDefDist = 0;
337  SmallSet<unsigned, 8> PartUses;
338  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
339       unsigned SubReg = *SubRegs; ++SubRegs) {
340    MachineInstr *Def = PhysRegDef[SubReg];
341    if (Def && Def != LastDef) {
342      // There was a def of this sub-register in between. This is a partial
343      // def, keep track of the last one.
344      unsigned Dist = DistanceMap[Def];
345      if (Dist > LastPartDefDist) {
346        LastPartDefDist = Dist;
347        LastPartDef = Def;
348      }
349      continue;
350    }
351    if (MachineInstr *Use = PhysRegUse[SubReg]) {
352      PartUses.insert(SubReg);
353      for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
354        PartUses.insert(*SS);
355      unsigned Dist = DistanceMap[Use];
356      if (Dist > LastRefOrPartRefDist) {
357        LastRefOrPartRefDist = Dist;
358        LastRefOrPartRef = Use;
359      }
360    }
361  }
362
363  if (!PhysRegUse[Reg]) {
364    // Partial uses. Mark register def dead and add implicit def of
365    // sub-registers which are used.
366    // EAX<dead>  = op  AL<imp-def>
367    // That is, EAX def is dead but AL def extends pass it.
368    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
369    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
370         unsigned SubReg = *SubRegs; ++SubRegs) {
371      if (!PartUses.count(SubReg))
372        continue;
373      bool NeedDef = true;
374      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
375        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
376        if (MO) {
377          NeedDef = false;
378          assert(!MO->isDead());
379        }
380      }
381      if (NeedDef)
382        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
383                                                 true/*IsDef*/, true/*IsImp*/));
384      MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
385      if (LastSubRef)
386        LastSubRef->addRegisterKilled(SubReg, TRI, true);
387      else {
388        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
389        PhysRegUse[SubReg] = LastRefOrPartRef;
390        for (const uint16_t *SSRegs = TRI->getSubRegisters(SubReg);
391             unsigned SSReg = *SSRegs; ++SSRegs)
392          PhysRegUse[SSReg] = LastRefOrPartRef;
393      }
394      for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
395        PartUses.erase(*SS);
396    }
397  } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
398    if (LastPartDef)
399      // The last partial def kills the register.
400      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
401                                                true/*IsImp*/, true/*IsKill*/));
402    else {
403      MachineOperand *MO =
404        LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
405      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
406      // If the last reference is the last def, then it's not used at all.
407      // That is, unless we are currently processing the last reference itself.
408      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
409      if (NeedEC) {
410        // If we are adding a subreg def and the superreg def is marked early
411        // clobber, add an early clobber marker to the subreg def.
412        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
413        if (MO)
414          MO->setIsEarlyClobber();
415      }
416    }
417  } else
418    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
419  return true;
420}
421
422void LiveVariables::HandleRegMask(const MachineOperand &MO) {
423  // Call HandlePhysRegKill() for all live registers clobbered by Mask.
424  // Clobbered registers are always dead, sp there is no need to use
425  // HandlePhysRegDef().
426  for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
427    // Skip dead regs.
428    if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
429      continue;
430    // Skip mask-preserved regs.
431    if (!MO.clobbersPhysReg(Reg))
432      continue;
433    // Kill the largest clobbered super-register.
434    // This avoids needless implicit operands.
435    unsigned Super = Reg;
436    for (const uint16_t *SR = TRI->getSuperRegisters(Reg); *SR; ++SR)
437      if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
438        Super = *SR;
439    HandlePhysRegKill(Super, 0);
440  }
441}
442
443void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
444                                     SmallVector<unsigned, 4> &Defs) {
445  // What parts of the register are previously defined?
446  SmallSet<unsigned, 32> Live;
447  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
448    Live.insert(Reg);
449    for (const uint16_t *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
450      Live.insert(*SS);
451  } else {
452    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
453         unsigned SubReg = *SubRegs; ++SubRegs) {
454      // If a register isn't itself defined, but all parts that make up of it
455      // are defined, then consider it also defined.
456      // e.g.
457      // AL =
458      // AH =
459      //    = AX
460      if (Live.count(SubReg))
461        continue;
462      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
463        Live.insert(SubReg);
464        for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
465          Live.insert(*SS);
466      }
467    }
468  }
469
470  // Start from the largest piece, find the last time any part of the register
471  // is referenced.
472  HandlePhysRegKill(Reg, MI);
473  // Only some of the sub-registers are used.
474  for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
475       unsigned SubReg = *SubRegs; ++SubRegs) {
476    if (!Live.count(SubReg))
477      // Skip if this sub-register isn't defined.
478      continue;
479    HandlePhysRegKill(SubReg, MI);
480  }
481
482  if (MI)
483    Defs.push_back(Reg);  // Remember this def.
484}
485
486void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
487                                      SmallVector<unsigned, 4> &Defs) {
488  while (!Defs.empty()) {
489    unsigned Reg = Defs.back();
490    Defs.pop_back();
491    PhysRegDef[Reg]  = MI;
492    PhysRegUse[Reg]  = NULL;
493    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
494         unsigned SubReg = *SubRegs; ++SubRegs) {
495      PhysRegDef[SubReg]  = MI;
496      PhysRegUse[SubReg]  = NULL;
497    }
498  }
499}
500
501bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
502  MF = &mf;
503  MRI = &mf.getRegInfo();
504  TRI = MF->getTarget().getRegisterInfo();
505
506  ReservedRegisters = TRI->getReservedRegs(mf);
507
508  unsigned NumRegs = TRI->getNumRegs();
509  PhysRegDef  = new MachineInstr*[NumRegs];
510  PhysRegUse  = new MachineInstr*[NumRegs];
511  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
512  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
513  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
514  PHIJoins.clear();
515
516  // FIXME: LiveIntervals will be updated to remove its dependence on
517  // LiveVariables to improve compilation time and eliminate bizarre pass
518  // dependencies. Until then, we can't change much in -O0.
519  if (!MRI->isSSA())
520    report_fatal_error("regalloc=... not currently supported with -O0");
521
522  analyzePHINodes(mf);
523
524  // Calculate live variable information in depth first order on the CFG of the
525  // function.  This guarantees that we will see the definition of a virtual
526  // register before its uses due to dominance properties of SSA (except for PHI
527  // nodes, which are treated as a special case).
528  MachineBasicBlock *Entry = MF->begin();
529  SmallPtrSet<MachineBasicBlock*,16> Visited;
530
531  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
532         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
533       DFI != E; ++DFI) {
534    MachineBasicBlock *MBB = *DFI;
535
536    // Mark live-in registers as live-in.
537    SmallVector<unsigned, 4> Defs;
538    for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
539           EE = MBB->livein_end(); II != EE; ++II) {
540      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
541             "Cannot have a live-in virtual register!");
542      HandlePhysRegDef(*II, 0, Defs);
543    }
544
545    // Loop over all of the instructions, processing them.
546    DistanceMap.clear();
547    unsigned Dist = 0;
548    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
549         I != E; ++I) {
550      MachineInstr *MI = I;
551      if (MI->isDebugValue())
552        continue;
553      DistanceMap.insert(std::make_pair(MI, Dist++));
554
555      // Process all of the operands of the instruction...
556      unsigned NumOperandsToProcess = MI->getNumOperands();
557
558      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
559      // of the uses.  They will be handled in other basic blocks.
560      if (MI->isPHI())
561        NumOperandsToProcess = 1;
562
563      // Clear kill and dead markers. LV will recompute them.
564      SmallVector<unsigned, 4> UseRegs;
565      SmallVector<unsigned, 4> DefRegs;
566      SmallVector<unsigned, 1> RegMasks;
567      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
568        MachineOperand &MO = MI->getOperand(i);
569        if (MO.isRegMask()) {
570          RegMasks.push_back(i);
571          continue;
572        }
573        if (!MO.isReg() || MO.getReg() == 0)
574          continue;
575        unsigned MOReg = MO.getReg();
576        if (MO.isUse()) {
577          MO.setIsKill(false);
578          UseRegs.push_back(MOReg);
579        } else /*MO.isDef()*/ {
580          MO.setIsDead(false);
581          DefRegs.push_back(MOReg);
582        }
583      }
584
585      // Process all uses.
586      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
587        unsigned MOReg = UseRegs[i];
588        if (TargetRegisterInfo::isVirtualRegister(MOReg))
589          HandleVirtRegUse(MOReg, MBB, MI);
590        else if (!ReservedRegisters[MOReg])
591          HandlePhysRegUse(MOReg, MI);
592      }
593
594      // Process all masked registers. (Call clobbers).
595      for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
596        HandleRegMask(MI->getOperand(RegMasks[i]));
597
598      // Process all defs.
599      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
600        unsigned MOReg = DefRegs[i];
601        if (TargetRegisterInfo::isVirtualRegister(MOReg))
602          HandleVirtRegDef(MOReg, MI);
603        else if (!ReservedRegisters[MOReg])
604          HandlePhysRegDef(MOReg, MI, Defs);
605      }
606      UpdatePhysRegDefs(MI, Defs);
607    }
608
609    // Handle any virtual assignments from PHI nodes which might be at the
610    // bottom of this basic block.  We check all of our successor blocks to see
611    // if they have PHI nodes, and if so, we simulate an assignment at the end
612    // of the current block.
613    if (!PHIVarInfo[MBB->getNumber()].empty()) {
614      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
615
616      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
617             E = VarInfoVec.end(); I != E; ++I)
618        // Mark it alive only in the block we are representing.
619        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
620                                MBB);
621    }
622
623    // Finally, if the last instruction in the block is a return, make sure to
624    // mark it as using all of the live-out values in the function.
625    // Things marked both call and return are tail calls; do not do this for
626    // them.  The tail callee need not take the same registers as input
627    // that it produces as output, and there are dependencies for its input
628    // registers elsewhere.
629    if (!MBB->empty() && MBB->back().isReturn()
630        && !MBB->back().isCall()) {
631      MachineInstr *Ret = &MBB->back();
632
633      for (MachineRegisterInfo::liveout_iterator
634           I = MF->getRegInfo().liveout_begin(),
635           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
636        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
637               "Cannot have a live-out virtual register!");
638        HandlePhysRegUse(*I, Ret);
639
640        // Add live-out registers as implicit uses.
641        if (!Ret->readsRegister(*I))
642          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
643      }
644    }
645
646    // MachineCSE may CSE instructions which write to non-allocatable physical
647    // registers across MBBs. Remember if any reserved register is liveout.
648    SmallSet<unsigned, 4> LiveOuts;
649    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
650           SE = MBB->succ_end(); SI != SE; ++SI) {
651      MachineBasicBlock *SuccMBB = *SI;
652      if (SuccMBB->isLandingPad())
653        continue;
654      for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
655             LE = SuccMBB->livein_end(); LI != LE; ++LI) {
656        unsigned LReg = *LI;
657        if (!TRI->isInAllocatableClass(LReg))
658          // Ignore other live-ins, e.g. those that are live into landing pads.
659          LiveOuts.insert(LReg);
660      }
661    }
662
663    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
664    // available at the end of the basic block.
665    for (unsigned i = 0; i != NumRegs; ++i)
666      if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
667        HandlePhysRegDef(i, 0, Defs);
668
669    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
670    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
671  }
672
673  // Convert and transfer the dead / killed information we have gathered into
674  // VirtRegInfo onto MI's.
675  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
676    const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
677    for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
678      if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
679        VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
680      else
681        VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
682  }
683
684  // Check to make sure there are no unreachable blocks in the MC CFG for the
685  // function.  If so, it is due to a bug in the instruction selector or some
686  // other part of the code generator if this happens.
687#ifndef NDEBUG
688  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
689    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
690#endif
691
692  delete[] PhysRegDef;
693  delete[] PhysRegUse;
694  delete[] PHIVarInfo;
695
696  return false;
697}
698
699/// replaceKillInstruction - Update register kill info by replacing a kill
700/// instruction with a new one.
701void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
702                                           MachineInstr *NewMI) {
703  VarInfo &VI = getVarInfo(Reg);
704  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
705}
706
707/// removeVirtualRegistersKilled - Remove all killed info for the specified
708/// instruction.
709void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
710  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
711    MachineOperand &MO = MI->getOperand(i);
712    if (MO.isReg() && MO.isKill()) {
713      MO.setIsKill(false);
714      unsigned Reg = MO.getReg();
715      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
716        bool removed = getVarInfo(Reg).removeKill(MI);
717        assert(removed && "kill not in register's VarInfo?");
718        (void)removed;
719      }
720    }
721  }
722}
723
724/// analyzePHINodes - Gather information about the PHI nodes in here. In
725/// particular, we want to map the variable information of a virtual register
726/// which is used in a PHI node. We map that to the BB the vreg is coming from.
727///
728void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
729  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
730       I != E; ++I)
731    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
732         BBI != BBE && BBI->isPHI(); ++BBI)
733      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
734        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
735          .push_back(BBI->getOperand(i).getReg());
736}
737
738bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
739                                      unsigned Reg,
740                                      MachineRegisterInfo &MRI) {
741  unsigned Num = MBB.getNumber();
742
743  // Reg is live-through.
744  if (AliveBlocks.test(Num))
745    return true;
746
747  // Registers defined in MBB cannot be live in.
748  const MachineInstr *Def = MRI.getVRegDef(Reg);
749  if (Def && Def->getParent() == &MBB)
750    return false;
751
752 // Reg was not defined in MBB, was it killed here?
753  return findKill(&MBB);
754}
755
756bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
757  LiveVariables::VarInfo &VI = getVarInfo(Reg);
758
759  // Loop over all of the successors of the basic block, checking to see if
760  // the value is either live in the block, or if it is killed in the block.
761  SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
762  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
763         E = MBB.succ_end(); SI != E; ++SI) {
764    MachineBasicBlock *SuccMBB = *SI;
765
766    // Is it alive in this successor?
767    unsigned SuccIdx = SuccMBB->getNumber();
768    if (VI.AliveBlocks.test(SuccIdx))
769      return true;
770    OpSuccBlocks.push_back(SuccMBB);
771  }
772
773  // Check to see if this value is live because there is a use in a successor
774  // that kills it.
775  switch (OpSuccBlocks.size()) {
776  case 1: {
777    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
778    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
779      if (VI.Kills[i]->getParent() == SuccMBB)
780        return true;
781    break;
782  }
783  case 2: {
784    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
785    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
786      if (VI.Kills[i]->getParent() == SuccMBB1 ||
787          VI.Kills[i]->getParent() == SuccMBB2)
788        return true;
789    break;
790  }
791  default:
792    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
793    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
794      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
795                             VI.Kills[i]->getParent()))
796        return true;
797  }
798  return false;
799}
800
801/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
802/// variables that are live out of DomBB will be marked as passing live through
803/// BB.
804void LiveVariables::addNewBlock(MachineBasicBlock *BB,
805                                MachineBasicBlock *DomBB,
806                                MachineBasicBlock *SuccBB) {
807  const unsigned NumNew = BB->getNumber();
808
809  // All registers used by PHI nodes in SuccBB must be live through BB.
810  for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
811         BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
812    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
813      if (BBI->getOperand(i+1).getMBB() == BB)
814        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
815
816  // Update info for all live variables
817  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
818    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
819    VarInfo &VI = getVarInfo(Reg);
820    if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
821      VI.AliveBlocks.set(NumNew);
822  }
823}
824