LiveVariables.cpp revision fdf9ee278b684165014055069f407362bf9044f3
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Config/alloca.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49  AU.addRequiredID(UnreachableMachineBlockElimID);
50  AU.setPreservesAll();
51  MachineFunctionPass::getAnalysisUsage(AU);
52}
53
54void LiveVariables::VarInfo::dump() const {
55  cerr << "  Alive in blocks: ";
56  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
57           E = AliveBlocks.end(); I != E; ++I)
58    cerr << *I << ", ";
59  cerr << "\n  Killed by:";
60  if (Kills.empty())
61    cerr << " No instructions.\n";
62  else {
63    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
64      cerr << "\n    #" << i << ": " << *Kills[i];
65    cerr << "\n";
66  }
67}
68
69/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
70LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
71  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
72         "getVarInfo: not a virtual register!");
73  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
74  if (RegIdx >= VirtRegInfo.size()) {
75    if (RegIdx >= 2*VirtRegInfo.size())
76      VirtRegInfo.resize(RegIdx*2);
77    else
78      VirtRegInfo.resize(2*VirtRegInfo.size());
79  }
80  return VirtRegInfo[RegIdx];
81}
82
83void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
84                                            MachineBasicBlock *DefBlock,
85                                            MachineBasicBlock *MBB,
86                                    std::vector<MachineBasicBlock*> &WorkList) {
87  unsigned BBNum = MBB->getNumber();
88
89  // Check to see if this basic block is one of the killing blocks.  If so,
90  // remove it.
91  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
92    if (VRInfo.Kills[i]->getParent() == MBB) {
93      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
94      break;
95    }
96
97  if (MBB == DefBlock) return;  // Terminate recursion
98
99  if (VRInfo.AliveBlocks.test(BBNum))
100    return;  // We already know the block is live
101
102  // Mark the variable known alive in this bb
103  VRInfo.AliveBlocks.set(BBNum);
104
105  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
106         E = MBB->pred_rend(); PI != E; ++PI)
107    WorkList.push_back(*PI);
108}
109
110void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
111                                            MachineBasicBlock *DefBlock,
112                                            MachineBasicBlock *MBB) {
113  std::vector<MachineBasicBlock*> WorkList;
114  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
115
116  while (!WorkList.empty()) {
117    MachineBasicBlock *Pred = WorkList.back();
118    WorkList.pop_back();
119    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
120  }
121}
122
123void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
124                                     MachineInstr *MI) {
125  assert(MRI->getVRegDef(reg) && "Register use before def!");
126
127  unsigned BBNum = MBB->getNumber();
128
129  VarInfo& VRInfo = getVarInfo(reg);
130  VRInfo.NumUses++;
131
132  // Check to see if this basic block is already a kill block.
133  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
134    // Yes, this register is killed in this basic block already. Increase the
135    // live range by updating the kill instruction.
136    VRInfo.Kills.back() = MI;
137    return;
138  }
139
140#ifndef NDEBUG
141  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
142    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
143#endif
144
145  // This situation can occur:
146  //
147  //     ,------.
148  //     |      |
149  //     |      v
150  //     |   t2 = phi ... t1 ...
151  //     |      |
152  //     |      v
153  //     |   t1 = ...
154  //     |  ... = ... t1 ...
155  //     |      |
156  //     `------'
157  //
158  // where there is a use in a PHI node that's a predecessor to the defining
159  // block. We don't want to mark all predecessors as having the value "alive"
160  // in this case.
161  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
162
163  // Add a new kill entry for this basic block. If this virtual register is
164  // already marked as alive in this basic block, that means it is alive in at
165  // least one of the successor blocks, it's not a kill.
166  if (!VRInfo.AliveBlocks.test(BBNum))
167    VRInfo.Kills.push_back(MI);
168
169  // Update all dominating blocks to mark them as "known live".
170  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
171         E = MBB->pred_end(); PI != E; ++PI)
172    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
173}
174
175void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
176  VarInfo &VRInfo = getVarInfo(Reg);
177
178  if (VRInfo.AliveBlocks.empty())
179    // If vr is not alive in any block, then defaults to dead.
180    VRInfo.Kills.push_back(MI);
181}
182
183/// FindLastPartialDef - Return the last partial def of the specified register.
184/// Also returns the sub-register that's defined.
185MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
186                                                unsigned &PartDefReg) {
187  unsigned LastDefReg = 0;
188  unsigned LastDefDist = 0;
189  MachineInstr *LastDef = NULL;
190  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
191       unsigned SubReg = *SubRegs; ++SubRegs) {
192    MachineInstr *Def = PhysRegDef[SubReg];
193    if (!Def)
194      continue;
195    unsigned Dist = DistanceMap[Def];
196    if (Dist > LastDefDist) {
197      LastDefReg  = SubReg;
198      LastDef     = Def;
199      LastDefDist = Dist;
200    }
201  }
202  PartDefReg = LastDefReg;
203  return LastDef;
204}
205
206/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
207/// implicit defs to a machine instruction if there was an earlier def of its
208/// super-register.
209void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
210  // If there was a previous use or a "full" def all is well.
211  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
212    // Otherwise, the last sub-register def implicitly defines this register.
213    // e.g.
214    // AH =
215    // AL = ... <imp-def EAX>, <imp-kill AH>
216    //    = AH
217    // ...
218    //    = EAX
219    // All of the sub-registers must have been defined before the use of Reg!
220    unsigned PartDefReg = 0;
221    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
222    // If LastPartialDef is NULL, it must be using a livein register.
223    if (LastPartialDef) {
224      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
225                                                           true/*IsImp*/));
226      PhysRegDef[Reg] = LastPartialDef;
227      SmallSet<unsigned, 8> Processed;
228      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
229           unsigned SubReg = *SubRegs; ++SubRegs) {
230        if (Processed.count(SubReg))
231          continue;
232        if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
233          continue;
234        // This part of Reg was defined before the last partial def. It's killed
235        // here.
236        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
237                                                             false/*IsDef*/,
238                                                             true/*IsImp*/));
239        PhysRegDef[SubReg] = LastPartialDef;
240        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
241          Processed.insert(*SS);
242      }
243    }
244  }
245
246  // Remember this use.
247  PhysRegUse[Reg]  = MI;
248  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
249       unsigned SubReg = *SubRegs; ++SubRegs)
250    PhysRegUse[SubReg] =  MI;
251}
252
253/// hasRegisterUseBelow - Return true if the specified register is used after
254/// the current instruction and before it's next definition.
255bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
256                                        MachineBasicBlock::iterator I,
257                                        MachineBasicBlock *MBB) {
258  if (I == MBB->end())
259    return false;
260
261  // First find out if there are any uses / defs below.
262  bool hasDistInfo = true;
263  unsigned CurDist = DistanceMap[I];
264  SmallVector<MachineInstr*, 4> Uses;
265  SmallVector<MachineInstr*, 4> Defs;
266  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
267         RE = MRI->reg_end(); RI != RE; ++RI) {
268    MachineOperand &UDO = RI.getOperand();
269    MachineInstr *UDMI = &*RI;
270    if (UDMI->getParent() != MBB)
271      continue;
272    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
273    bool isBelow = false;
274    if (DI == DistanceMap.end()) {
275      // Must be below if it hasn't been assigned a distance yet.
276      isBelow = true;
277      hasDistInfo = false;
278    } else if (DI->second > CurDist)
279      isBelow = true;
280    if (isBelow) {
281      if (UDO.isUse())
282        Uses.push_back(UDMI);
283      if (UDO.isDef())
284        Defs.push_back(UDMI);
285    }
286  }
287
288  if (Uses.empty())
289    // No uses below.
290    return false;
291  else if (!Uses.empty() && Defs.empty())
292    // There are uses below but no defs below.
293    return true;
294  // There are both uses and defs below. We need to know which comes first.
295  if (!hasDistInfo) {
296    // Complete DistanceMap for this MBB. This information is computed only
297    // once per MBB.
298    ++I;
299    ++CurDist;
300    for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
301      DistanceMap.insert(std::make_pair(I, CurDist));
302  }
303
304  unsigned EarliestUse = DistanceMap[Uses[0]];
305  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
306    unsigned Dist = DistanceMap[Uses[i]];
307    if (Dist < EarliestUse)
308      EarliestUse = Dist;
309  }
310  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
311    unsigned Dist = DistanceMap[Defs[i]];
312    if (Dist < EarliestUse)
313      // The register is defined before its first use below.
314      return false;
315  }
316  return true;
317}
318
319bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
320  if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
321    return false;
322
323  MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
324    ? PhysRegUse[Reg] : PhysRegDef[Reg];
325  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
326  // The whole register is used.
327  // AL =
328  // AH =
329  //
330  //    = AX
331  //    = AL, AX<imp-use, kill>
332  // AX =
333  //
334  // Or whole register is defined, but not used at all.
335  // AX<dead> =
336  // ...
337  // AX =
338  //
339  // Or whole register is defined, but only partly used.
340  // AX<dead> = AL<imp-def>
341  //    = AL<kill>
342  // AX =
343  SmallSet<unsigned, 8> PartUses;
344  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
345       unsigned SubReg = *SubRegs; ++SubRegs) {
346    if (MachineInstr *Use = PhysRegUse[SubReg]) {
347      PartUses.insert(SubReg);
348      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
349        PartUses.insert(*SS);
350      unsigned Dist = DistanceMap[Use];
351      if (Dist > LastRefOrPartRefDist) {
352        LastRefOrPartRefDist = Dist;
353        LastRefOrPartRef = Use;
354      }
355    }
356  }
357
358  if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
359    // If the last reference is the last def, then it's not used at all.
360    // That is, unless we are currently processing the last reference itself.
361    LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
362
363  // Partial uses. Mark register def dead and add implicit def of
364  // sub-registers which are used.
365  // EAX<dead>  = op  AL<imp-def>
366  // That is, EAX def is dead but AL def extends pass it.
367  // Enable this after live interval analysis is fixed to improve codegen!
368  else if (!PhysRegUse[Reg]) {
369    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
371         unsigned SubReg = *SubRegs; ++SubRegs) {
372      if (PartUses.count(SubReg)) {
373        bool NeedDef = true;
374        if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
375          MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
376          if (MO) {
377            NeedDef = false;
378            assert(!MO->isDead());
379          }
380        }
381        if (NeedDef)
382          PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
383                                                                true, true));
384        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
385        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
386          PartUses.erase(*SS);
387      }
388    }
389  }
390  else
391    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
392  return true;
393}
394
395void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
396  // What parts of the register are previously defined?
397  SmallSet<unsigned, 32> Live;
398  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
399    Live.insert(Reg);
400    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
401      Live.insert(*SS);
402  } else {
403    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
404         unsigned SubReg = *SubRegs; ++SubRegs) {
405      // If a register isn't itself defined, but all parts that make up of it
406      // are defined, then consider it also defined.
407      // e.g.
408      // AL =
409      // AH =
410      //    = AX
411      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
412        Live.insert(SubReg);
413        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
414          Live.insert(*SS);
415      }
416    }
417  }
418
419  // Start from the largest piece, find the last time any part of the register
420  // is referenced.
421  if (!HandlePhysRegKill(Reg, MI)) {
422    // Only some of the sub-registers are used.
423    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
424         unsigned SubReg = *SubRegs; ++SubRegs) {
425      if (!Live.count(SubReg))
426        // Skip if this sub-register isn't defined.
427        continue;
428      if (HandlePhysRegKill(SubReg, MI)) {
429        Live.erase(SubReg);
430        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
431          Live.erase(*SS);
432      }
433    }
434    assert(Live.empty() && "Not all defined registers are killed / dead?");
435  }
436
437  if (MI) {
438    // Does this extend the live range of a super-register?
439    SmallSet<unsigned, 8> Processed;
440    for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
441         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
442      if (Processed.count(SuperReg))
443        continue;
444      MachineInstr *LastRef = PhysRegUse[SuperReg]
445        ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
446      if (LastRef && LastRef != MI) {
447        // The larger register is previously defined. Now a smaller part is
448        // being re-defined. Treat it as read/mod/write if there are uses
449        // below.
450        // EAX =
451        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
452        // ...
453        ///    =  EAX
454        if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
455          MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
456                                                   true/*IsImp*/,true/*IsKill*/));
457          MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
458                                                   true/*IsImp*/));
459          PhysRegDef[SuperReg]  = MI;
460          PhysRegUse[SuperReg]  = NULL;
461          Processed.insert(SuperReg);
462          for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
463            PhysRegDef[*SS]  = MI;
464            PhysRegUse[*SS]  = NULL;
465            Processed.insert(*SS);
466          }
467        } else {
468          // Otherwise, the super register is killed.
469          if (HandlePhysRegKill(SuperReg, MI)) {
470            PhysRegDef[SuperReg]  = NULL;
471            PhysRegUse[SuperReg]  = NULL;
472            for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
473              PhysRegDef[*SS]  = NULL;
474              PhysRegUse[*SS]  = NULL;
475              Processed.insert(*SS);
476            }
477          }
478        }
479      }
480    }
481
482    // Remember this def.
483    PhysRegDef[Reg]  = MI;
484    PhysRegUse[Reg]  = NULL;
485    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
486         unsigned SubReg = *SubRegs; ++SubRegs) {
487      PhysRegDef[SubReg]  = MI;
488      PhysRegUse[SubReg]  = NULL;
489    }
490  }
491}
492
493bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
494  MF = &mf;
495  MRI = &mf.getRegInfo();
496  TRI = MF->getTarget().getRegisterInfo();
497
498  ReservedRegisters = TRI->getReservedRegs(mf);
499
500  unsigned NumRegs = TRI->getNumRegs();
501  PhysRegDef  = new MachineInstr*[NumRegs];
502  PhysRegUse  = new MachineInstr*[NumRegs];
503  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
504  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
505  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
506
507  /// Get some space for a respectable number of registers.
508  VirtRegInfo.resize(64);
509
510  analyzePHINodes(mf);
511
512  // Calculate live variable information in depth first order on the CFG of the
513  // function.  This guarantees that we will see the definition of a virtual
514  // register before its uses due to dominance properties of SSA (except for PHI
515  // nodes, which are treated as a special case).
516  MachineBasicBlock *Entry = MF->begin();
517  SmallPtrSet<MachineBasicBlock*,16> Visited;
518
519  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
520         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
521       DFI != E; ++DFI) {
522    MachineBasicBlock *MBB = *DFI;
523
524    // Mark live-in registers as live-in.
525    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
526           EE = MBB->livein_end(); II != EE; ++II) {
527      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
528             "Cannot have a live-in virtual register!");
529      HandlePhysRegDef(*II, 0);
530    }
531
532    // Loop over all of the instructions, processing them.
533    DistanceMap.clear();
534    unsigned Dist = 0;
535    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
536         I != E; ++I) {
537      MachineInstr *MI = I;
538      DistanceMap.insert(std::make_pair(MI, Dist++));
539
540      // Process all of the operands of the instruction...
541      unsigned NumOperandsToProcess = MI->getNumOperands();
542
543      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
544      // of the uses.  They will be handled in other basic blocks.
545      if (MI->getOpcode() == TargetInstrInfo::PHI)
546        NumOperandsToProcess = 1;
547
548      SmallVector<unsigned, 4> UseRegs;
549      SmallVector<unsigned, 4> DefRegs;
550      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
551        const MachineOperand &MO = MI->getOperand(i);
552        if (!MO.isReg() || MO.getReg() == 0)
553          continue;
554        unsigned MOReg = MO.getReg();
555        if (MO.isUse())
556          UseRegs.push_back(MOReg);
557        if (MO.isDef())
558          DefRegs.push_back(MOReg);
559      }
560
561      // Process all uses.
562      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
563        unsigned MOReg = UseRegs[i];
564        if (TargetRegisterInfo::isVirtualRegister(MOReg))
565          HandleVirtRegUse(MOReg, MBB, MI);
566        else if (!ReservedRegisters[MOReg])
567          HandlePhysRegUse(MOReg, MI);
568      }
569
570      // Process all defs.
571      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
572        unsigned MOReg = DefRegs[i];
573        if (TargetRegisterInfo::isVirtualRegister(MOReg))
574          HandleVirtRegDef(MOReg, MI);
575        else if (!ReservedRegisters[MOReg])
576          HandlePhysRegDef(MOReg, MI);
577      }
578    }
579
580    // Handle any virtual assignments from PHI nodes which might be at the
581    // bottom of this basic block.  We check all of our successor blocks to see
582    // if they have PHI nodes, and if so, we simulate an assignment at the end
583    // of the current block.
584    if (!PHIVarInfo[MBB->getNumber()].empty()) {
585      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
586
587      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
588             E = VarInfoVec.end(); I != E; ++I)
589        // Mark it alive only in the block we are representing.
590        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
591                                MBB);
592    }
593
594    // Finally, if the last instruction in the block is a return, make sure to
595    // mark it as using all of the live-out values in the function.
596    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
597      MachineInstr *Ret = &MBB->back();
598
599      for (MachineRegisterInfo::liveout_iterator
600           I = MF->getRegInfo().liveout_begin(),
601           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
602        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
603               "Cannot have a live-out virtual register!");
604        HandlePhysRegUse(*I, Ret);
605
606        // Add live-out registers as implicit uses.
607        if (!Ret->readsRegister(*I))
608          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
609      }
610    }
611
612    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
613    // available at the end of the basic block.
614    for (unsigned i = 0; i != NumRegs; ++i)
615      if (PhysRegDef[i] || PhysRegUse[i])
616        HandlePhysRegDef(i, 0);
617
618    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
619    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
620  }
621
622  // Convert and transfer the dead / killed information we have gathered into
623  // VirtRegInfo onto MI's.
624  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
625    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
626      if (VirtRegInfo[i].Kills[j] ==
627          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
628        VirtRegInfo[i]
629          .Kills[j]->addRegisterDead(i +
630                                     TargetRegisterInfo::FirstVirtualRegister,
631                                     TRI);
632      else
633        VirtRegInfo[i]
634          .Kills[j]->addRegisterKilled(i +
635                                       TargetRegisterInfo::FirstVirtualRegister,
636                                       TRI);
637
638  // Check to make sure there are no unreachable blocks in the MC CFG for the
639  // function.  If so, it is due to a bug in the instruction selector or some
640  // other part of the code generator if this happens.
641#ifndef NDEBUG
642  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
643    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
644#endif
645
646  delete[] PhysRegDef;
647  delete[] PhysRegUse;
648  delete[] PHIVarInfo;
649
650  return false;
651}
652
653/// replaceKillInstruction - Update register kill info by replacing a kill
654/// instruction with a new one.
655void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
656                                           MachineInstr *NewMI) {
657  VarInfo &VI = getVarInfo(Reg);
658  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
659}
660
661/// removeVirtualRegistersKilled - Remove all killed info for the specified
662/// instruction.
663void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
664  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
665    MachineOperand &MO = MI->getOperand(i);
666    if (MO.isReg() && MO.isKill()) {
667      MO.setIsKill(false);
668      unsigned Reg = MO.getReg();
669      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
670        bool removed = getVarInfo(Reg).removeKill(MI);
671        assert(removed && "kill not in register's VarInfo?");
672        removed = true;
673      }
674    }
675  }
676}
677
678/// analyzePHINodes - Gather information about the PHI nodes in here. In
679/// particular, we want to map the variable information of a virtual register
680/// which is used in a PHI node. We map that to the BB the vreg is coming from.
681///
682void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
683  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
684       I != E; ++I)
685    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
686         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
687      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
688        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
689          .push_back(BBI->getOperand(i).getReg());
690}
691