MachineBasicBlock.cpp revision 99cb622041a0839c7dfcf0263c5102a305a0fdb5
1//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineBasicBlock.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/LiveVariables.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/SlotIndexes.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/MC/MCAsmInfo.h"
28#include "llvm/MC/MCContext.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/LeakDetector.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include <algorithm>
36using namespace llvm;
37
38MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
39  : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
40    AddressTaken(false), CachedMCSymbol(NULL) {
41  Insts.Parent = this;
42}
43
44MachineBasicBlock::~MachineBasicBlock() {
45  LeakDetector::removeGarbageObject(this);
46}
47
48/// getSymbol - Return the MCSymbol for this basic block.
49///
50MCSymbol *MachineBasicBlock::getSymbol() const {
51  if (!CachedMCSymbol) {
52    const MachineFunction *MF = getParent();
53    MCContext &Ctx = MF->getContext();
54    const char *Prefix = Ctx.getAsmInfo()->getPrivateGlobalPrefix();
55    CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
56                                           Twine(MF->getFunctionNumber()) +
57                                           "_" + Twine(getNumber()));
58  }
59
60  return CachedMCSymbol;
61}
62
63
64raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
65  MBB.print(OS);
66  return OS;
67}
68
69/// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
70/// parent pointer of the MBB, the MBB numbering, and any instructions in the
71/// MBB to be on the right operand list for registers.
72///
73/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
74/// gets the next available unique MBB number. If it is removed from a
75/// MachineFunction, it goes back to being #-1.
76void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
77  MachineFunction &MF = *N->getParent();
78  N->Number = MF.addToMBBNumbering(N);
79
80  // Make sure the instructions have their operands in the reginfo lists.
81  MachineRegisterInfo &RegInfo = MF.getRegInfo();
82  for (MachineBasicBlock::instr_iterator
83         I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
84    I->AddRegOperandsToUseLists(RegInfo);
85
86  LeakDetector::removeGarbageObject(N);
87}
88
89void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
90  N->getParent()->removeFromMBBNumbering(N->Number);
91  N->Number = -1;
92  LeakDetector::addGarbageObject(N);
93}
94
95
96/// addNodeToList (MI) - When we add an instruction to a basic block
97/// list, we update its parent pointer and add its operands from reg use/def
98/// lists if appropriate.
99void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
100  assert(N->getParent() == 0 && "machine instruction already in a basic block");
101  N->setParent(Parent);
102
103  // Add the instruction's register operands to their corresponding
104  // use/def lists.
105  MachineFunction *MF = Parent->getParent();
106  N->AddRegOperandsToUseLists(MF->getRegInfo());
107
108  LeakDetector::removeGarbageObject(N);
109}
110
111/// removeNodeFromList (MI) - When we remove an instruction from a basic block
112/// list, we update its parent pointer and remove its operands from reg use/def
113/// lists if appropriate.
114void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
115  assert(N->getParent() != 0 && "machine instruction not in a basic block");
116
117  // Remove from the use/def lists.
118  if (MachineFunction *MF = N->getParent()->getParent())
119    N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
120
121  N->setParent(0);
122
123  LeakDetector::addGarbageObject(N);
124}
125
126/// transferNodesFromList (MI) - When moving a range of instructions from one
127/// MBB list to another, we need to update the parent pointers and the use/def
128/// lists.
129void ilist_traits<MachineInstr>::
130transferNodesFromList(ilist_traits<MachineInstr> &fromList,
131                      ilist_iterator<MachineInstr> first,
132                      ilist_iterator<MachineInstr> last) {
133  assert(Parent->getParent() == fromList.Parent->getParent() &&
134        "MachineInstr parent mismatch!");
135
136  // Splice within the same MBB -> no change.
137  if (Parent == fromList.Parent) return;
138
139  // If splicing between two blocks within the same function, just update the
140  // parent pointers.
141  for (; first != last; ++first)
142    first->setParent(Parent);
143}
144
145void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
146  assert(!MI->getParent() && "MI is still in a block!");
147  Parent->getParent()->DeleteMachineInstr(MI);
148}
149
150MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
151  instr_iterator I = instr_begin(), E = instr_end();
152  while (I != E && I->isPHI())
153    ++I;
154  assert((I == E || !I->isInsideBundle()) &&
155         "First non-phi MI cannot be inside a bundle!");
156  return I;
157}
158
159MachineBasicBlock::iterator
160MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
161  iterator E = end();
162  while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
163    ++I;
164  // FIXME: This needs to change if we wish to bundle labels / dbg_values
165  // inside the bundle.
166  assert((I == E || !I->isInsideBundle()) &&
167         "First non-phi / non-label instruction is inside a bundle!");
168  return I;
169}
170
171MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
172  iterator B = begin(), E = end(), I = E;
173  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
174    ; /*noop */
175  while (I != E && !I->isTerminator())
176    ++I;
177  return I;
178}
179
180MachineBasicBlock::const_iterator
181MachineBasicBlock::getFirstTerminator() const {
182  const_iterator B = begin(), E = end(), I = E;
183  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
184    ; /*noop */
185  while (I != E && !I->isTerminator())
186    ++I;
187  return I;
188}
189
190MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
191  instr_iterator B = instr_begin(), E = instr_end(), I = E;
192  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
193    ; /*noop */
194  while (I != E && !I->isTerminator())
195    ++I;
196  return I;
197}
198
199MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
200  // Skip over end-of-block dbg_value instructions.
201  instr_iterator B = instr_begin(), I = instr_end();
202  while (I != B) {
203    --I;
204    // Return instruction that starts a bundle.
205    if (I->isDebugValue() || I->isInsideBundle())
206      continue;
207    return I;
208  }
209  // The block is all debug values.
210  return end();
211}
212
213MachineBasicBlock::const_iterator
214MachineBasicBlock::getLastNonDebugInstr() const {
215  // Skip over end-of-block dbg_value instructions.
216  const_instr_iterator B = instr_begin(), I = instr_end();
217  while (I != B) {
218    --I;
219    // Return instruction that starts a bundle.
220    if (I->isDebugValue() || I->isInsideBundle())
221      continue;
222    return I;
223  }
224  // The block is all debug values.
225  return end();
226}
227
228const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
229  // A block with a landing pad successor only has one other successor.
230  if (succ_size() > 2)
231    return 0;
232  for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
233    if ((*I)->isLandingPad())
234      return *I;
235  return 0;
236}
237
238#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239void MachineBasicBlock::dump() const {
240  print(dbgs());
241}
242#endif
243
244StringRef MachineBasicBlock::getName() const {
245  if (const BasicBlock *LBB = getBasicBlock())
246    return LBB->getName();
247  else
248    return "(null)";
249}
250
251/// Return a hopefully unique identifier for this block.
252std::string MachineBasicBlock::getFullName() const {
253  std::string Name;
254  if (getParent())
255    Name = (getParent()->getName() + ":").str();
256  if (getBasicBlock())
257    Name += getBasicBlock()->getName();
258  else
259    Name += (Twine("BB") + Twine(getNumber())).str();
260  return Name;
261}
262
263void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
264  const MachineFunction *MF = getParent();
265  if (!MF) {
266    OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267       << " is null\n";
268    return;
269  }
270
271  if (Indexes)
272    OS << Indexes->getMBBStartIdx(this) << '\t';
273
274  OS << "BB#" << getNumber() << ": ";
275
276  const char *Comma = "";
277  if (const BasicBlock *LBB = getBasicBlock()) {
278    OS << Comma << "derived from LLVM BB ";
279    WriteAsOperand(OS, LBB, /*PrintType=*/false);
280    Comma = ", ";
281  }
282  if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
283  if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
284  if (Alignment)
285    OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
286       << " bytes)";
287
288  OS << '\n';
289
290  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
291  if (!livein_empty()) {
292    if (Indexes) OS << '\t';
293    OS << "    Live Ins:";
294    for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
295      OS << ' ' << PrintReg(*I, TRI);
296    OS << '\n';
297  }
298  // Print the preds of this block according to the CFG.
299  if (!pred_empty()) {
300    if (Indexes) OS << '\t';
301    OS << "    Predecessors according to CFG:";
302    for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
303      OS << " BB#" << (*PI)->getNumber();
304    OS << '\n';
305  }
306
307  for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
308    if (Indexes) {
309      if (Indexes->hasIndex(I))
310        OS << Indexes->getInstructionIndex(I);
311      OS << '\t';
312    }
313    OS << '\t';
314    if (I->isInsideBundle())
315      OS << "  * ";
316    I->print(OS, &getParent()->getTarget());
317  }
318
319  // Print the successors of this block according to the CFG.
320  if (!succ_empty()) {
321    if (Indexes) OS << '\t';
322    OS << "    Successors according to CFG:";
323    for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
324      OS << " BB#" << (*SI)->getNumber();
325      if (!Weights.empty())
326        OS << '(' << *getWeightIterator(SI) << ')';
327    }
328    OS << '\n';
329  }
330}
331
332void MachineBasicBlock::removeLiveIn(unsigned Reg) {
333  std::vector<unsigned>::iterator I =
334    std::find(LiveIns.begin(), LiveIns.end(), Reg);
335  if (I != LiveIns.end())
336    LiveIns.erase(I);
337}
338
339bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
340  livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
341  return I != livein_end();
342}
343
344void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
345  getParent()->splice(NewAfter, this);
346}
347
348void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
349  MachineFunction::iterator BBI = NewBefore;
350  getParent()->splice(++BBI, this);
351}
352
353void MachineBasicBlock::updateTerminator() {
354  const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
355  // A block with no successors has no concerns with fall-through edges.
356  if (this->succ_empty()) return;
357
358  MachineBasicBlock *TBB = 0, *FBB = 0;
359  SmallVector<MachineOperand, 4> Cond;
360  DebugLoc dl;  // FIXME: this is nowhere
361  bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
362  (void) B;
363  assert(!B && "UpdateTerminators requires analyzable predecessors!");
364  if (Cond.empty()) {
365    if (TBB) {
366      // The block has an unconditional branch. If its successor is now
367      // its layout successor, delete the branch.
368      if (isLayoutSuccessor(TBB))
369        TII->RemoveBranch(*this);
370    } else {
371      // The block has an unconditional fallthrough. If its successor is not
372      // its layout successor, insert a branch. First we have to locate the
373      // only non-landing-pad successor, as that is the fallthrough block.
374      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
375        if ((*SI)->isLandingPad())
376          continue;
377        assert(!TBB && "Found more than one non-landing-pad successor!");
378        TBB = *SI;
379      }
380
381      // If there is no non-landing-pad successor, the block has no
382      // fall-through edges to be concerned with.
383      if (!TBB)
384        return;
385
386      // Finally update the unconditional successor to be reached via a branch
387      // if it would not be reached by fallthrough.
388      if (!isLayoutSuccessor(TBB))
389        TII->InsertBranch(*this, TBB, 0, Cond, dl);
390    }
391  } else {
392    if (FBB) {
393      // The block has a non-fallthrough conditional branch. If one of its
394      // successors is its layout successor, rewrite it to a fallthrough
395      // conditional branch.
396      if (isLayoutSuccessor(TBB)) {
397        if (TII->ReverseBranchCondition(Cond))
398          return;
399        TII->RemoveBranch(*this);
400        TII->InsertBranch(*this, FBB, 0, Cond, dl);
401      } else if (isLayoutSuccessor(FBB)) {
402        TII->RemoveBranch(*this);
403        TII->InsertBranch(*this, TBB, 0, Cond, dl);
404      }
405    } else {
406      // Walk through the successors and find the successor which is not
407      // a landing pad and is not the conditional branch destination (in TBB)
408      // as the fallthrough successor.
409      MachineBasicBlock *FallthroughBB = 0;
410      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
411        if ((*SI)->isLandingPad() || *SI == TBB)
412          continue;
413        assert(!FallthroughBB && "Found more than one fallthrough successor.");
414        FallthroughBB = *SI;
415      }
416      if (!FallthroughBB && canFallThrough()) {
417        // We fallthrough to the same basic block as the conditional jump
418        // targets. Remove the conditional jump, leaving unconditional
419        // fallthrough.
420        // FIXME: This does not seem like a reasonable pattern to support, but it
421        // has been seen in the wild coming out of degenerate ARM test cases.
422        TII->RemoveBranch(*this);
423
424        // Finally update the unconditional successor to be reached via a branch
425        // if it would not be reached by fallthrough.
426        if (!isLayoutSuccessor(TBB))
427          TII->InsertBranch(*this, TBB, 0, Cond, dl);
428        return;
429      }
430
431      // The block has a fallthrough conditional branch.
432      if (isLayoutSuccessor(TBB)) {
433        if (TII->ReverseBranchCondition(Cond)) {
434          // We can't reverse the condition, add an unconditional branch.
435          Cond.clear();
436          TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
437          return;
438        }
439        TII->RemoveBranch(*this);
440        TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
441      } else if (!isLayoutSuccessor(FallthroughBB)) {
442        TII->RemoveBranch(*this);
443        TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
444      }
445    }
446  }
447}
448
449void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
450
451  // If we see non-zero value for the first time it means we actually use Weight
452  // list, so we fill all Weights with 0's.
453  if (weight != 0 && Weights.empty())
454    Weights.resize(Successors.size());
455
456  if (weight != 0 || !Weights.empty())
457    Weights.push_back(weight);
458
459   Successors.push_back(succ);
460   succ->addPredecessor(this);
461 }
462
463void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
464  succ->removePredecessor(this);
465  succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
466  assert(I != Successors.end() && "Not a current successor!");
467
468  // If Weight list is empty it means we don't use it (disabled optimization).
469  if (!Weights.empty()) {
470    weight_iterator WI = getWeightIterator(I);
471    Weights.erase(WI);
472  }
473
474  Successors.erase(I);
475}
476
477MachineBasicBlock::succ_iterator
478MachineBasicBlock::removeSuccessor(succ_iterator I) {
479  assert(I != Successors.end() && "Not a current successor!");
480
481  // If Weight list is empty it means we don't use it (disabled optimization).
482  if (!Weights.empty()) {
483    weight_iterator WI = getWeightIterator(I);
484    Weights.erase(WI);
485  }
486
487  (*I)->removePredecessor(this);
488  return Successors.erase(I);
489}
490
491void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
492                                         MachineBasicBlock *New) {
493  if (Old == New)
494    return;
495
496  succ_iterator E = succ_end();
497  succ_iterator NewI = E;
498  succ_iterator OldI = E;
499  for (succ_iterator I = succ_begin(); I != E; ++I) {
500    if (*I == Old) {
501      OldI = I;
502      if (NewI != E)
503        break;
504    }
505    if (*I == New) {
506      NewI = I;
507      if (OldI != E)
508        break;
509    }
510  }
511  assert(OldI != E && "Old is not a successor of this block");
512  Old->removePredecessor(this);
513
514  // If New isn't already a successor, let it take Old's place.
515  if (NewI == E) {
516    New->addPredecessor(this);
517    *OldI = New;
518    return;
519  }
520
521  // New is already a successor.
522  // Update its weight instead of adding a duplicate edge.
523  if (!Weights.empty()) {
524    weight_iterator OldWI = getWeightIterator(OldI);
525    *getWeightIterator(NewI) += *OldWI;
526    Weights.erase(OldWI);
527  }
528  Successors.erase(OldI);
529}
530
531void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
532  Predecessors.push_back(pred);
533}
534
535void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
536  pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
537  assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
538  Predecessors.erase(I);
539}
540
541void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
542  if (this == fromMBB)
543    return;
544
545  while (!fromMBB->succ_empty()) {
546    MachineBasicBlock *Succ = *fromMBB->succ_begin();
547    uint32_t Weight = 0;
548
549    // If Weight list is empty it means we don't use it (disabled optimization).
550    if (!fromMBB->Weights.empty())
551      Weight = *fromMBB->Weights.begin();
552
553    addSuccessor(Succ, Weight);
554    fromMBB->removeSuccessor(Succ);
555  }
556}
557
558void
559MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
560  if (this == fromMBB)
561    return;
562
563  while (!fromMBB->succ_empty()) {
564    MachineBasicBlock *Succ = *fromMBB->succ_begin();
565    uint32_t Weight = 0;
566    if (!fromMBB->Weights.empty())
567      Weight = *fromMBB->Weights.begin();
568    addSuccessor(Succ, Weight);
569    fromMBB->removeSuccessor(Succ);
570
571    // Fix up any PHI nodes in the successor.
572    for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
573           ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
574      for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
575        MachineOperand &MO = MI->getOperand(i);
576        if (MO.getMBB() == fromMBB)
577          MO.setMBB(this);
578      }
579  }
580}
581
582bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
583  return std::find(pred_begin(), pred_end(), MBB) != pred_end();
584}
585
586bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
587  return std::find(succ_begin(), succ_end(), MBB) != succ_end();
588}
589
590bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
591  MachineFunction::const_iterator I(this);
592  return llvm::next(I) == MachineFunction::const_iterator(MBB);
593}
594
595bool MachineBasicBlock::canFallThrough() {
596  MachineFunction::iterator Fallthrough = this;
597  ++Fallthrough;
598  // If FallthroughBlock is off the end of the function, it can't fall through.
599  if (Fallthrough == getParent()->end())
600    return false;
601
602  // If FallthroughBlock isn't a successor, no fallthrough is possible.
603  if (!isSuccessor(Fallthrough))
604    return false;
605
606  // Analyze the branches, if any, at the end of the block.
607  MachineBasicBlock *TBB = 0, *FBB = 0;
608  SmallVector<MachineOperand, 4> Cond;
609  const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
610  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
611    // If we couldn't analyze the branch, examine the last instruction.
612    // If the block doesn't end in a known control barrier, assume fallthrough
613    // is possible. The isPredicated check is needed because this code can be
614    // called during IfConversion, where an instruction which is normally a
615    // Barrier is predicated and thus no longer an actual control barrier.
616    return empty() || !back().isBarrier() || TII->isPredicated(&back());
617  }
618
619  // If there is no branch, control always falls through.
620  if (TBB == 0) return true;
621
622  // If there is some explicit branch to the fallthrough block, it can obviously
623  // reach, even though the branch should get folded to fall through implicitly.
624  if (MachineFunction::iterator(TBB) == Fallthrough ||
625      MachineFunction::iterator(FBB) == Fallthrough)
626    return true;
627
628  // If it's an unconditional branch to some block not the fall through, it
629  // doesn't fall through.
630  if (Cond.empty()) return false;
631
632  // Otherwise, if it is conditional and has no explicit false block, it falls
633  // through.
634  return FBB == 0;
635}
636
637MachineBasicBlock *
638MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
639  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
640  // it in this generic function.
641  if (Succ->isLandingPad())
642    return NULL;
643
644  MachineFunction *MF = getParent();
645  DebugLoc dl;  // FIXME: this is nowhere
646
647  // We may need to update this's terminator, but we can't do that if
648  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
649  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
650  MachineBasicBlock *TBB = 0, *FBB = 0;
651  SmallVector<MachineOperand, 4> Cond;
652  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
653    return NULL;
654
655  // Avoid bugpoint weirdness: A block may end with a conditional branch but
656  // jumps to the same MBB is either case. We have duplicate CFG edges in that
657  // case that we can't handle. Since this never happens in properly optimized
658  // code, just skip those edges.
659  if (TBB && TBB == FBB) {
660    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
661                 << getNumber() << '\n');
662    return NULL;
663  }
664
665  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
666  MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
667  DEBUG(dbgs() << "Splitting critical edge:"
668        " BB#" << getNumber()
669        << " -- BB#" << NMBB->getNumber()
670        << " -- BB#" << Succ->getNumber() << '\n');
671
672  LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
673  SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
674  if (LIS)
675    LIS->insertMBBInMaps(NMBB);
676  else if (Indexes)
677    Indexes->insertMBBInMaps(NMBB);
678
679  // On some targets like Mips, branches may kill virtual registers. Make sure
680  // that LiveVariables is properly updated after updateTerminator replaces the
681  // terminators.
682  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
683
684  // Collect a list of virtual registers killed by the terminators.
685  SmallVector<unsigned, 4> KilledRegs;
686  if (LV)
687    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
688         I != E; ++I) {
689      MachineInstr *MI = I;
690      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
691           OE = MI->operands_end(); OI != OE; ++OI) {
692        if (!OI->isReg() || OI->getReg() == 0 ||
693            !OI->isUse() || !OI->isKill() || OI->isUndef())
694          continue;
695        unsigned Reg = OI->getReg();
696        if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
697            LV->getVarInfo(Reg).removeKill(MI)) {
698          KilledRegs.push_back(Reg);
699          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
700          OI->setIsKill(false);
701        }
702      }
703    }
704
705  SmallVector<unsigned, 4> UsedRegs;
706  if (LIS) {
707    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
708         I != E; ++I) {
709      MachineInstr *MI = I;
710
711      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
712           OE = MI->operands_end(); OI != OE; ++OI) {
713        if (!OI->isReg() || OI->getReg() == 0)
714          continue;
715
716        unsigned Reg = OI->getReg();
717        if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
718          UsedRegs.push_back(Reg);
719      }
720    }
721  }
722
723  ReplaceUsesOfBlockWith(Succ, NMBB);
724
725  // If updateTerminator() removes instructions, we need to remove them from
726  // SlotIndexes.
727  SmallVector<MachineInstr*, 4> Terminators;
728  if (Indexes) {
729    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
730         I != E; ++I)
731      Terminators.push_back(I);
732  }
733
734  updateTerminator();
735
736  if (Indexes) {
737    SmallVector<MachineInstr*, 4> NewTerminators;
738    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
739         I != E; ++I)
740      NewTerminators.push_back(I);
741
742    for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
743        E = Terminators.end(); I != E; ++I) {
744      if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
745          NewTerminators.end())
746       Indexes->removeMachineInstrFromMaps(*I);
747    }
748  }
749
750  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
751  NMBB->addSuccessor(Succ);
752  if (!NMBB->isLayoutSuccessor(Succ)) {
753    Cond.clear();
754    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
755
756    if (Indexes) {
757      for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
758           I != E; ++I) {
759        // Some instructions may have been moved to NMBB by updateTerminator(),
760        // so we first remove any instruction that already has an index.
761        if (Indexes->hasIndex(I))
762          Indexes->removeMachineInstrFromMaps(I);
763        Indexes->insertMachineInstrInMaps(I);
764      }
765    }
766  }
767
768  // Fix PHI nodes in Succ so they refer to NMBB instead of this
769  for (MachineBasicBlock::instr_iterator
770         i = Succ->instr_begin(),e = Succ->instr_end();
771       i != e && i->isPHI(); ++i)
772    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
773      if (i->getOperand(ni+1).getMBB() == this)
774        i->getOperand(ni+1).setMBB(NMBB);
775
776  // Inherit live-ins from the successor
777  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
778         E = Succ->livein_end(); I != E; ++I)
779    NMBB->addLiveIn(*I);
780
781  // Update LiveVariables.
782  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
783  if (LV) {
784    // Restore kills of virtual registers that were killed by the terminators.
785    while (!KilledRegs.empty()) {
786      unsigned Reg = KilledRegs.pop_back_val();
787      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
788        if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
789          continue;
790        if (TargetRegisterInfo::isVirtualRegister(Reg))
791          LV->getVarInfo(Reg).Kills.push_back(I);
792        DEBUG(dbgs() << "Restored terminator kill: " << *I);
793        break;
794      }
795    }
796    // Update relevant live-through information.
797    LV->addNewBlock(NMBB, this, Succ);
798  }
799
800  if (LIS) {
801    // After splitting the edge and updating SlotIndexes, live intervals may be
802    // in one of two situations, depending on whether this block was the last in
803    // the function. If the original block was the last in the function, all live
804    // intervals will end prior to the beginning of the new split block. If the
805    // original block was not at the end of the function, all live intervals will
806    // extend to the end of the new split block.
807
808    bool isLastMBB =
809      llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
810
811    SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
812    SlotIndex PrevIndex = StartIndex.getPrevSlot();
813    SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
814
815    // Find the registers used from NMBB in PHIs in Succ.
816    SmallSet<unsigned, 8> PHISrcRegs;
817    for (MachineBasicBlock::instr_iterator
818         I = Succ->instr_begin(), E = Succ->instr_end();
819         I != E && I->isPHI(); ++I) {
820      for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
821        if (I->getOperand(ni+1).getMBB() == NMBB) {
822          MachineOperand &MO = I->getOperand(ni);
823          unsigned Reg = MO.getReg();
824          PHISrcRegs.insert(Reg);
825          if (MO.isUndef())
826            continue;
827
828          LiveInterval &LI = LIS->getInterval(Reg);
829          VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
830          assert(VNI && "PHI sources should be live out of their predecessors.");
831          LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
832        }
833      }
834    }
835
836    MachineRegisterInfo *MRI = &getParent()->getRegInfo();
837    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
838      unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
839      if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
840        continue;
841
842      LiveInterval &LI = LIS->getInterval(Reg);
843      if (!LI.liveAt(PrevIndex))
844        continue;
845
846      bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
847      if (isLiveOut && isLastMBB) {
848        VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
849        assert(VNI && "LiveInterval should have VNInfo where it is live.");
850        LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
851      } else if (!isLiveOut && !isLastMBB) {
852        LI.removeRange(StartIndex, EndIndex);
853      }
854    }
855
856    // Update all intervals for registers whose uses may have been modified by
857    // updateTerminator().
858    LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
859  }
860
861  if (MachineDominatorTree *MDT =
862      P->getAnalysisIfAvailable<MachineDominatorTree>()) {
863    // Update dominator information.
864    MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
865
866    bool IsNewIDom = true;
867    for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
868         PI != E; ++PI) {
869      MachineBasicBlock *PredBB = *PI;
870      if (PredBB == NMBB)
871        continue;
872      if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
873        IsNewIDom = false;
874        break;
875      }
876    }
877
878    // We know "this" dominates the newly created basic block.
879    MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
880
881    // If all the other predecessors of "Succ" are dominated by "Succ" itself
882    // then the new block is the new immediate dominator of "Succ". Otherwise,
883    // the new block doesn't dominate anything.
884    if (IsNewIDom)
885      MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
886  }
887
888  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
889    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
890      // If one or the other blocks were not in a loop, the new block is not
891      // either, and thus LI doesn't need to be updated.
892      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
893        if (TIL == DestLoop) {
894          // Both in the same loop, the NMBB joins loop.
895          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
896        } else if (TIL->contains(DestLoop)) {
897          // Edge from an outer loop to an inner loop.  Add to the outer loop.
898          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
899        } else if (DestLoop->contains(TIL)) {
900          // Edge from an inner loop to an outer loop.  Add to the outer loop.
901          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
902        } else {
903          // Edge from two loops with no containment relation.  Because these
904          // are natural loops, we know that the destination block must be the
905          // header of its loop (adding a branch into a loop elsewhere would
906          // create an irreducible loop).
907          assert(DestLoop->getHeader() == Succ &&
908                 "Should not create irreducible loops!");
909          if (MachineLoop *P = DestLoop->getParentLoop())
910            P->addBasicBlockToLoop(NMBB, MLI->getBase());
911        }
912      }
913    }
914
915  return NMBB;
916}
917
918/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
919/// neighboring instructions so the bundle won't be broken by removing MI.
920static void unbundleSingleMI(MachineInstr *MI) {
921  // Removing the first instruction in a bundle.
922  if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
923    MI->unbundleFromSucc();
924  // Removing the last instruction in a bundle.
925  if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
926    MI->unbundleFromPred();
927  // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
928  // are already fine.
929}
930
931MachineBasicBlock::instr_iterator
932MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
933  unbundleSingleMI(I);
934  return Insts.erase(I);
935}
936
937MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
938  unbundleSingleMI(MI);
939  MI->clearFlag(MachineInstr::BundledPred);
940  MI->clearFlag(MachineInstr::BundledSucc);
941  return Insts.remove(MI);
942}
943
944MachineBasicBlock::instr_iterator
945MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
946  assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
947         "Cannot insert instruction with bundle flags");
948  // Set the bundle flags when inserting inside a bundle.
949  if (I != instr_end() && I->isBundledWithPred()) {
950    MI->setFlag(MachineInstr::BundledPred);
951    MI->setFlag(MachineInstr::BundledSucc);
952  }
953  return Insts.insert(I, MI);
954}
955
956/// removeFromParent - This method unlinks 'this' from the containing function,
957/// and returns it, but does not delete it.
958MachineBasicBlock *MachineBasicBlock::removeFromParent() {
959  assert(getParent() && "Not embedded in a function!");
960  getParent()->remove(this);
961  return this;
962}
963
964
965/// eraseFromParent - This method unlinks 'this' from the containing function,
966/// and deletes it.
967void MachineBasicBlock::eraseFromParent() {
968  assert(getParent() && "Not embedded in a function!");
969  getParent()->erase(this);
970}
971
972
973/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
974/// 'Old', change the code and CFG so that it branches to 'New' instead.
975void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
976                                               MachineBasicBlock *New) {
977  assert(Old != New && "Cannot replace self with self!");
978
979  MachineBasicBlock::instr_iterator I = instr_end();
980  while (I != instr_begin()) {
981    --I;
982    if (!I->isTerminator()) break;
983
984    // Scan the operands of this machine instruction, replacing any uses of Old
985    // with New.
986    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
987      if (I->getOperand(i).isMBB() &&
988          I->getOperand(i).getMBB() == Old)
989        I->getOperand(i).setMBB(New);
990  }
991
992  // Update the successor information.
993  replaceSuccessor(Old, New);
994}
995
996/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
997/// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
998/// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
999/// null.
1000///
1001/// Besides DestA and DestB, retain other edges leading to LandingPads
1002/// (currently there can be only one; we don't check or require that here).
1003/// Note it is possible that DestA and/or DestB are LandingPads.
1004bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1005                                             MachineBasicBlock *DestB,
1006                                             bool isCond) {
1007  // The values of DestA and DestB frequently come from a call to the
1008  // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1009  // values from there.
1010  //
1011  // 1. If both DestA and DestB are null, then the block ends with no branches
1012  //    (it falls through to its successor).
1013  // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1014  //    with only an unconditional branch.
1015  // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1016  //    with a conditional branch that falls through to a successor (DestB).
1017  // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1018  //    conditional branch followed by an unconditional branch. DestA is the
1019  //    'true' destination and DestB is the 'false' destination.
1020
1021  bool Changed = false;
1022
1023  MachineFunction::iterator FallThru =
1024    llvm::next(MachineFunction::iterator(this));
1025
1026  if (DestA == 0 && DestB == 0) {
1027    // Block falls through to successor.
1028    DestA = FallThru;
1029    DestB = FallThru;
1030  } else if (DestA != 0 && DestB == 0) {
1031    if (isCond)
1032      // Block ends in conditional jump that falls through to successor.
1033      DestB = FallThru;
1034  } else {
1035    assert(DestA && DestB && isCond &&
1036           "CFG in a bad state. Cannot correct CFG edges");
1037  }
1038
1039  // Remove superfluous edges. I.e., those which aren't destinations of this
1040  // basic block, duplicate edges, or landing pads.
1041  SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1042  MachineBasicBlock::succ_iterator SI = succ_begin();
1043  while (SI != succ_end()) {
1044    const MachineBasicBlock *MBB = *SI;
1045    if (!SeenMBBs.insert(MBB) ||
1046        (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1047      // This is a superfluous edge, remove it.
1048      SI = removeSuccessor(SI);
1049      Changed = true;
1050    } else {
1051      ++SI;
1052    }
1053  }
1054
1055  return Changed;
1056}
1057
1058/// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1059/// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
1060DebugLoc
1061MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1062  DebugLoc DL;
1063  instr_iterator E = instr_end();
1064  if (MBBI == E)
1065    return DL;
1066
1067  // Skip debug declarations, we don't want a DebugLoc from them.
1068  while (MBBI != E && MBBI->isDebugValue())
1069    MBBI++;
1070  if (MBBI != E)
1071    DL = MBBI->getDebugLoc();
1072  return DL;
1073}
1074
1075/// getSuccWeight - Return weight of the edge from this block to MBB.
1076///
1077uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1078  if (Weights.empty())
1079    return 0;
1080
1081  return *getWeightIterator(Succ);
1082}
1083
1084/// getWeightIterator - Return wight iterator corresonding to the I successor
1085/// iterator
1086MachineBasicBlock::weight_iterator MachineBasicBlock::
1087getWeightIterator(MachineBasicBlock::succ_iterator I) {
1088  assert(Weights.size() == Successors.size() && "Async weight list!");
1089  size_t index = std::distance(Successors.begin(), I);
1090  assert(index < Weights.size() && "Not a current successor!");
1091  return Weights.begin() + index;
1092}
1093
1094/// getWeightIterator - Return wight iterator corresonding to the I successor
1095/// iterator
1096MachineBasicBlock::const_weight_iterator MachineBasicBlock::
1097getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1098  assert(Weights.size() == Successors.size() && "Async weight list!");
1099  const size_t index = std::distance(Successors.begin(), I);
1100  assert(index < Weights.size() && "Not a current successor!");
1101  return Weights.begin() + index;
1102}
1103
1104/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1105/// as of just before "MI".
1106///
1107/// Search is localised to a neighborhood of
1108/// Neighborhood instructions before (searching for defs or kills) and N
1109/// instructions after (searching just for defs) MI.
1110MachineBasicBlock::LivenessQueryResult
1111MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1112                                           unsigned Reg, MachineInstr *MI,
1113                                           unsigned Neighborhood) {
1114  unsigned N = Neighborhood;
1115  MachineBasicBlock *MBB = MI->getParent();
1116
1117  // Start by searching backwards from MI, looking for kills, reads or defs.
1118
1119  MachineBasicBlock::iterator I(MI);
1120  // If this is the first insn in the block, don't search backwards.
1121  if (I != MBB->begin()) {
1122    do {
1123      --I;
1124
1125      MachineOperandIteratorBase::PhysRegInfo Analysis =
1126        MIOperands(I).analyzePhysReg(Reg, TRI);
1127
1128      if (Analysis.Defines)
1129        // Outputs happen after inputs so they take precedence if both are
1130        // present.
1131        return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1132
1133      if (Analysis.Kills || Analysis.Clobbers)
1134        // Register killed, so isn't live.
1135        return LQR_Dead;
1136
1137      else if (Analysis.ReadsOverlap)
1138        // Defined or read without a previous kill - live.
1139        return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1140
1141    } while (I != MBB->begin() && --N > 0);
1142  }
1143
1144  // Did we get to the start of the block?
1145  if (I == MBB->begin()) {
1146    // If so, the register's state is definitely defined by the live-in state.
1147    for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1148         RAI.isValid(); ++RAI) {
1149      if (MBB->isLiveIn(*RAI))
1150        return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1151    }
1152
1153    return LQR_Dead;
1154  }
1155
1156  N = Neighborhood;
1157
1158  // Try searching forwards from MI, looking for reads or defs.
1159  I = MachineBasicBlock::iterator(MI);
1160  // If this is the last insn in the block, don't search forwards.
1161  if (I != MBB->end()) {
1162    for (++I; I != MBB->end() && N > 0; ++I, --N) {
1163      MachineOperandIteratorBase::PhysRegInfo Analysis =
1164        MIOperands(I).analyzePhysReg(Reg, TRI);
1165
1166      if (Analysis.ReadsOverlap)
1167        // Used, therefore must have been live.
1168        return (Analysis.Reads) ?
1169          LQR_Live : LQR_OverlappingLive;
1170
1171      else if (Analysis.Clobbers || Analysis.Defines)
1172        // Defined (but not read) therefore cannot have been live.
1173        return LQR_Dead;
1174    }
1175  }
1176
1177  // At this point we have no idea of the liveness of the register.
1178  return LQR_Unknown;
1179}
1180
1181void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
1182                          bool t) {
1183  OS << "BB#" << MBB->getNumber();
1184}
1185
1186