LiveVariables.cpp revision aed4a430f4f6cc0e3ff06d458e68e5d195bbed7c
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Config/alloca.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49  AU.addRequiredID(UnreachableMachineBlockElimID);
50  AU.setPreservesAll();
51}
52
53void LiveVariables::VarInfo::dump() const {
54  cerr << "  Alive in blocks: ";
55  for (int i = AliveBlocks.find_first(); i != -1; i = AliveBlocks.find_next(i))
56    cerr << i << ", ";
57  cerr << "\n  Killed by:";
58  if (Kills.empty())
59    cerr << " No instructions.\n";
60  else {
61    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62      cerr << "\n    #" << i << ": " << *Kills[i];
63    cerr << "\n";
64  }
65}
66
67/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
68LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
69  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
70         "getVarInfo: not a virtual register!");
71  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
72  if (RegIdx >= VirtRegInfo.size()) {
73    if (RegIdx >= 2*VirtRegInfo.size())
74      VirtRegInfo.resize(RegIdx*2);
75    else
76      VirtRegInfo.resize(2*VirtRegInfo.size());
77  }
78  VarInfo &VI = VirtRegInfo[RegIdx];
79  VI.AliveBlocks.resize(MF->getNumBlockIDs());
80  return VI;
81}
82
83void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
84                                            MachineBasicBlock *DefBlock,
85                                            MachineBasicBlock *MBB,
86                                    std::vector<MachineBasicBlock*> &WorkList) {
87  unsigned BBNum = MBB->getNumber();
88
89  // Check to see if this basic block is one of the killing blocks.  If so,
90  // remove it.
91  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
92    if (VRInfo.Kills[i]->getParent() == MBB) {
93      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
94      break;
95    }
96
97  if (MBB == DefBlock) return;  // Terminate recursion
98
99  if (VRInfo.AliveBlocks[BBNum])
100    return;  // We already know the block is live
101
102  // Mark the variable known alive in this bb
103  VRInfo.AliveBlocks[BBNum] = true;
104
105  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
106         E = MBB->pred_rend(); PI != E; ++PI)
107    WorkList.push_back(*PI);
108}
109
110void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
111                                            MachineBasicBlock *DefBlock,
112                                            MachineBasicBlock *MBB) {
113  std::vector<MachineBasicBlock*> WorkList;
114  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
115
116  while (!WorkList.empty()) {
117    MachineBasicBlock *Pred = WorkList.back();
118    WorkList.pop_back();
119    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
120  }
121}
122
123void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
124                                     MachineInstr *MI) {
125  assert(MRI->getVRegDef(reg) && "Register use before def!");
126
127  unsigned BBNum = MBB->getNumber();
128
129  VarInfo& VRInfo = getVarInfo(reg);
130  VRInfo.NumUses++;
131
132  // Check to see if this basic block is already a kill block.
133  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
134    // Yes, this register is killed in this basic block already. Increase the
135    // live range by updating the kill instruction.
136    VRInfo.Kills.back() = MI;
137    return;
138  }
139
140#ifndef NDEBUG
141  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
142    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
143#endif
144
145  // This situation can occur:
146  //
147  //     ,------.
148  //     |      |
149  //     |      v
150  //     |   t2 = phi ... t1 ...
151  //     |      |
152  //     |      v
153  //     |   t1 = ...
154  //     |  ... = ... t1 ...
155  //     |      |
156  //     `------'
157  //
158  // where there is a use in a PHI node that's a predecessor to the defining
159  // block. We don't want to mark all predecessors as having the value "alive"
160  // in this case.
161  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
162
163  // Add a new kill entry for this basic block. If this virtual register is
164  // already marked as alive in this basic block, that means it is alive in at
165  // least one of the successor blocks, it's not a kill.
166  if (!VRInfo.AliveBlocks[BBNum])
167    VRInfo.Kills.push_back(MI);
168
169  // Update all dominating blocks to mark them as "known live".
170  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
171         E = MBB->pred_end(); PI != E; ++PI)
172    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
173}
174
175void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
176  VarInfo &VRInfo = getVarInfo(Reg);
177
178  if (VRInfo.AliveBlocks.none())
179    // If vr is not alive in any block, then defaults to dead.
180    VRInfo.Kills.push_back(MI);
181}
182
183/// FindLastPartialDef - Return the last partial def of the specified register.
184/// Also returns the sub-register that's defined.
185MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
186                                                unsigned &PartDefReg) {
187  unsigned LastDefReg = 0;
188  unsigned LastDefDist = 0;
189  MachineInstr *LastDef = NULL;
190  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
191       unsigned SubReg = *SubRegs; ++SubRegs) {
192    MachineInstr *Def = PhysRegDef[SubReg];
193    if (!Def)
194      continue;
195    unsigned Dist = DistanceMap[Def];
196    if (Dist > LastDefDist) {
197      LastDefReg  = SubReg;
198      LastDef     = Def;
199      LastDefDist = Dist;
200    }
201  }
202  PartDefReg = LastDefReg;
203  return LastDef;
204}
205
206/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
207/// implicit defs to a machine instruction if there was an earlier def of its
208/// super-register.
209void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
210  // If there was a previous use or a "full" def all is well.
211  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
212    // Otherwise, the last sub-register def implicitly defines this register.
213    // e.g.
214    // AH =
215    // AL = ... <imp-def EAX>, <imp-kill AH>
216    //    = AH
217    // ...
218    //    = EAX
219    // All of the sub-registers must have been defined before the use of Reg!
220    unsigned PartDefReg = 0;
221    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
222    // If LastPartialDef is NULL, it must be using a livein register.
223    if (LastPartialDef) {
224      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
225                                                           true/*IsImp*/));
226      PhysRegDef[Reg] = LastPartialDef;
227      SmallSet<unsigned, 8> Processed;
228      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
229           unsigned SubReg = *SubRegs; ++SubRegs) {
230        if (Processed.count(SubReg))
231          continue;
232        if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
233          continue;
234        // This part of Reg was defined before the last partial def. It's killed
235        // here.
236        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
237                                                             false/*IsDef*/,
238                                                             true/*IsImp*/));
239        PhysRegDef[SubReg] = LastPartialDef;
240        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
241          Processed.insert(*SS);
242      }
243    }
244  }
245
246  // There was an earlier def of a super-register. Add implicit def to that MI.
247  //
248  //   A: EAX = ...
249  //   B: ... = AX
250  //
251  // Add implicit def to A if there isn't a use of AX (or EAX) before B.
252  if (!PhysRegUse[Reg]) {
253    MachineInstr *Def = PhysRegDef[Reg];
254    if (Def && !Def->modifiesRegister(Reg))
255      Def->addOperand(MachineOperand::CreateReg(Reg,
256                                                true  /*IsDef*/,
257                                                true  /*IsImp*/));
258  }
259
260  // Remember this use.
261  PhysRegUse[Reg]  = MI;
262  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
263       unsigned SubReg = *SubRegs; ++SubRegs)
264    PhysRegUse[SubReg] =  MI;
265}
266
267/// hasRegisterUseBelow - Return true if the specified register is used after
268/// the current instruction and before it's next definition.
269bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
270                                        MachineBasicBlock::iterator I,
271                                        MachineBasicBlock *MBB) {
272  if (I == MBB->end())
273    return false;
274
275  // First find out if there are any uses / defs below.
276  bool hasDistInfo = true;
277  unsigned CurDist = DistanceMap[I];
278  SmallVector<MachineInstr*, 4> Uses;
279  SmallVector<MachineInstr*, 4> Defs;
280  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
281         RE = MRI->reg_end(); RI != RE; ++RI) {
282    MachineOperand &UDO = RI.getOperand();
283    MachineInstr *UDMI = &*RI;
284    if (UDMI->getParent() != MBB)
285      continue;
286    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
287    bool isBelow = false;
288    if (DI == DistanceMap.end()) {
289      // Must be below if it hasn't been assigned a distance yet.
290      isBelow = true;
291      hasDistInfo = false;
292    } else if (DI->second > CurDist)
293      isBelow = true;
294    if (isBelow) {
295      if (UDO.isUse())
296        Uses.push_back(UDMI);
297      if (UDO.isDef())
298        Defs.push_back(UDMI);
299    }
300  }
301
302  if (Uses.empty())
303    // No uses below.
304    return false;
305  else if (!Uses.empty() && Defs.empty())
306    // There are uses below but no defs below.
307    return true;
308  // There are both uses and defs below. We need to know which comes first.
309  if (!hasDistInfo) {
310    // Complete DistanceMap for this MBB. This information is computed only
311    // once per MBB.
312    ++I;
313    ++CurDist;
314    for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
315      DistanceMap.insert(std::make_pair(I, CurDist));
316  }
317
318  unsigned EarliestUse = DistanceMap[Uses[0]];
319  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
320    unsigned Dist = DistanceMap[Uses[i]];
321    if (Dist < EarliestUse)
322      EarliestUse = Dist;
323  }
324  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
325    unsigned Dist = DistanceMap[Defs[i]];
326    if (Dist < EarliestUse)
327      // The register is defined before its first use below.
328      return false;
329  }
330  return true;
331}
332
333bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
334  if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
335    return false;
336
337  MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
338    ? PhysRegUse[Reg] : PhysRegDef[Reg];
339  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
340  // The whole register is used.
341  // AL =
342  // AH =
343  //
344  //    = AX
345  //    = AL, AX<imp-use, kill>
346  // AX =
347  //
348  // Or whole register is defined, but not used at all.
349  // AX<dead> =
350  // ...
351  // AX =
352  //
353  // Or whole register is defined, but only partly used.
354  // AX<dead> = AL<imp-def>
355  //    = AL<kill>
356  // AX =
357  SmallSet<unsigned, 8> PartUses;
358  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
359       unsigned SubReg = *SubRegs; ++SubRegs) {
360    if (MachineInstr *Use = PhysRegUse[SubReg]) {
361      PartUses.insert(SubReg);
362      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
363        PartUses.insert(*SS);
364      unsigned Dist = DistanceMap[Use];
365      if (Dist > LastRefOrPartRefDist) {
366        LastRefOrPartRefDist = Dist;
367        LastRefOrPartRef = Use;
368      }
369    }
370  }
371
372  if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
373    // If the last reference is the last def, then it's not used at all.
374    // That is, unless we are currently processing the last reference itself.
375    LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
376
377  /* Partial uses. Mark register def dead and add implicit def of
378     sub-registers which are used.
379    FIXME: LiveIntervalAnalysis can't handle this yet!
380    EAX<dead>  = op  AL<imp-def>
381    That is, EAX def is dead but AL def extends pass it.
382    Enable this after live interval analysis is fixed to improve codegen!
383  else if (!PhysRegUse[Reg]) {
384    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
385    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
386         unsigned SubReg = *SubRegs; ++SubRegs) {
387      if (PartUses.count(SubReg)) {
388        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
389                                                              true, true));
390        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
391        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
392          PartUses.erase(*SS);
393      }
394    }
395  } */
396  else
397    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
398  return true;
399}
400
401void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
402  // What parts of the register are previously defined?
403  SmallSet<unsigned, 32> Live;
404  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
405    Live.insert(Reg);
406    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
407      Live.insert(*SS);
408  } else {
409    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
410         unsigned SubReg = *SubRegs; ++SubRegs) {
411      // If a register isn't itself defined, but all parts that make up of it
412      // are defined, then consider it also defined.
413      // e.g.
414      // AL =
415      // AH =
416      //    = AX
417      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
418        Live.insert(SubReg);
419        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
420          Live.insert(*SS);
421      }
422    }
423  }
424
425  // Start from the largest piece, find the last time any part of the register
426  // is referenced.
427  if (!HandlePhysRegKill(Reg, MI)) {
428    // Only some of the sub-registers are used.
429    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
430         unsigned SubReg = *SubRegs; ++SubRegs) {
431      if (!Live.count(SubReg))
432        // Skip if this sub-register isn't defined.
433        continue;
434      if (HandlePhysRegKill(SubReg, MI)) {
435        Live.erase(SubReg);
436        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
437          Live.erase(*SS);
438      }
439    }
440    assert(Live.empty() && "Not all defined registers are killed / dead?");
441  }
442
443  if (MI) {
444    // Does this extend the live range of a super-register?
445    SmallSet<unsigned, 8> Processed;
446    for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
447         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
448      if (Processed.count(SuperReg))
449        continue;
450      MachineInstr *LastRef = PhysRegUse[SuperReg]
451        ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
452      if (LastRef && LastRef != MI) {
453        // The larger register is previously defined. Now a smaller part is
454        // being re-defined. Treat it as read/mod/write if there are uses
455        // below.
456        // EAX =
457        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
458        // ...
459        ///    =  EAX
460        if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
461          MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
462                                                   true/*IsImp*/,true/*IsKill*/));
463          MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
464                                                   true/*IsImp*/));
465          PhysRegDef[SuperReg]  = MI;
466          PhysRegUse[SuperReg]  = NULL;
467          Processed.insert(SuperReg);
468          for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
469            PhysRegDef[*SS]  = MI;
470            PhysRegUse[*SS]  = NULL;
471            Processed.insert(*SS);
472          }
473        } else {
474          // Otherwise, the super register is killed.
475          if (HandlePhysRegKill(SuperReg, MI)) {
476            PhysRegDef[SuperReg]  = NULL;
477            PhysRegUse[SuperReg]  = NULL;
478            for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
479              PhysRegDef[*SS]  = NULL;
480              PhysRegUse[*SS]  = NULL;
481              Processed.insert(*SS);
482            }
483          }
484        }
485      }
486    }
487
488    // Remember this def.
489    PhysRegDef[Reg]  = MI;
490    PhysRegUse[Reg]  = NULL;
491    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
492         unsigned SubReg = *SubRegs; ++SubRegs) {
493      PhysRegDef[SubReg]  = MI;
494      PhysRegUse[SubReg]  = NULL;
495    }
496  }
497}
498
499bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
500  MF = &mf;
501  MRI = &mf.getRegInfo();
502  TRI = MF->getTarget().getRegisterInfo();
503
504  ReservedRegisters = TRI->getReservedRegs(mf);
505
506  unsigned NumRegs = TRI->getNumRegs();
507  PhysRegDef  = new MachineInstr*[NumRegs];
508  PhysRegUse  = new MachineInstr*[NumRegs];
509  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
510  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
511  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
512
513  /// Get some space for a respectable number of registers.
514  VirtRegInfo.resize(64);
515
516  analyzePHINodes(mf);
517
518  // Calculate live variable information in depth first order on the CFG of the
519  // function.  This guarantees that we will see the definition of a virtual
520  // register before its uses due to dominance properties of SSA (except for PHI
521  // nodes, which are treated as a special case).
522  MachineBasicBlock *Entry = MF->begin();
523  SmallPtrSet<MachineBasicBlock*,16> Visited;
524
525  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
526         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
527       DFI != E; ++DFI) {
528    MachineBasicBlock *MBB = *DFI;
529
530    // Mark live-in registers as live-in.
531    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
532           EE = MBB->livein_end(); II != EE; ++II) {
533      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
534             "Cannot have a live-in virtual register!");
535      HandlePhysRegDef(*II, 0);
536    }
537
538    // Loop over all of the instructions, processing them.
539    DistanceMap.clear();
540    unsigned Dist = 0;
541    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
542         I != E; ++I) {
543      MachineInstr *MI = I;
544      DistanceMap.insert(std::make_pair(MI, Dist++));
545
546      // Process all of the operands of the instruction...
547      unsigned NumOperandsToProcess = MI->getNumOperands();
548
549      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
550      // of the uses.  They will be handled in other basic blocks.
551      if (MI->getOpcode() == TargetInstrInfo::PHI)
552        NumOperandsToProcess = 1;
553
554      SmallVector<unsigned, 4> UseRegs;
555      SmallVector<unsigned, 4> DefRegs;
556      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
557        const MachineOperand &MO = MI->getOperand(i);
558        if (!MO.isReg() || MO.getReg() == 0)
559          continue;
560        unsigned MOReg = MO.getReg();
561        if (MO.isUse())
562          UseRegs.push_back(MOReg);
563        if (MO.isDef())
564          DefRegs.push_back(MOReg);
565      }
566
567      // Process all uses.
568      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
569        unsigned MOReg = UseRegs[i];
570        if (TargetRegisterInfo::isVirtualRegister(MOReg))
571          HandleVirtRegUse(MOReg, MBB, MI);
572        else if (!ReservedRegisters[MOReg])
573          HandlePhysRegUse(MOReg, MI);
574      }
575
576      // Process all defs.
577      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
578        unsigned MOReg = DefRegs[i];
579        if (TargetRegisterInfo::isVirtualRegister(MOReg))
580          HandleVirtRegDef(MOReg, MI);
581        else if (!ReservedRegisters[MOReg])
582          HandlePhysRegDef(MOReg, MI);
583      }
584    }
585
586    // Handle any virtual assignments from PHI nodes which might be at the
587    // bottom of this basic block.  We check all of our successor blocks to see
588    // if they have PHI nodes, and if so, we simulate an assignment at the end
589    // of the current block.
590    if (!PHIVarInfo[MBB->getNumber()].empty()) {
591      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
592
593      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
594             E = VarInfoVec.end(); I != E; ++I)
595        // Mark it alive only in the block we are representing.
596        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
597                                MBB);
598    }
599
600    // Finally, if the last instruction in the block is a return, make sure to
601    // mark it as using all of the live-out values in the function.
602    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
603      MachineInstr *Ret = &MBB->back();
604
605      for (MachineRegisterInfo::liveout_iterator
606           I = MF->getRegInfo().liveout_begin(),
607           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
608        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
609               "Cannot have a live-out virtual register!");
610        HandlePhysRegUse(*I, Ret);
611
612        // Add live-out registers as implicit uses.
613        if (!Ret->readsRegister(*I))
614          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
615      }
616    }
617
618    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
619    // available at the end of the basic block.
620    for (unsigned i = 0; i != NumRegs; ++i)
621      if (PhysRegDef[i] || PhysRegUse[i])
622        HandlePhysRegDef(i, 0);
623
624    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
625    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
626  }
627
628  // Convert and transfer the dead / killed information we have gathered into
629  // VirtRegInfo onto MI's.
630  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
631    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
632      if (VirtRegInfo[i].Kills[j] ==
633          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
634        VirtRegInfo[i]
635          .Kills[j]->addRegisterDead(i +
636                                     TargetRegisterInfo::FirstVirtualRegister,
637                                     TRI);
638      else
639        VirtRegInfo[i]
640          .Kills[j]->addRegisterKilled(i +
641                                       TargetRegisterInfo::FirstVirtualRegister,
642                                       TRI);
643
644  // Check to make sure there are no unreachable blocks in the MC CFG for the
645  // function.  If so, it is due to a bug in the instruction selector or some
646  // other part of the code generator if this happens.
647#ifndef NDEBUG
648  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
649    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
650#endif
651
652  delete[] PhysRegDef;
653  delete[] PhysRegUse;
654  delete[] PHIVarInfo;
655
656  return false;
657}
658
659/// replaceKillInstruction - Update register kill info by replacing a kill
660/// instruction with a new one.
661void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
662                                           MachineInstr *NewMI) {
663  VarInfo &VI = getVarInfo(Reg);
664  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
665}
666
667/// removeVirtualRegistersKilled - Remove all killed info for the specified
668/// instruction.
669void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
670  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
671    MachineOperand &MO = MI->getOperand(i);
672    if (MO.isReg() && MO.isKill()) {
673      MO.setIsKill(false);
674      unsigned Reg = MO.getReg();
675      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
676        bool removed = getVarInfo(Reg).removeKill(MI);
677        assert(removed && "kill not in register's VarInfo?");
678        removed = true;
679      }
680    }
681  }
682}
683
684/// analyzePHINodes - Gather information about the PHI nodes in here. In
685/// particular, we want to map the variable information of a virtual register
686/// which is used in a PHI node. We map that to the BB the vreg is coming from.
687///
688void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
689  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
690       I != E; ++I)
691    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
692         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
693      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
694        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
695          .push_back(BBI->getOperand(i).getReg());
696}
697