LiveVariables.cpp revision b371f457b0ea4a652a9f526ba4375c80ae542252
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Config/alloca.h"
37#include <algorithm>
38using namespace llvm;
39
40static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
41
42void LiveVariables::VarInfo::dump() const {
43  cerr << "Register Defined by: ";
44  if (DefInst)
45    cerr << *DefInst;
46  else
47    cerr << "<null>\n";
48  cerr << "  Alive in blocks: ";
49  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
50    if (AliveBlocks[i]) cerr << i << ", ";
51  cerr << "\n  Killed by:";
52  if (Kills.empty())
53    cerr << " No instructions.\n";
54  else {
55    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
56      cerr << "\n    #" << i << ": " << *Kills[i];
57    cerr << "\n";
58  }
59}
60
61LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
62  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
63         "getVarInfo: not a virtual register!");
64  RegIdx -= MRegisterInfo::FirstVirtualRegister;
65  if (RegIdx >= VirtRegInfo.size()) {
66    if (RegIdx >= 2*VirtRegInfo.size())
67      VirtRegInfo.resize(RegIdx*2);
68    else
69      VirtRegInfo.resize(2*VirtRegInfo.size());
70  }
71  return VirtRegInfo[RegIdx];
72}
73
74bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
75  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
76    MachineOperand &MO = MI->getOperand(i);
77    if (MO.isReg() && MO.isKill()) {
78      if (RegInfo->regsOverlap(Reg, MO.getReg()))
79        return true;
80    }
81  }
82  return false;
83}
84
85bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
86  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
87    MachineOperand &MO = MI->getOperand(i);
88    if (MO.isReg() && MO.isDead())
89      if (RegInfo->regsOverlap(Reg, MO.getReg()))
90        return true;
91  }
92  return false;
93}
94
95bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
96  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
97    MachineOperand &MO = MI->getOperand(i);
98    if (MO.isReg() && MO.isDef()) {
99      if (RegInfo->regsOverlap(Reg, MO.getReg()))
100        return true;
101    }
102  }
103  return false;
104}
105
106void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
107                                            MachineBasicBlock *MBB) {
108  unsigned BBNum = MBB->getNumber();
109
110  // Check to see if this basic block is one of the killing blocks.  If so,
111  // remove it...
112  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
113    if (VRInfo.Kills[i]->getParent() == MBB) {
114      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
115      break;
116    }
117
118  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
119
120  if (VRInfo.AliveBlocks.size() <= BBNum)
121    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
122
123  if (VRInfo.AliveBlocks[BBNum])
124    return;  // We already know the block is live
125
126  // Mark the variable known alive in this bb
127  VRInfo.AliveBlocks[BBNum] = true;
128
129  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
130         E = MBB->pred_end(); PI != E; ++PI)
131    MarkVirtRegAliveInBlock(VRInfo, *PI);
132}
133
134void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
135                                     MachineInstr *MI) {
136  assert(VRInfo.DefInst && "Register use before def!");
137
138  // Check to see if this basic block is already a kill block...
139  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
140    // Yes, this register is killed in this basic block already.  Increase the
141    // live range by updating the kill instruction.
142    VRInfo.Kills.back() = MI;
143    return;
144  }
145
146#ifndef NDEBUG
147  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
148    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
149#endif
150
151  assert(MBB != VRInfo.DefInst->getParent() &&
152         "Should have kill for defblock!");
153
154  // Add a new kill entry for this basic block.
155  VRInfo.Kills.push_back(MI);
156
157  // Update all dominating blocks to mark them known live.
158  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
159         E = MBB->pred_end(); PI != E; ++PI)
160    MarkVirtRegAliveInBlock(VRInfo, *PI);
161}
162
163void LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI) {
164  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
165    MachineOperand &MO = MI->getOperand(i);
166    if (MO.isReg() && MO.isUse() && MO.getReg() == IncomingReg) {
167      MO.setIsKill();
168      break;
169    }
170  }
171}
172
173void LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI) {
174  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
175    MachineOperand &MO = MI->getOperand(i);
176    if (MO.isReg() && MO.isDef() && MO.getReg() == IncomingReg) {
177      MO.setIsDead();
178      break;
179    }
180  }
181}
182
183void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
184  PhysRegInfo[Reg] = MI;
185  PhysRegUsed[Reg] = true;
186
187  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
188       unsigned Alias = *AliasSet; ++AliasSet) {
189    PhysRegInfo[Alias] = MI;
190    PhysRegUsed[Alias] = true;
191  }
192}
193
194void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
195  // Does this kill a previous version of this register?
196  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
197    if (PhysRegUsed[Reg])
198      addRegisterKilled(Reg, LastUse);
199    else
200      addRegisterDead(Reg, LastUse);
201  }
202  PhysRegInfo[Reg] = MI;
203  PhysRegUsed[Reg] = false;
204
205  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
206       unsigned Alias = *AliasSet; ++AliasSet) {
207    if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
208      if (PhysRegUsed[Alias])
209        addRegisterKilled(Alias, LastUse);
210      else
211        addRegisterDead(Alias, LastUse);
212    }
213    PhysRegInfo[Alias] = MI;
214    PhysRegUsed[Alias] = false;
215  }
216}
217
218bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
219  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
220  RegInfo = MF.getTarget().getRegisterInfo();
221  assert(RegInfo && "Target doesn't have register information?");
222
223  ReservedRegisters = RegInfo->getReservedRegs(MF);
224
225  // PhysRegInfo - Keep track of which instruction was the last use of a
226  // physical register.  This is a purely local property, because all physical
227  // register references as presumed dead across basic blocks.
228  //
229  PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
230                                       RegInfo->getNumRegs());
231  PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
232  std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
233
234  /// Get some space for a respectable number of registers...
235  VirtRegInfo.resize(64);
236
237  analyzePHINodes(MF);
238
239  // Calculate live variable information in depth first order on the CFG of the
240  // function.  This guarantees that we will see the definition of a virtual
241  // register before its uses due to dominance properties of SSA (except for PHI
242  // nodes, which are treated as a special case).
243  //
244  MachineBasicBlock *Entry = MF.begin();
245  std::set<MachineBasicBlock*> Visited;
246  for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
247         E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
248    MachineBasicBlock *MBB = *DFI;
249
250    // Mark live-in registers as live-in.
251    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
252           EE = MBB->livein_end(); II != EE; ++II) {
253      assert(MRegisterInfo::isPhysicalRegister(*II) &&
254             "Cannot have a live-in virtual register!");
255      HandlePhysRegDef(*II, 0);
256    }
257
258    // Loop over all of the instructions, processing them.
259    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
260         I != E; ++I) {
261      MachineInstr *MI = I;
262
263      // Process all of the operands of the instruction...
264      unsigned NumOperandsToProcess = MI->getNumOperands();
265
266      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
267      // of the uses.  They will be handled in other basic blocks.
268      if (MI->getOpcode() == TargetInstrInfo::PHI)
269        NumOperandsToProcess = 1;
270
271      // Process all uses...
272      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
273        MachineOperand &MO = MI->getOperand(i);
274        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
275          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
276            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
277          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
278                     !ReservedRegisters[MO.getReg()]) {
279            HandlePhysRegUse(MO.getReg(), MI);
280          }
281        }
282      }
283
284      // Process all defs...
285      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
286        MachineOperand &MO = MI->getOperand(i);
287        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
288          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
289            VarInfo &VRInfo = getVarInfo(MO.getReg());
290
291            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
292            VRInfo.DefInst = MI;
293            // Defaults to dead
294            VRInfo.Kills.push_back(MI);
295          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
296                     !ReservedRegisters[MO.getReg()]) {
297            HandlePhysRegDef(MO.getReg(), MI);
298          }
299        }
300      }
301    }
302
303    // Handle any virtual assignments from PHI nodes which might be at the
304    // bottom of this basic block.  We check all of our successor blocks to see
305    // if they have PHI nodes, and if so, we simulate an assignment at the end
306    // of the current block.
307    if (!PHIVarInfo[MBB].empty()) {
308      std::vector<unsigned>& VarInfoVec = PHIVarInfo[MBB];
309
310      for (std::vector<unsigned>::iterator I = VarInfoVec.begin(),
311             E = VarInfoVec.end(); I != E; ++I) {
312        VarInfo& VRInfo = getVarInfo(*I);
313        assert(VRInfo.DefInst && "Register use before def (or no def)!");
314
315        // Only mark it alive only in the block we are representing.
316        MarkVirtRegAliveInBlock(VRInfo, MBB);
317      }
318    }
319
320    // Finally, if the last instruction in the block is a return, make sure to mark
321    // it as using all of the live-out values in the function.
322    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
323      MachineInstr *Ret = &MBB->back();
324      for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
325             E = MF.liveout_end(); I != E; ++I) {
326        assert(MRegisterInfo::isPhysicalRegister(*I) &&
327               "Cannot have a live-in virtual register!");
328        HandlePhysRegUse(*I, Ret);
329        // Add live-out registers as implicit uses.
330        Ret->addRegOperand(*I, false, true);
331      }
332    }
333
334    // Loop over PhysRegInfo, killing any registers that are available at the
335    // end of the basic block.  This also resets the PhysRegInfo map.
336    for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
337      if (PhysRegInfo[i])
338        HandlePhysRegDef(i, 0);
339  }
340
341  // Convert and transfer the dead / killed information we have gathered into
342  // VirtRegInfo onto MI's.
343  //
344  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
345    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
346      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
347        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
348                        VirtRegInfo[i].Kills[j]);
349      else
350        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
351                          VirtRegInfo[i].Kills[j]);
352    }
353
354  // Check to make sure there are no unreachable blocks in the MC CFG for the
355  // function.  If so, it is due to a bug in the instruction selector or some
356  // other part of the code generator if this happens.
357#ifndef NDEBUG
358  for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
359    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
360#endif
361
362  PHIVarInfo.clear();
363  return false;
364}
365
366/// instructionChanged - When the address of an instruction changes, this
367/// method should be called so that live variables can update its internal
368/// data structures.  This removes the records for OldMI, transfering them to
369/// the records for NewMI.
370void LiveVariables::instructionChanged(MachineInstr *OldMI,
371                                       MachineInstr *NewMI) {
372  // If the instruction defines any virtual registers, update the VarInfo,
373  // kill and dead information for the instruction.
374  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
375    MachineOperand &MO = OldMI->getOperand(i);
376    if (MO.isRegister() && MO.getReg() &&
377        MRegisterInfo::isVirtualRegister(MO.getReg())) {
378      unsigned Reg = MO.getReg();
379      VarInfo &VI = getVarInfo(Reg);
380      if (MO.isDef()) {
381        if (MO.isDead()) {
382          MO.unsetIsDead();
383          addVirtualRegisterDead(Reg, NewMI);
384        }
385        // Update the defining instruction.
386        if (VI.DefInst == OldMI)
387          VI.DefInst = NewMI;
388      }
389      if (MO.isUse()) {
390        if (MO.isKill()) {
391          MO.unsetIsKill();
392          addVirtualRegisterKilled(Reg, NewMI);
393        }
394        // If this is a kill of the value, update the VI kills list.
395        if (VI.removeKill(OldMI))
396          VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
397      }
398    }
399  }
400}
401
402/// removeVirtualRegistersKilled - Remove all killed info for the specified
403/// instruction.
404void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
405  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
406    MachineOperand &MO = MI->getOperand(i);
407    if (MO.isReg() && MO.isKill()) {
408      MO.unsetIsKill();
409      unsigned Reg = MO.getReg();
410      if (MRegisterInfo::isVirtualRegister(Reg)) {
411        bool removed = getVarInfo(Reg).removeKill(MI);
412        assert(removed && "kill not in register's VarInfo?");
413      }
414    }
415  }
416}
417
418/// removeVirtualRegistersDead - Remove all of the dead registers for the
419/// specified instruction from the live variable information.
420void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
421  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
422    MachineOperand &MO = MI->getOperand(i);
423    if (MO.isReg() && MO.isDead()) {
424      MO.unsetIsDead();
425      unsigned Reg = MO.getReg();
426      if (MRegisterInfo::isVirtualRegister(Reg)) {
427        bool removed = getVarInfo(Reg).removeKill(MI);
428        assert(removed && "kill not in register's VarInfo?");
429      }
430    }
431  }
432}
433
434/// analyzePHINodes - Gather information about the PHI nodes in here. In
435/// particular, we want to map the variable information of a virtual
436/// register which is used in a PHI node. We map that to the BB the vreg is
437/// coming from.
438///
439void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
440  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
441       I != E; ++I)
442    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
443         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
444      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
445        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()].
446          push_back(BBI->getOperand(i).getReg());
447}
448