LiveVariables.cpp revision a894ae130b6e69a367aa691eec7e96973a20e901
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Config/alloca.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49  AU.addRequiredID(UnreachableMachineBlockElimID);
50  AU.setPreservesAll();
51}
52
53void LiveVariables::VarInfo::dump() const {
54  cerr << "  Alive in blocks: ";
55  for (int i = AliveBlocks.find_first(); i != -1; i = AliveBlocks.find_next(i))
56    cerr << i << ", ";
57  cerr << "  Used in blocks: ";
58  for (int i = UsedBlocks.find_first(); i != -1; i = UsedBlocks.find_next(i))
59    cerr << i << ", ";
60  cerr << "\n  Killed by:";
61  if (Kills.empty())
62    cerr << " No instructions.\n";
63  else {
64    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
65      cerr << "\n    #" << i << ": " << *Kills[i];
66    cerr << "\n";
67  }
68}
69
70/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
71LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
72  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
73         "getVarInfo: not a virtual register!");
74  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
75  if (RegIdx >= VirtRegInfo.size()) {
76    if (RegIdx >= 2*VirtRegInfo.size())
77      VirtRegInfo.resize(RegIdx*2);
78    else
79      VirtRegInfo.resize(2*VirtRegInfo.size());
80  }
81  VarInfo &VI = VirtRegInfo[RegIdx];
82  VI.AliveBlocks.resize(MF->getNumBlockIDs());
83  VI.UsedBlocks.resize(MF->getNumBlockIDs());
84  return VI;
85}
86
87void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
88                                            MachineBasicBlock *DefBlock,
89                                            MachineBasicBlock *MBB,
90                                    std::vector<MachineBasicBlock*> &WorkList) {
91  unsigned BBNum = MBB->getNumber();
92
93  // Check to see if this basic block is one of the killing blocks.  If so,
94  // remove it.
95  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
96    if (VRInfo.Kills[i]->getParent() == MBB) {
97      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
98      break;
99    }
100
101  if (MBB == DefBlock) return;  // Terminate recursion
102
103  if (VRInfo.AliveBlocks[BBNum])
104    return;  // We already know the block is live
105
106  // Mark the variable known alive in this bb
107  VRInfo.AliveBlocks[BBNum] = true;
108
109  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
110         E = MBB->pred_rend(); PI != E; ++PI)
111    WorkList.push_back(*PI);
112}
113
114void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
115                                            MachineBasicBlock *DefBlock,
116                                            MachineBasicBlock *MBB) {
117  std::vector<MachineBasicBlock*> WorkList;
118  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
119
120  while (!WorkList.empty()) {
121    MachineBasicBlock *Pred = WorkList.back();
122    WorkList.pop_back();
123    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
124  }
125}
126
127void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
128                                     MachineInstr *MI) {
129  assert(MRI->getVRegDef(reg) && "Register use before def!");
130
131  unsigned BBNum = MBB->getNumber();
132
133  VarInfo& VRInfo = getVarInfo(reg);
134  VRInfo.UsedBlocks[BBNum] = true;
135  VRInfo.NumUses++;
136
137  // Check to see if this basic block is already a kill block.
138  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
139    // Yes, this register is killed in this basic block already. Increase the
140    // live range by updating the kill instruction.
141    VRInfo.Kills.back() = MI;
142    return;
143  }
144
145#ifndef NDEBUG
146  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
147    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
148#endif
149
150  // This situation can occur:
151  //
152  //     ,------.
153  //     |      |
154  //     |      v
155  //     |   t2 = phi ... t1 ...
156  //     |      |
157  //     |      v
158  //     |   t1 = ...
159  //     |  ... = ... t1 ...
160  //     |      |
161  //     `------'
162  //
163  // where there is a use in a PHI node that's a predecessor to the defining
164  // block. We don't want to mark all predecessors as having the value "alive"
165  // in this case.
166  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
167
168  // Add a new kill entry for this basic block. If this virtual register is
169  // already marked as alive in this basic block, that means it is alive in at
170  // least one of the successor blocks, it's not a kill.
171  if (!VRInfo.AliveBlocks[BBNum])
172    VRInfo.Kills.push_back(MI);
173
174  // Update all dominating blocks to mark them as "known live".
175  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
176         E = MBB->pred_end(); PI != E; ++PI)
177    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
178}
179
180void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
181  VarInfo &VRInfo = getVarInfo(Reg);
182
183  if (VRInfo.AliveBlocks.none())
184    // If vr is not alive in any block, then defaults to dead.
185    VRInfo.Kills.push_back(MI);
186}
187
188/// FindLastPartialDef - Return the last partial def of the specified register.
189/// Also returns the sub-register that's defined.
190MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
191                                                unsigned &PartDefReg) {
192  unsigned LastDefReg = 0;
193  unsigned LastDefDist = 0;
194  MachineInstr *LastDef = NULL;
195  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
196       unsigned SubReg = *SubRegs; ++SubRegs) {
197    MachineInstr *Def = PhysRegDef[SubReg];
198    if (!Def)
199      continue;
200    unsigned Dist = DistanceMap[Def];
201    if (Dist > LastDefDist) {
202      LastDefReg  = SubReg;
203      LastDef     = Def;
204      LastDefDist = Dist;
205    }
206  }
207  PartDefReg = LastDefReg;
208  return LastDef;
209}
210
211/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
212/// implicit defs to a machine instruction if there was an earlier def of its
213/// super-register.
214void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
215  // If there was a previous use or a "full" def all is well.
216  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
217    // Otherwise, the last sub-register def implicitly defines this register.
218    // e.g.
219    // AH =
220    // AL = ... <imp-def EAX>, <imp-kill AH>
221    //    = AH
222    // ...
223    //    = EAX
224    // All of the sub-registers must have been defined before the use of Reg!
225    unsigned PartDefReg = 0;
226    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
227    // If LastPartialDef is NULL, it must be using a livein register.
228    if (LastPartialDef) {
229      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
230                                                           true/*IsImp*/));
231      PhysRegDef[Reg] = LastPartialDef;
232      SmallSet<unsigned, 8> Processed;
233      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
234           unsigned SubReg = *SubRegs; ++SubRegs) {
235        if (Processed.count(SubReg))
236          continue;
237        if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
238          continue;
239        // This part of Reg was defined before the last partial def. It's killed
240        // here.
241        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
242                                                             false/*IsDef*/,
243                                                             true/*IsImp*/));
244        PhysRegDef[SubReg] = LastPartialDef;
245        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
246          Processed.insert(*SS);
247      }
248    }
249  }
250
251  // There was an earlier def of a super-register. Add implicit def to that MI.
252  //
253  //   A: EAX = ...
254  //   B: ... = AX
255  //
256  // Add implicit def to A if there isn't a use of AX (or EAX) before B.
257  if (!PhysRegUse[Reg]) {
258    MachineInstr *Def = PhysRegDef[Reg];
259    if (Def && !Def->modifiesRegister(Reg))
260      Def->addOperand(MachineOperand::CreateReg(Reg,
261                                                true  /*IsDef*/,
262                                                true  /*IsImp*/));
263  }
264
265  // Remember this use.
266  PhysRegUse[Reg]  = MI;
267  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
268       unsigned SubReg = *SubRegs; ++SubRegs)
269    PhysRegUse[SubReg] =  MI;
270}
271
272/// hasRegisterUseBelow - Return true if the specified register is used after
273/// the current instruction and before it's next definition.
274bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
275                                        MachineBasicBlock::iterator I,
276                                        MachineBasicBlock *MBB) {
277  if (I == MBB->end())
278    return false;
279
280  // First find out if there are any uses / defs below.
281  bool hasDistInfo = true;
282  unsigned CurDist = DistanceMap[I];
283  SmallVector<MachineInstr*, 4> Uses;
284  SmallVector<MachineInstr*, 4> Defs;
285  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
286         RE = MRI->reg_end(); RI != RE; ++RI) {
287    MachineOperand &UDO = RI.getOperand();
288    MachineInstr *UDMI = &*RI;
289    if (UDMI->getParent() != MBB)
290      continue;
291    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
292    bool isBelow = false;
293    if (DI == DistanceMap.end()) {
294      // Must be below if it hasn't been assigned a distance yet.
295      isBelow = true;
296      hasDistInfo = false;
297    } else if (DI->second > CurDist)
298      isBelow = true;
299    if (isBelow) {
300      if (UDO.isUse())
301        Uses.push_back(UDMI);
302      if (UDO.isDef())
303        Defs.push_back(UDMI);
304    }
305  }
306
307  if (Uses.empty())
308    // No uses below.
309    return false;
310  else if (!Uses.empty() && Defs.empty())
311    // There are uses below but no defs below.
312    return true;
313  // There are both uses and defs below. We need to know which comes first.
314  if (!hasDistInfo) {
315    // Complete DistanceMap for this MBB. This information is computed only
316    // once per MBB.
317    ++I;
318    ++CurDist;
319    for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
320      DistanceMap.insert(std::make_pair(I, CurDist));
321  }
322
323  unsigned EarliestUse = DistanceMap[Uses[0]];
324  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
325    unsigned Dist = DistanceMap[Uses[i]];
326    if (Dist < EarliestUse)
327      EarliestUse = Dist;
328  }
329  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
330    unsigned Dist = DistanceMap[Defs[i]];
331    if (Dist < EarliestUse)
332      // The register is defined before its first use below.
333      return false;
334  }
335  return true;
336}
337
338bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
339  if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
340    return false;
341
342  MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
343    ? PhysRegUse[Reg] : PhysRegDef[Reg];
344  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
345  // The whole register is used.
346  // AL =
347  // AH =
348  //
349  //    = AX
350  //    = AL, AX<imp-use, kill>
351  // AX =
352  //
353  // Or whole register is defined, but not used at all.
354  // AX<dead> =
355  // ...
356  // AX =
357  //
358  // Or whole register is defined, but only partly used.
359  // AX<dead> = AL<imp-def>
360  //    = AL<kill>
361  // AX =
362  SmallSet<unsigned, 8> PartUses;
363  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
364       unsigned SubReg = *SubRegs; ++SubRegs) {
365    if (MachineInstr *Use = PhysRegUse[SubReg]) {
366      PartUses.insert(SubReg);
367      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
368        PartUses.insert(*SS);
369      unsigned Dist = DistanceMap[Use];
370      if (Dist > LastRefOrPartRefDist) {
371        LastRefOrPartRefDist = Dist;
372        LastRefOrPartRef = Use;
373      }
374    }
375  }
376
377  if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
378    // If the last reference is the last def, then it's not used at all.
379    // That is, unless we are currently processing the last reference itself.
380    LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
381
382  /* Partial uses. Mark register def dead and add implicit def of
383     sub-registers which are used.
384    FIXME: LiveIntervalAnalysis can't handle this yet!
385    EAX<dead>  = op  AL<imp-def>
386    That is, EAX def is dead but AL def extends pass it.
387    Enable this after live interval analysis is fixed to improve codegen!
388  else if (!PhysRegUse[Reg]) {
389    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
390    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
391         unsigned SubReg = *SubRegs; ++SubRegs) {
392      if (PartUses.count(SubReg)) {
393        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
394                                                              true, true));
395        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
396        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
397          PartUses.erase(*SS);
398      }
399    }
400  } */
401  else
402    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
403  return true;
404}
405
406void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
407  // What parts of the register are previously defined?
408  SmallSet<unsigned, 32> Live;
409  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
410    Live.insert(Reg);
411    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
412      Live.insert(*SS);
413  } else {
414    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
415         unsigned SubReg = *SubRegs; ++SubRegs) {
416      // If a register isn't itself defined, but all parts that make up of it
417      // are defined, then consider it also defined.
418      // e.g.
419      // AL =
420      // AH =
421      //    = AX
422      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
423        Live.insert(SubReg);
424        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
425          Live.insert(*SS);
426      }
427    }
428  }
429
430  // Start from the largest piece, find the last time any part of the register
431  // is referenced.
432  if (!HandlePhysRegKill(Reg, MI)) {
433    // Only some of the sub-registers are used.
434    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
435         unsigned SubReg = *SubRegs; ++SubRegs) {
436      if (!Live.count(SubReg))
437        // Skip if this sub-register isn't defined.
438        continue;
439      if (HandlePhysRegKill(SubReg, MI)) {
440        Live.erase(SubReg);
441        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
442          Live.erase(*SS);
443      }
444    }
445    assert(Live.empty() && "Not all defined registers are killed / dead?");
446  }
447
448  if (MI) {
449    // Does this extend the live range of a super-register?
450    SmallSet<unsigned, 8> Processed;
451    for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
452         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
453      if (Processed.count(SuperReg))
454        continue;
455      MachineInstr *LastRef = PhysRegUse[SuperReg]
456        ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
457      if (LastRef && LastRef != MI) {
458        // The larger register is previously defined. Now a smaller part is
459        // being re-defined. Treat it as read/mod/write if there are uses
460        // below.
461        // EAX =
462        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
463        // ...
464        ///    =  EAX
465        if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
466          MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
467                                                   true/*IsImp*/,true/*IsKill*/));
468          MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
469                                                   true/*IsImp*/));
470          PhysRegDef[SuperReg]  = MI;
471          PhysRegUse[SuperReg]  = NULL;
472          Processed.insert(SuperReg);
473          for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
474            PhysRegDef[*SS]  = MI;
475            PhysRegUse[*SS]  = NULL;
476            Processed.insert(*SS);
477          }
478        } else {
479          // Otherwise, the super register is killed.
480          if (HandlePhysRegKill(SuperReg, MI)) {
481            PhysRegDef[SuperReg]  = NULL;
482            PhysRegUse[SuperReg]  = NULL;
483            for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
484              PhysRegDef[*SS]  = NULL;
485              PhysRegUse[*SS]  = NULL;
486              Processed.insert(*SS);
487            }
488          }
489        }
490      }
491    }
492
493    // Remember this def.
494    PhysRegDef[Reg]  = MI;
495    PhysRegUse[Reg]  = NULL;
496    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
497         unsigned SubReg = *SubRegs; ++SubRegs) {
498      PhysRegDef[SubReg]  = MI;
499      PhysRegUse[SubReg]  = NULL;
500    }
501  }
502}
503
504bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
505  MF = &mf;
506  MRI = &mf.getRegInfo();
507  TRI = MF->getTarget().getRegisterInfo();
508
509  ReservedRegisters = TRI->getReservedRegs(mf);
510
511  unsigned NumRegs = TRI->getNumRegs();
512  PhysRegDef  = new MachineInstr*[NumRegs];
513  PhysRegUse  = new MachineInstr*[NumRegs];
514  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
515  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
516  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
517
518  /// Get some space for a respectable number of registers.
519  VirtRegInfo.resize(64);
520
521  analyzePHINodes(mf);
522
523  // Calculate live variable information in depth first order on the CFG of the
524  // function.  This guarantees that we will see the definition of a virtual
525  // register before its uses due to dominance properties of SSA (except for PHI
526  // nodes, which are treated as a special case).
527  MachineBasicBlock *Entry = MF->begin();
528  SmallPtrSet<MachineBasicBlock*,16> Visited;
529
530  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
531         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
532       DFI != E; ++DFI) {
533    MachineBasicBlock *MBB = *DFI;
534
535    // Mark live-in registers as live-in.
536    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
537           EE = MBB->livein_end(); II != EE; ++II) {
538      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
539             "Cannot have a live-in virtual register!");
540      HandlePhysRegDef(*II, 0);
541    }
542
543    // Loop over all of the instructions, processing them.
544    DistanceMap.clear();
545    unsigned Dist = 0;
546    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
547         I != E; ++I) {
548      MachineInstr *MI = I;
549      DistanceMap.insert(std::make_pair(MI, Dist++));
550
551      // Process all of the operands of the instruction...
552      unsigned NumOperandsToProcess = MI->getNumOperands();
553
554      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
555      // of the uses.  They will be handled in other basic blocks.
556      if (MI->getOpcode() == TargetInstrInfo::PHI)
557        NumOperandsToProcess = 1;
558
559      SmallVector<unsigned, 4> UseRegs;
560      SmallVector<unsigned, 4> DefRegs;
561      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
562        const MachineOperand &MO = MI->getOperand(i);
563        if (!MO.isReg() || MO.getReg() == 0)
564          continue;
565        unsigned MOReg = MO.getReg();
566        if (MO.isUse())
567          UseRegs.push_back(MOReg);
568        if (MO.isDef())
569          DefRegs.push_back(MOReg);
570      }
571
572      // Process all uses.
573      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
574        unsigned MOReg = UseRegs[i];
575        if (TargetRegisterInfo::isVirtualRegister(MOReg))
576          HandleVirtRegUse(MOReg, MBB, MI);
577        else if (!ReservedRegisters[MOReg])
578          HandlePhysRegUse(MOReg, MI);
579      }
580
581      // Process all defs.
582      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
583        unsigned MOReg = DefRegs[i];
584        if (TargetRegisterInfo::isVirtualRegister(MOReg))
585          HandleVirtRegDef(MOReg, MI);
586        else if (!ReservedRegisters[MOReg])
587          HandlePhysRegDef(MOReg, MI);
588      }
589    }
590
591    // Handle any virtual assignments from PHI nodes which might be at the
592    // bottom of this basic block.  We check all of our successor blocks to see
593    // if they have PHI nodes, and if so, we simulate an assignment at the end
594    // of the current block.
595    if (!PHIVarInfo[MBB->getNumber()].empty()) {
596      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
597
598      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
599             E = VarInfoVec.end(); I != E; ++I)
600        // Mark it alive only in the block we are representing.
601        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
602                                MBB);
603    }
604
605    // Finally, if the last instruction in the block is a return, make sure to
606    // mark it as using all of the live-out values in the function.
607    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
608      MachineInstr *Ret = &MBB->back();
609
610      for (MachineRegisterInfo::liveout_iterator
611           I = MF->getRegInfo().liveout_begin(),
612           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
613        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
614               "Cannot have a live-out virtual register!");
615        HandlePhysRegUse(*I, Ret);
616
617        // Add live-out registers as implicit uses.
618        if (!Ret->readsRegister(*I))
619          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
620      }
621    }
622
623    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
624    // available at the end of the basic block.
625    for (unsigned i = 0; i != NumRegs; ++i)
626      if (PhysRegDef[i] || PhysRegUse[i])
627        HandlePhysRegDef(i, 0);
628
629    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
630    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
631  }
632
633  // Convert and transfer the dead / killed information we have gathered into
634  // VirtRegInfo onto MI's.
635  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
636    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
637      if (VirtRegInfo[i].Kills[j] ==
638          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
639        VirtRegInfo[i]
640          .Kills[j]->addRegisterDead(i +
641                                     TargetRegisterInfo::FirstVirtualRegister,
642                                     TRI);
643      else
644        VirtRegInfo[i]
645          .Kills[j]->addRegisterKilled(i +
646                                       TargetRegisterInfo::FirstVirtualRegister,
647                                       TRI);
648
649  // Check to make sure there are no unreachable blocks in the MC CFG for the
650  // function.  If so, it is due to a bug in the instruction selector or some
651  // other part of the code generator if this happens.
652#ifndef NDEBUG
653  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
654    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
655#endif
656
657  delete[] PhysRegDef;
658  delete[] PhysRegUse;
659  delete[] PHIVarInfo;
660
661  return false;
662}
663
664/// replaceKillInstruction - Update register kill info by replacing a kill
665/// instruction with a new one.
666void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
667                                           MachineInstr *NewMI) {
668  VarInfo &VI = getVarInfo(Reg);
669  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
670}
671
672/// removeVirtualRegistersKilled - Remove all killed info for the specified
673/// instruction.
674void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
675  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
676    MachineOperand &MO = MI->getOperand(i);
677    if (MO.isReg() && MO.isKill()) {
678      MO.setIsKill(false);
679      unsigned Reg = MO.getReg();
680      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
681        bool removed = getVarInfo(Reg).removeKill(MI);
682        assert(removed && "kill not in register's VarInfo?");
683        removed = true;
684      }
685    }
686  }
687}
688
689/// analyzePHINodes - Gather information about the PHI nodes in here. In
690/// particular, we want to map the variable information of a virtual register
691/// which is used in a PHI node. We map that to the BB the vreg is coming from.
692///
693void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
694  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
695       I != E; ++I)
696    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
697         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
698      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
699        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
700          .push_back(BBI->getOperand(i).getReg());
701}
702