LiveVariables.cpp revision c55640f0194511d2c44f4d8bea099e373199ae9d
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CFG.h"
34#include "Support/DepthFirstIterator.h"
35
36namespace llvm {
37
38static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
39
40const std::pair<MachineBasicBlock*, unsigned> &
41LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{
42  return BBMap.find(MBB->getBasicBlock())->second;
43}
44
45LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
46  assert(RegIdx >= MRegisterInfo::FirstVirtualRegister &&
47         "getVarInfo: not a virtual register!");
48  RegIdx -= MRegisterInfo::FirstVirtualRegister;
49  if (RegIdx >= VirtRegInfo.size()) {
50    if (RegIdx >= 2*VirtRegInfo.size())
51      VirtRegInfo.resize(RegIdx*2);
52    else
53      VirtRegInfo.resize(2*VirtRegInfo.size());
54  }
55  return VirtRegInfo[RegIdx];
56}
57
58
59
60void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
61					    const BasicBlock *BB) {
62  const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
63  MachineBasicBlock *MBB = Info.first;
64  unsigned BBNum = Info.second;
65
66  // Check to see if this basic block is one of the killing blocks.  If so,
67  // remove it...
68  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
69    if (VRInfo.Kills[i].first == MBB) {
70      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
71      break;
72    }
73
74  if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
75
76  if (VRInfo.AliveBlocks.size() <= BBNum)
77    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
78
79  if (VRInfo.AliveBlocks[BBNum])
80    return;  // We already know the block is live
81
82  // Mark the variable known alive in this bb
83  VRInfo.AliveBlocks[BBNum] = true;
84
85  for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
86    MarkVirtRegAliveInBlock(VRInfo, *PI);
87}
88
89void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
90				     MachineInstr *MI) {
91  // Check to see if this basic block is already a kill block...
92  if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
93    // Yes, this register is killed in this basic block already.  Increase the
94    // live range by updating the kill instruction.
95    VRInfo.Kills.back().second = MI;
96    return;
97  }
98
99#ifndef NDEBUG
100  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
101    assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
102#endif
103
104  assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
105
106  // Add a new kill entry for this basic block.
107  VRInfo.Kills.push_back(std::make_pair(MBB, MI));
108
109  // Update all dominating blocks to mark them known live.
110  const BasicBlock *BB = MBB->getBasicBlock();
111  for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
112       PI != E; ++PI)
113    MarkVirtRegAliveInBlock(VRInfo, *PI);
114}
115
116void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
117  PhysRegInfo[Reg] = MI;
118  PhysRegUsed[Reg] = true;
119}
120
121void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
122  // Does this kill a previous version of this register?
123  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
124    if (PhysRegUsed[Reg])
125      RegistersKilled.insert(std::make_pair(LastUse, Reg));
126    else
127      RegistersDead.insert(std::make_pair(LastUse, Reg));
128  }
129  PhysRegInfo[Reg] = MI;
130  PhysRegUsed[Reg] = false;
131
132  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
133       *AliasSet; ++AliasSet) {
134    if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) {
135      if (PhysRegUsed[*AliasSet])
136	RegistersKilled.insert(std::make_pair(LastUse, *AliasSet));
137      else
138	RegistersDead.insert(std::make_pair(LastUse, *AliasSet));
139    }
140    PhysRegInfo[*AliasSet] = MI;
141    PhysRegUsed[*AliasSet] = false;
142  }
143}
144
145bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
146  // First time though, initialize AllocatablePhysicalRegisters for the target
147  if (AllocatablePhysicalRegisters.empty()) {
148    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
149    assert(&MRI && "Target doesn't have register information?");
150
151    // Make space, initializing to false...
152    AllocatablePhysicalRegisters.resize(MRegisterInfo::FirstVirtualRegister);
153
154    // Loop over all of the register classes...
155    for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(),
156           E = MRI.regclass_end(); RCI != E; ++RCI)
157      // Loop over all of the allocatable registers in the function...
158      for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
159             E = (*RCI)->allocation_order_end(MF); I != E; ++I)
160        AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
161  }
162
163  // Build BBMap...
164  unsigned BBNum = 0;
165  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
166    BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
167
168  // PhysRegInfo - Keep track of which instruction was the last use of a
169  // physical register.  This is a purely local property, because all physical
170  // register references as presumed dead across basic blocks.
171  //
172  MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
173  bool          PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
174  std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
175	    (MachineInstr*)0);
176  PhysRegInfo = PhysRegInfoA;
177  PhysRegUsed = PhysRegUsedA;
178
179  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
180  RegInfo = MF.getTarget().getRegisterInfo();
181
182  /// Get some space for a respectable number of registers...
183  VirtRegInfo.resize(64);
184
185  // Calculate live variable information in depth first order on the CFG of the
186  // function.  This guarantees that we will see the definition of a virtual
187  // register before its uses due to dominance properties of SSA (except for PHI
188  // nodes, which are treated as a special case).
189  //
190  const BasicBlock *Entry = MF.getFunction()->begin();
191  for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
192       DFI != E; ++DFI) {
193    const BasicBlock *BB = *DFI;
194    std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
195    MachineBasicBlock *MBB = BBRec.first;
196    unsigned BBNum = BBRec.second;
197
198    // Loop over all of the instructions, processing them.
199    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
200	 I != E; ++I) {
201      MachineInstr *MI = *I;
202      const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
203
204      // Process all of the operands of the instruction...
205      unsigned NumOperandsToProcess = MI->getNumOperands();
206
207      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
208      // of the uses.  They will be handled in other basic blocks.
209      if (MI->getOpcode() == TargetInstrInfo::PHI)
210	NumOperandsToProcess = 1;
211
212      // Loop over implicit uses, using them.
213      for (const unsigned *ImplicitUses = MID.ImplicitUses;
214           *ImplicitUses; ++ImplicitUses)
215	HandlePhysRegUse(*ImplicitUses, MI);
216
217      // Process all explicit uses...
218      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
219	MachineOperand &MO = MI->getOperand(i);
220	if (MO.isUse()) {
221	  if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
222	    HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
223	  } else if (MO.isPhysicalRegister() &&
224                     AllocatablePhysicalRegisters[MO.getReg()]) {
225	    HandlePhysRegUse(MO.getReg(), MI);
226	  }
227	}
228      }
229
230      // Loop over implicit defs, defining them.
231      for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
232           *ImplicitDefs; ++ImplicitDefs)
233        HandlePhysRegDef(*ImplicitDefs, MI);
234
235      // Process all explicit defs...
236      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
237	MachineOperand &MO = MI->getOperand(i);
238	if (MO.isDef()) {
239	  if (MO.isVirtualRegister()) {
240	    VarInfo &VRInfo = getVarInfo(MO.getReg());
241
242	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
243	    VRInfo.DefBlock = MBB;                           // Created here...
244	    VRInfo.DefInst = MI;
245	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
246	  } else if (MO.isPhysicalRegister() &&
247                     AllocatablePhysicalRegisters[MO.getReg()]) {
248	    HandlePhysRegDef(MO.getReg(), MI);
249	  }
250	}
251      }
252    }
253
254    // Handle any virtual assignments from PHI nodes which might be at the
255    // bottom of this basic block.  We check all of our successor blocks to see
256    // if they have PHI nodes, and if so, we simulate an assignment at the end
257    // of the current block.
258    for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
259         SI != E; ++SI) {
260      MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
261
262      // PHI nodes are guaranteed to be at the top of the block...
263      for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
264	   I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
265        MachineInstr *MI = *I;
266	for (unsigned i = 1; ; i += 2)
267	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
268	    MachineOperand &MO = MI->getOperand(i);
269	    if (!MO.getVRegValueOrNull()) {
270	      VarInfo &VRInfo = getVarInfo(MO.getReg());
271
272	      // Only mark it alive only in the block we are representing...
273	      MarkVirtRegAliveInBlock(VRInfo, BB);
274	      break;   // Found the PHI entry for this block...
275	    }
276	  }
277      }
278    }
279
280    // Loop over PhysRegInfo, killing any registers that are available at the
281    // end of the basic block.  This also resets the PhysRegInfo map.
282    for (unsigned i = 0, e = MRegisterInfo::FirstVirtualRegister; i != e; ++i)
283      if (PhysRegInfo[i])
284	HandlePhysRegDef(i, 0);
285  }
286
287  // Convert the information we have gathered into VirtRegInfo and transform it
288  // into a form usable by RegistersKilled.
289  //
290  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
291    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
292      if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
293	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
294		    i + MRegisterInfo::FirstVirtualRegister));
295
296      else
297	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
298		    i + MRegisterInfo::FirstVirtualRegister));
299    }
300
301  return false;
302}
303
304} // End llvm namespace
305