MachineBasicBlock.cpp revision c4f70d437df505e128e0debdf0c5f4ab5010e1b5
1//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineBasicBlock.h"
15#include "llvm/BasicBlock.h"
16#include "llvm/CodeGen/LiveVariables.h"
17#include "llvm/CodeGen/MachineDominators.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLoopInfo.h"
20#include "llvm/CodeGen/SlotIndexes.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/LeakDetector.h"
32#include "llvm/Support/raw_ostream.h"
33#include <algorithm>
34using namespace llvm;
35
36MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
37  : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
38    AddressTaken(false) {
39  Insts.Parent = this;
40}
41
42MachineBasicBlock::~MachineBasicBlock() {
43  LeakDetector::removeGarbageObject(this);
44}
45
46/// getSymbol - Return the MCSymbol for this basic block.
47///
48MCSymbol *MachineBasicBlock::getSymbol() const {
49  const MachineFunction *MF = getParent();
50  MCContext &Ctx = MF->getContext();
51  const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix();
52  return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
53                               Twine(MF->getFunctionNumber()) + "_" +
54                               Twine(getNumber()));
55}
56
57
58raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
59  MBB.print(OS);
60  return OS;
61}
62
63/// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
64/// parent pointer of the MBB, the MBB numbering, and any instructions in the
65/// MBB to be on the right operand list for registers.
66///
67/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
68/// gets the next available unique MBB number. If it is removed from a
69/// MachineFunction, it goes back to being #-1.
70void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
71  MachineFunction &MF = *N->getParent();
72  N->Number = MF.addToMBBNumbering(N);
73
74  // Make sure the instructions have their operands in the reginfo lists.
75  MachineRegisterInfo &RegInfo = MF.getRegInfo();
76  for (MachineBasicBlock::instr_iterator
77         I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
78    I->AddRegOperandsToUseLists(RegInfo);
79
80  LeakDetector::removeGarbageObject(N);
81}
82
83void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
84  N->getParent()->removeFromMBBNumbering(N->Number);
85  N->Number = -1;
86  LeakDetector::addGarbageObject(N);
87}
88
89
90/// addNodeToList (MI) - When we add an instruction to a basic block
91/// list, we update its parent pointer and add its operands from reg use/def
92/// lists if appropriate.
93void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
94  assert(N->getParent() == 0 && "machine instruction already in a basic block");
95  N->setParent(Parent);
96
97  // Add the instruction's register operands to their corresponding
98  // use/def lists.
99  MachineFunction *MF = Parent->getParent();
100  N->AddRegOperandsToUseLists(MF->getRegInfo());
101
102  LeakDetector::removeGarbageObject(N);
103}
104
105/// removeNodeFromList (MI) - When we remove an instruction from a basic block
106/// list, we update its parent pointer and remove its operands from reg use/def
107/// lists if appropriate.
108void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
109  assert(N->getParent() != 0 && "machine instruction not in a basic block");
110
111  // Remove from the use/def lists.
112  if (MachineFunction *MF = N->getParent()->getParent())
113    N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
114
115  N->setParent(0);
116
117  LeakDetector::addGarbageObject(N);
118}
119
120/// transferNodesFromList (MI) - When moving a range of instructions from one
121/// MBB list to another, we need to update the parent pointers and the use/def
122/// lists.
123void ilist_traits<MachineInstr>::
124transferNodesFromList(ilist_traits<MachineInstr> &fromList,
125                      ilist_iterator<MachineInstr> first,
126                      ilist_iterator<MachineInstr> last) {
127  assert(Parent->getParent() == fromList.Parent->getParent() &&
128        "MachineInstr parent mismatch!");
129
130  // Splice within the same MBB -> no change.
131  if (Parent == fromList.Parent) return;
132
133  // If splicing between two blocks within the same function, just update the
134  // parent pointers.
135  for (; first != last; ++first)
136    first->setParent(Parent);
137}
138
139void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
140  assert(!MI->getParent() && "MI is still in a block!");
141  Parent->getParent()->DeleteMachineInstr(MI);
142}
143
144MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
145  instr_iterator I = instr_begin(), E = instr_end();
146  while (I != E && I->isPHI())
147    ++I;
148  assert(!I->isInsideBundle() && "First non-phi MI cannot be inside a bundle!");
149  return I;
150}
151
152MachineBasicBlock::iterator
153MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
154  iterator E = end();
155  while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
156    ++I;
157  // FIXME: This needs to change if we wish to bundle labels / dbg_values
158  // inside the bundle.
159  assert(!I->isInsideBundle() &&
160         "First non-phi / non-label instruction is inside a bundle!");
161  return I;
162}
163
164MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
165  iterator B = begin(), E = end(), I = E;
166  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
167    ; /*noop */
168  while (I != E && !I->isTerminator())
169    ++I;
170  return I;
171}
172
173MachineBasicBlock::const_iterator
174MachineBasicBlock::getFirstTerminator() const {
175  const_iterator B = begin(), E = end(), I = E;
176  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
177    ; /*noop */
178  while (I != E && !I->isTerminator())
179    ++I;
180  return I;
181}
182
183MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
184  instr_iterator B = instr_begin(), E = instr_end(), I = E;
185  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
186    ; /*noop */
187  while (I != E && !I->isTerminator())
188    ++I;
189  return I;
190}
191
192MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
193  // Skip over end-of-block dbg_value instructions.
194  instr_iterator B = instr_begin(), I = instr_end();
195  while (I != B) {
196    --I;
197    // Return instruction that starts a bundle.
198    if (I->isDebugValue() || I->isInsideBundle())
199      continue;
200    return I;
201  }
202  // The block is all debug values.
203  return end();
204}
205
206MachineBasicBlock::const_iterator
207MachineBasicBlock::getLastNonDebugInstr() const {
208  // Skip over end-of-block dbg_value instructions.
209  const_instr_iterator B = instr_begin(), I = instr_end();
210  while (I != B) {
211    --I;
212    // Return instruction that starts a bundle.
213    if (I->isDebugValue() || I->isInsideBundle())
214      continue;
215    return I;
216  }
217  // The block is all debug values.
218  return end();
219}
220
221const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
222  // A block with a landing pad successor only has one other successor.
223  if (succ_size() > 2)
224    return 0;
225  for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226    if ((*I)->isLandingPad())
227      return *I;
228  return 0;
229}
230
231#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232void MachineBasicBlock::dump() const {
233  print(dbgs());
234}
235#endif
236
237StringRef MachineBasicBlock::getName() const {
238  if (const BasicBlock *LBB = getBasicBlock())
239    return LBB->getName();
240  else
241    return "(null)";
242}
243
244/// Return a hopefully unique identifier for this block.
245std::string MachineBasicBlock::getFullName() const {
246  std::string Name;
247  if (getParent())
248    Name = (getParent()->getName() + ":").str();
249  if (getBasicBlock())
250    Name += getBasicBlock()->getName();
251  else
252    Name += (Twine("BB") + Twine(getNumber())).str();
253  return Name;
254}
255
256void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
257  const MachineFunction *MF = getParent();
258  if (!MF) {
259    OS << "Can't print out MachineBasicBlock because parent MachineFunction"
260       << " is null\n";
261    return;
262  }
263
264  if (Indexes)
265    OS << Indexes->getMBBStartIdx(this) << '\t';
266
267  OS << "BB#" << getNumber() << ": ";
268
269  const char *Comma = "";
270  if (const BasicBlock *LBB = getBasicBlock()) {
271    OS << Comma << "derived from LLVM BB ";
272    WriteAsOperand(OS, LBB, /*PrintType=*/false);
273    Comma = ", ";
274  }
275  if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
276  if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
277  if (Alignment)
278    OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
279       << " bytes)";
280
281  OS << '\n';
282
283  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
284  if (!livein_empty()) {
285    if (Indexes) OS << '\t';
286    OS << "    Live Ins:";
287    for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
288      OS << ' ' << PrintReg(*I, TRI);
289    OS << '\n';
290  }
291  // Print the preds of this block according to the CFG.
292  if (!pred_empty()) {
293    if (Indexes) OS << '\t';
294    OS << "    Predecessors according to CFG:";
295    for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
296      OS << " BB#" << (*PI)->getNumber();
297    OS << '\n';
298  }
299
300  for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
301    if (Indexes) {
302      if (Indexes->hasIndex(I))
303        OS << Indexes->getInstructionIndex(I);
304      OS << '\t';
305    }
306    OS << '\t';
307    if (I->isInsideBundle())
308      OS << "  * ";
309    I->print(OS, &getParent()->getTarget());
310  }
311
312  // Print the successors of this block according to the CFG.
313  if (!succ_empty()) {
314    if (Indexes) OS << '\t';
315    OS << "    Successors according to CFG:";
316    for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
317      OS << " BB#" << (*SI)->getNumber();
318      if (!Weights.empty())
319        OS << '(' << *getWeightIterator(SI) << ')';
320    }
321    OS << '\n';
322  }
323}
324
325void MachineBasicBlock::removeLiveIn(unsigned Reg) {
326  std::vector<unsigned>::iterator I =
327    std::find(LiveIns.begin(), LiveIns.end(), Reg);
328  if (I != LiveIns.end())
329    LiveIns.erase(I);
330}
331
332bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
333  livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
334  return I != livein_end();
335}
336
337void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
338  getParent()->splice(NewAfter, this);
339}
340
341void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
342  MachineFunction::iterator BBI = NewBefore;
343  getParent()->splice(++BBI, this);
344}
345
346void MachineBasicBlock::updateTerminator() {
347  const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
348  // A block with no successors has no concerns with fall-through edges.
349  if (this->succ_empty()) return;
350
351  MachineBasicBlock *TBB = 0, *FBB = 0;
352  SmallVector<MachineOperand, 4> Cond;
353  DebugLoc dl;  // FIXME: this is nowhere
354  bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
355  (void) B;
356  assert(!B && "UpdateTerminators requires analyzable predecessors!");
357  if (Cond.empty()) {
358    if (TBB) {
359      // The block has an unconditional branch. If its successor is now
360      // its layout successor, delete the branch.
361      if (isLayoutSuccessor(TBB))
362        TII->RemoveBranch(*this);
363    } else {
364      // The block has an unconditional fallthrough. If its successor is not
365      // its layout successor, insert a branch. First we have to locate the
366      // only non-landing-pad successor, as that is the fallthrough block.
367      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
368        if ((*SI)->isLandingPad())
369          continue;
370        assert(!TBB && "Found more than one non-landing-pad successor!");
371        TBB = *SI;
372      }
373
374      // If there is no non-landing-pad successor, the block has no
375      // fall-through edges to be concerned with.
376      if (!TBB)
377        return;
378
379      // Finally update the unconditional successor to be reached via a branch
380      // if it would not be reached by fallthrough.
381      if (!isLayoutSuccessor(TBB))
382        TII->InsertBranch(*this, TBB, 0, Cond, dl);
383    }
384  } else {
385    if (FBB) {
386      // The block has a non-fallthrough conditional branch. If one of its
387      // successors is its layout successor, rewrite it to a fallthrough
388      // conditional branch.
389      if (isLayoutSuccessor(TBB)) {
390        if (TII->ReverseBranchCondition(Cond))
391          return;
392        TII->RemoveBranch(*this);
393        TII->InsertBranch(*this, FBB, 0, Cond, dl);
394      } else if (isLayoutSuccessor(FBB)) {
395        TII->RemoveBranch(*this);
396        TII->InsertBranch(*this, TBB, 0, Cond, dl);
397      }
398    } else {
399      // Walk through the successors and find the successor which is not
400      // a landing pad and is not the conditional branch destination (in TBB)
401      // as the fallthrough successor.
402      MachineBasicBlock *FallthroughBB = 0;
403      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
404        if ((*SI)->isLandingPad() || *SI == TBB)
405          continue;
406        assert(!FallthroughBB && "Found more than one fallthrough successor.");
407        FallthroughBB = *SI;
408      }
409      if (!FallthroughBB && canFallThrough()) {
410        // We fallthrough to the same basic block as the conditional jump
411        // targets. Remove the conditional jump, leaving unconditional
412        // fallthrough.
413        // FIXME: This does not seem like a reasonable pattern to support, but it
414        // has been seen in the wild coming out of degenerate ARM test cases.
415        TII->RemoveBranch(*this);
416
417        // Finally update the unconditional successor to be reached via a branch
418        // if it would not be reached by fallthrough.
419        if (!isLayoutSuccessor(TBB))
420          TII->InsertBranch(*this, TBB, 0, Cond, dl);
421        return;
422      }
423
424      // The block has a fallthrough conditional branch.
425      if (isLayoutSuccessor(TBB)) {
426        if (TII->ReverseBranchCondition(Cond)) {
427          // We can't reverse the condition, add an unconditional branch.
428          Cond.clear();
429          TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
430          return;
431        }
432        TII->RemoveBranch(*this);
433        TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
434      } else if (!isLayoutSuccessor(FallthroughBB)) {
435        TII->RemoveBranch(*this);
436        TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
437      }
438    }
439  }
440}
441
442void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
443
444  // If we see non-zero value for the first time it means we actually use Weight
445  // list, so we fill all Weights with 0's.
446  if (weight != 0 && Weights.empty())
447    Weights.resize(Successors.size());
448
449  if (weight != 0 || !Weights.empty())
450    Weights.push_back(weight);
451
452   Successors.push_back(succ);
453   succ->addPredecessor(this);
454 }
455
456void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
457  succ->removePredecessor(this);
458  succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
459  assert(I != Successors.end() && "Not a current successor!");
460
461  // If Weight list is empty it means we don't use it (disabled optimization).
462  if (!Weights.empty()) {
463    weight_iterator WI = getWeightIterator(I);
464    Weights.erase(WI);
465  }
466
467  Successors.erase(I);
468}
469
470MachineBasicBlock::succ_iterator
471MachineBasicBlock::removeSuccessor(succ_iterator I) {
472  assert(I != Successors.end() && "Not a current successor!");
473
474  // If Weight list is empty it means we don't use it (disabled optimization).
475  if (!Weights.empty()) {
476    weight_iterator WI = getWeightIterator(I);
477    Weights.erase(WI);
478  }
479
480  (*I)->removePredecessor(this);
481  return Successors.erase(I);
482}
483
484void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
485                                         MachineBasicBlock *New) {
486  if (Old == New)
487    return;
488
489  succ_iterator E = succ_end();
490  succ_iterator NewI = E;
491  succ_iterator OldI = E;
492  for (succ_iterator I = succ_begin(); I != E; ++I) {
493    if (*I == Old) {
494      OldI = I;
495      if (NewI != E)
496        break;
497    }
498    if (*I == New) {
499      NewI = I;
500      if (OldI != E)
501        break;
502    }
503  }
504  assert(OldI != E && "Old is not a successor of this block");
505  Old->removePredecessor(this);
506
507  // If New isn't already a successor, let it take Old's place.
508  if (NewI == E) {
509    New->addPredecessor(this);
510    *OldI = New;
511    return;
512  }
513
514  // New is already a successor.
515  // Update its weight instead of adding a duplicate edge.
516  if (!Weights.empty()) {
517    weight_iterator OldWI = getWeightIterator(OldI);
518    *getWeightIterator(NewI) += *OldWI;
519    Weights.erase(OldWI);
520  }
521  Successors.erase(OldI);
522}
523
524void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
525  Predecessors.push_back(pred);
526}
527
528void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
529  pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
530  assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
531  Predecessors.erase(I);
532}
533
534void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
535  if (this == fromMBB)
536    return;
537
538  while (!fromMBB->succ_empty()) {
539    MachineBasicBlock *Succ = *fromMBB->succ_begin();
540    uint32_t Weight = 0;
541
542    // If Weight list is empty it means we don't use it (disabled optimization).
543    if (!fromMBB->Weights.empty())
544      Weight = *fromMBB->Weights.begin();
545
546    addSuccessor(Succ, Weight);
547    fromMBB->removeSuccessor(Succ);
548  }
549}
550
551void
552MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
553  if (this == fromMBB)
554    return;
555
556  while (!fromMBB->succ_empty()) {
557    MachineBasicBlock *Succ = *fromMBB->succ_begin();
558    uint32_t Weight = 0;
559    if (!fromMBB->Weights.empty())
560      Weight = *fromMBB->Weights.begin();
561    addSuccessor(Succ, Weight);
562    fromMBB->removeSuccessor(Succ);
563
564    // Fix up any PHI nodes in the successor.
565    for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
566           ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
567      for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
568        MachineOperand &MO = MI->getOperand(i);
569        if (MO.getMBB() == fromMBB)
570          MO.setMBB(this);
571      }
572  }
573}
574
575bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
576  return std::find(pred_begin(), pred_end(), MBB) != pred_end();
577}
578
579bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
580  return std::find(succ_begin(), succ_end(), MBB) != succ_end();
581}
582
583bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
584  MachineFunction::const_iterator I(this);
585  return llvm::next(I) == MachineFunction::const_iterator(MBB);
586}
587
588bool MachineBasicBlock::canFallThrough() {
589  MachineFunction::iterator Fallthrough = this;
590  ++Fallthrough;
591  // If FallthroughBlock is off the end of the function, it can't fall through.
592  if (Fallthrough == getParent()->end())
593    return false;
594
595  // If FallthroughBlock isn't a successor, no fallthrough is possible.
596  if (!isSuccessor(Fallthrough))
597    return false;
598
599  // Analyze the branches, if any, at the end of the block.
600  MachineBasicBlock *TBB = 0, *FBB = 0;
601  SmallVector<MachineOperand, 4> Cond;
602  const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
603  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
604    // If we couldn't analyze the branch, examine the last instruction.
605    // If the block doesn't end in a known control barrier, assume fallthrough
606    // is possible. The isPredicated check is needed because this code can be
607    // called during IfConversion, where an instruction which is normally a
608    // Barrier is predicated and thus no longer an actual control barrier.
609    return empty() || !back().isBarrier() || TII->isPredicated(&back());
610  }
611
612  // If there is no branch, control always falls through.
613  if (TBB == 0) return true;
614
615  // If there is some explicit branch to the fallthrough block, it can obviously
616  // reach, even though the branch should get folded to fall through implicitly.
617  if (MachineFunction::iterator(TBB) == Fallthrough ||
618      MachineFunction::iterator(FBB) == Fallthrough)
619    return true;
620
621  // If it's an unconditional branch to some block not the fall through, it
622  // doesn't fall through.
623  if (Cond.empty()) return false;
624
625  // Otherwise, if it is conditional and has no explicit false block, it falls
626  // through.
627  return FBB == 0;
628}
629
630MachineBasicBlock *
631MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
632  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
633  // it in this generic function.
634  if (Succ->isLandingPad())
635    return NULL;
636
637  MachineFunction *MF = getParent();
638  DebugLoc dl;  // FIXME: this is nowhere
639
640  // We may need to update this's terminator, but we can't do that if
641  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
642  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
643  MachineBasicBlock *TBB = 0, *FBB = 0;
644  SmallVector<MachineOperand, 4> Cond;
645  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
646    return NULL;
647
648  // Avoid bugpoint weirdness: A block may end with a conditional branch but
649  // jumps to the same MBB is either case. We have duplicate CFG edges in that
650  // case that we can't handle. Since this never happens in properly optimized
651  // code, just skip those edges.
652  if (TBB && TBB == FBB) {
653    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
654                 << getNumber() << '\n');
655    return NULL;
656  }
657
658  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
659  MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
660  DEBUG(dbgs() << "Splitting critical edge:"
661        " BB#" << getNumber()
662        << " -- BB#" << NMBB->getNumber()
663        << " -- BB#" << Succ->getNumber() << '\n');
664
665  // On some targets like Mips, branches may kill virtual registers. Make sure
666  // that LiveVariables is properly updated after updateTerminator replaces the
667  // terminators.
668  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
669
670  // Collect a list of virtual registers killed by the terminators.
671  SmallVector<unsigned, 4> KilledRegs;
672  if (LV)
673    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
674         I != E; ++I) {
675      MachineInstr *MI = I;
676      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
677           OE = MI->operands_end(); OI != OE; ++OI) {
678        if (!OI->isReg() || OI->getReg() == 0 ||
679            !OI->isUse() || !OI->isKill() || OI->isUndef())
680          continue;
681        unsigned Reg = OI->getReg();
682        if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
683            LV->getVarInfo(Reg).removeKill(MI)) {
684          KilledRegs.push_back(Reg);
685          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
686          OI->setIsKill(false);
687        }
688      }
689    }
690
691  ReplaceUsesOfBlockWith(Succ, NMBB);
692  updateTerminator();
693
694  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
695  NMBB->addSuccessor(Succ);
696  if (!NMBB->isLayoutSuccessor(Succ)) {
697    Cond.clear();
698    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
699  }
700
701  // Fix PHI nodes in Succ so they refer to NMBB instead of this
702  for (MachineBasicBlock::instr_iterator
703         i = Succ->instr_begin(),e = Succ->instr_end();
704       i != e && i->isPHI(); ++i)
705    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
706      if (i->getOperand(ni+1).getMBB() == this)
707        i->getOperand(ni+1).setMBB(NMBB);
708
709  // Inherit live-ins from the successor
710  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
711         E = Succ->livein_end(); I != E; ++I)
712    NMBB->addLiveIn(*I);
713
714  // Update LiveVariables.
715  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
716  if (LV) {
717    // Restore kills of virtual registers that were killed by the terminators.
718    while (!KilledRegs.empty()) {
719      unsigned Reg = KilledRegs.pop_back_val();
720      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
721        if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
722          continue;
723        if (TargetRegisterInfo::isVirtualRegister(Reg))
724          LV->getVarInfo(Reg).Kills.push_back(I);
725        DEBUG(dbgs() << "Restored terminator kill: " << *I);
726        break;
727      }
728    }
729    // Update relevant live-through information.
730    LV->addNewBlock(NMBB, this, Succ);
731  }
732
733  if (MachineDominatorTree *MDT =
734      P->getAnalysisIfAvailable<MachineDominatorTree>()) {
735    // Update dominator information.
736    MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
737
738    bool IsNewIDom = true;
739    for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
740         PI != E; ++PI) {
741      MachineBasicBlock *PredBB = *PI;
742      if (PredBB == NMBB)
743        continue;
744      if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
745        IsNewIDom = false;
746        break;
747      }
748    }
749
750    // We know "this" dominates the newly created basic block.
751    MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
752
753    // If all the other predecessors of "Succ" are dominated by "Succ" itself
754    // then the new block is the new immediate dominator of "Succ". Otherwise,
755    // the new block doesn't dominate anything.
756    if (IsNewIDom)
757      MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
758  }
759
760  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
761    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
762      // If one or the other blocks were not in a loop, the new block is not
763      // either, and thus LI doesn't need to be updated.
764      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
765        if (TIL == DestLoop) {
766          // Both in the same loop, the NMBB joins loop.
767          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
768        } else if (TIL->contains(DestLoop)) {
769          // Edge from an outer loop to an inner loop.  Add to the outer loop.
770          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
771        } else if (DestLoop->contains(TIL)) {
772          // Edge from an inner loop to an outer loop.  Add to the outer loop.
773          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
774        } else {
775          // Edge from two loops with no containment relation.  Because these
776          // are natural loops, we know that the destination block must be the
777          // header of its loop (adding a branch into a loop elsewhere would
778          // create an irreducible loop).
779          assert(DestLoop->getHeader() == Succ &&
780                 "Should not create irreducible loops!");
781          if (MachineLoop *P = DestLoop->getParentLoop())
782            P->addBasicBlockToLoop(NMBB, MLI->getBase());
783        }
784      }
785    }
786
787  return NMBB;
788}
789
790MachineBasicBlock::iterator
791MachineBasicBlock::erase(MachineBasicBlock::iterator I) {
792  if (I->isBundle()) {
793    MachineBasicBlock::iterator E = llvm::next(I);
794    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
795  }
796
797  return Insts.erase(I.getInstrIterator());
798}
799
800MachineInstr *MachineBasicBlock::remove(MachineInstr *I) {
801  if (I->isBundle()) {
802    instr_iterator MII = llvm::next(I);
803    iterator E = end();
804    while (MII != E && MII->isInsideBundle()) {
805      MachineInstr *MI = &*MII++;
806      Insts.remove(MI);
807    }
808  }
809
810  return Insts.remove(I);
811}
812
813void MachineBasicBlock::splice(MachineBasicBlock::iterator where,
814                               MachineBasicBlock *Other,
815                               MachineBasicBlock::iterator From) {
816  if (From->isBundle()) {
817    MachineBasicBlock::iterator To = llvm::next(From);
818    Insts.splice(where.getInstrIterator(), Other->Insts,
819                 From.getInstrIterator(), To.getInstrIterator());
820    return;
821  }
822
823  Insts.splice(where.getInstrIterator(), Other->Insts, From.getInstrIterator());
824}
825
826/// removeFromParent - This method unlinks 'this' from the containing function,
827/// and returns it, but does not delete it.
828MachineBasicBlock *MachineBasicBlock::removeFromParent() {
829  assert(getParent() && "Not embedded in a function!");
830  getParent()->remove(this);
831  return this;
832}
833
834
835/// eraseFromParent - This method unlinks 'this' from the containing function,
836/// and deletes it.
837void MachineBasicBlock::eraseFromParent() {
838  assert(getParent() && "Not embedded in a function!");
839  getParent()->erase(this);
840}
841
842
843/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
844/// 'Old', change the code and CFG so that it branches to 'New' instead.
845void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
846                                               MachineBasicBlock *New) {
847  assert(Old != New && "Cannot replace self with self!");
848
849  MachineBasicBlock::instr_iterator I = instr_end();
850  while (I != instr_begin()) {
851    --I;
852    if (!I->isTerminator()) break;
853
854    // Scan the operands of this machine instruction, replacing any uses of Old
855    // with New.
856    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
857      if (I->getOperand(i).isMBB() &&
858          I->getOperand(i).getMBB() == Old)
859        I->getOperand(i).setMBB(New);
860  }
861
862  // Update the successor information.
863  replaceSuccessor(Old, New);
864}
865
866/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
867/// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
868/// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
869/// null.
870///
871/// Besides DestA and DestB, retain other edges leading to LandingPads
872/// (currently there can be only one; we don't check or require that here).
873/// Note it is possible that DestA and/or DestB are LandingPads.
874bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
875                                             MachineBasicBlock *DestB,
876                                             bool isCond) {
877  // The values of DestA and DestB frequently come from a call to the
878  // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
879  // values from there.
880  //
881  // 1. If both DestA and DestB are null, then the block ends with no branches
882  //    (it falls through to its successor).
883  // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
884  //    with only an unconditional branch.
885  // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
886  //    with a conditional branch that falls through to a successor (DestB).
887  // 4. If DestA and DestB is set and isCond is true, then the block ends with a
888  //    conditional branch followed by an unconditional branch. DestA is the
889  //    'true' destination and DestB is the 'false' destination.
890
891  bool Changed = false;
892
893  MachineFunction::iterator FallThru =
894    llvm::next(MachineFunction::iterator(this));
895
896  if (DestA == 0 && DestB == 0) {
897    // Block falls through to successor.
898    DestA = FallThru;
899    DestB = FallThru;
900  } else if (DestA != 0 && DestB == 0) {
901    if (isCond)
902      // Block ends in conditional jump that falls through to successor.
903      DestB = FallThru;
904  } else {
905    assert(DestA && DestB && isCond &&
906           "CFG in a bad state. Cannot correct CFG edges");
907  }
908
909  // Remove superfluous edges. I.e., those which aren't destinations of this
910  // basic block, duplicate edges, or landing pads.
911  SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
912  MachineBasicBlock::succ_iterator SI = succ_begin();
913  while (SI != succ_end()) {
914    const MachineBasicBlock *MBB = *SI;
915    if (!SeenMBBs.insert(MBB) ||
916        (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
917      // This is a superfluous edge, remove it.
918      SI = removeSuccessor(SI);
919      Changed = true;
920    } else {
921      ++SI;
922    }
923  }
924
925  return Changed;
926}
927
928/// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
929/// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
930DebugLoc
931MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
932  DebugLoc DL;
933  instr_iterator E = instr_end();
934  if (MBBI == E)
935    return DL;
936
937  // Skip debug declarations, we don't want a DebugLoc from them.
938  while (MBBI != E && MBBI->isDebugValue())
939    MBBI++;
940  if (MBBI != E)
941    DL = MBBI->getDebugLoc();
942  return DL;
943}
944
945/// getSuccWeight - Return weight of the edge from this block to MBB.
946///
947uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
948  if (Weights.empty())
949    return 0;
950
951  return *getWeightIterator(Succ);
952}
953
954/// getWeightIterator - Return wight iterator corresonding to the I successor
955/// iterator
956MachineBasicBlock::weight_iterator MachineBasicBlock::
957getWeightIterator(MachineBasicBlock::succ_iterator I) {
958  assert(Weights.size() == Successors.size() && "Async weight list!");
959  size_t index = std::distance(Successors.begin(), I);
960  assert(index < Weights.size() && "Not a current successor!");
961  return Weights.begin() + index;
962}
963
964/// getWeightIterator - Return wight iterator corresonding to the I successor
965/// iterator
966MachineBasicBlock::const_weight_iterator MachineBasicBlock::
967getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
968  assert(Weights.size() == Successors.size() && "Async weight list!");
969  const size_t index = std::distance(Successors.begin(), I);
970  assert(index < Weights.size() && "Not a current successor!");
971  return Weights.begin() + index;
972}
973
974/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
975/// as of just before "MI".
976///
977/// Search is localised to a neighborhood of
978/// Neighborhood instructions before (searching for defs or kills) and N
979/// instructions after (searching just for defs) MI.
980MachineBasicBlock::LivenessQueryResult
981MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
982                                           unsigned Reg, MachineInstr *MI,
983                                           unsigned Neighborhood) {
984
985  unsigned N = Neighborhood;
986  MachineBasicBlock *MBB = MI->getParent();
987
988  // Start by searching backwards from MI, looking for kills, reads or defs.
989
990  MachineBasicBlock::iterator I(MI);
991  // If this is the first insn in the block, don't search backwards.
992  if (I != MBB->begin()) {
993    do {
994      --I;
995
996      MachineOperandIteratorBase::PhysRegInfo Analysis =
997        MIOperands(I).analyzePhysReg(Reg, TRI);
998
999      if (Analysis.Kills)
1000        // Register killed, so isn't live.
1001        return LQR_Dead;
1002
1003      else if (Analysis.DefinesOverlap || Analysis.ReadsOverlap)
1004        // Defined or read without a previous kill - live.
1005        return (Analysis.Defines || Analysis.Reads) ?
1006          LQR_Live : LQR_OverlappingLive;
1007
1008    } while (I != MBB->begin() && --N > 0);
1009  }
1010
1011  // Did we get to the start of the block?
1012  if (I == MBB->begin()) {
1013    // If so, the register's state is definitely defined by the live-in state.
1014    for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1015         RAI.isValid(); ++RAI) {
1016      if (MBB->isLiveIn(*RAI))
1017        return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1018    }
1019
1020    return LQR_Dead;
1021  }
1022
1023  N = Neighborhood;
1024
1025  // Try searching forwards from MI, looking for reads or defs.
1026  I = MachineBasicBlock::iterator(MI);
1027  // If this is the last insn in the block, don't search forwards.
1028  if (I != MBB->end()) {
1029    for (++I; I != MBB->end() && N > 0; ++I, --N) {
1030      MachineOperandIteratorBase::PhysRegInfo Analysis =
1031        MIOperands(I).analyzePhysReg(Reg, TRI);
1032
1033      if (Analysis.ReadsOverlap)
1034        // Used, therefore must have been live.
1035        return (Analysis.Reads) ?
1036          LQR_Live : LQR_OverlappingLive;
1037
1038      else if (Analysis.DefinesOverlap)
1039        // Defined (but not read) therefore cannot have been live.
1040        return LQR_Dead;
1041    }
1042  }
1043
1044  // At this point we have no idea of the liveness of the register.
1045  return LQR_Unknown;
1046}
1047
1048void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
1049                          bool t) {
1050  OS << "BB#" << MBB->getNumber();
1051}
1052
1053