MachineBlockPlacement.cpp revision 16295fc20b68f9a9318cada4e4d96e964b1cdd7e
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absense of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumCondBranches, "Number of conditional branches");
49STATISTIC(NumUncondBranches, "Number of uncondittional branches");
50STATISTIC(CondBranchTakenFreq,
51          "Potential frequency of taking conditional branches");
52STATISTIC(UncondBranchTakenFreq,
53          "Potential frequency of taking unconditional branches");
54
55namespace {
56class BlockChain;
57/// \brief Type for our function-wide basic block -> block chain mapping.
58typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
59}
60
61namespace {
62/// \brief A chain of blocks which will be laid out contiguously.
63///
64/// This is the datastructure representing a chain of consecutive blocks that
65/// are profitable to layout together in order to maximize fallthrough
66/// probabilities. We also can use a block chain to represent a sequence of
67/// basic blocks which have some external (correctness) requirement for
68/// sequential layout.
69///
70/// Eventually, the block chains will form a directed graph over the function.
71/// We provide an SCC-supporting-iterator in order to quicky build and walk the
72/// SCCs of block chains within a function.
73///
74/// The block chains also have support for calculating and caching probability
75/// information related to the chain itself versus other chains. This is used
76/// for ranking during the final layout of block chains.
77class BlockChain {
78  /// \brief The sequence of blocks belonging to this chain.
79  ///
80  /// This is the sequence of blocks for a particular chain. These will be laid
81  /// out in-order within the function.
82  SmallVector<MachineBasicBlock *, 4> Blocks;
83
84  /// \brief A handle to the function-wide basic block to block chain mapping.
85  ///
86  /// This is retained in each block chain to simplify the computation of child
87  /// block chains for SCC-formation and iteration. We store the edges to child
88  /// basic blocks, and map them back to their associated chains using this
89  /// structure.
90  BlockToChainMapType &BlockToChain;
91
92public:
93  /// \brief Construct a new BlockChain.
94  ///
95  /// This builds a new block chain representing a single basic block in the
96  /// function. It also registers itself as the chain that block participates
97  /// in with the BlockToChain mapping.
98  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
99    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
100    assert(BB && "Cannot create a chain with a null basic block");
101    BlockToChain[BB] = this;
102  }
103
104  /// \brief Iterator over blocks within the chain.
105  typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
106
107  /// \brief Beginning of blocks within the chain.
108  iterator begin() { return Blocks.begin(); }
109
110  /// \brief End of blocks within the chain.
111  iterator end() { return Blocks.end(); }
112
113  /// \brief Merge a block chain into this one.
114  ///
115  /// This routine merges a block chain into this one. It takes care of forming
116  /// a contiguous sequence of basic blocks, updating the edge list, and
117  /// updating the block -> chain mapping. It does not free or tear down the
118  /// old chain, but the old chain's block list is no longer valid.
119  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
120    assert(BB);
121    assert(!Blocks.empty());
122
123    // Fast path in case we don't have a chain already.
124    if (!Chain) {
125      assert(!BlockToChain[BB]);
126      Blocks.push_back(BB);
127      BlockToChain[BB] = this;
128      return;
129    }
130
131    assert(BB == *Chain->begin());
132    assert(Chain->begin() != Chain->end());
133
134    // Update the incoming blocks to point to this chain, and add them to the
135    // chain structure.
136    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
137         BI != BE; ++BI) {
138      Blocks.push_back(*BI);
139      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
140      BlockToChain[*BI] = this;
141    }
142  }
143
144#ifndef NDEBUG
145  /// \brief Dump the blocks in this chain.
146  void dump() LLVM_ATTRIBUTE_USED {
147    for (iterator I = begin(), E = end(); I != E; ++I)
148      (*I)->dump();
149  }
150#endif // NDEBUG
151
152  /// \brief Count of predecessors within the loop currently being processed.
153  ///
154  /// This count is updated at each loop we process to represent the number of
155  /// in-loop predecessors of this chain.
156  unsigned LoopPredecessors;
157};
158}
159
160namespace {
161class MachineBlockPlacement : public MachineFunctionPass {
162  /// \brief A typedef for a block filter set.
163  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
164
165  /// \brief A handle to the branch probability pass.
166  const MachineBranchProbabilityInfo *MBPI;
167
168  /// \brief A handle to the function-wide block frequency pass.
169  const MachineBlockFrequencyInfo *MBFI;
170
171  /// \brief A handle to the loop info.
172  const MachineLoopInfo *MLI;
173
174  /// \brief A handle to the target's instruction info.
175  const TargetInstrInfo *TII;
176
177  /// \brief A handle to the target's lowering info.
178  const TargetLowering *TLI;
179
180  /// \brief Allocator and owner of BlockChain structures.
181  ///
182  /// We build BlockChains lazily by merging together high probability BB
183  /// sequences acording to the "Algo2" in the paper mentioned at the top of
184  /// the file. To reduce malloc traffic, we allocate them using this slab-like
185  /// allocator, and destroy them after the pass completes.
186  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
187
188  /// \brief Function wide BasicBlock to BlockChain mapping.
189  ///
190  /// This mapping allows efficiently moving from any given basic block to the
191  /// BlockChain it participates in, if any. We use it to, among other things,
192  /// allow implicitly defining edges between chains as the existing edges
193  /// between basic blocks.
194  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
195
196  void markChainSuccessors(BlockChain &Chain,
197                           MachineBasicBlock *LoopHeaderBB,
198                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
199                           const BlockFilterSet *BlockFilter = 0);
200  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
201                                         BlockChain &Chain,
202                                         const BlockFilterSet *BlockFilter);
203  MachineBasicBlock *selectBestCandidateBlock(
204      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
205      const BlockFilterSet *BlockFilter);
206  MachineBasicBlock *getFirstUnplacedBlock(
207      MachineFunction &F,
208      const BlockChain &PlacedChain,
209      MachineFunction::iterator &PrevUnplacedBlockIt,
210      const BlockFilterSet *BlockFilter);
211  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
212                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
213                  const BlockFilterSet *BlockFilter = 0);
214  MachineBasicBlock *findBestLoopExit(MachineFunction &F,
215                                      MachineLoop &L,
216                                      const BlockFilterSet &LoopBlockSet);
217  void buildLoopChains(MachineFunction &F, MachineLoop &L);
218  void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
219                  const BlockFilterSet &LoopBlockSet);
220  void buildCFGChains(MachineFunction &F);
221
222public:
223  static char ID; // Pass identification, replacement for typeid
224  MachineBlockPlacement() : MachineFunctionPass(ID) {
225    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
226  }
227
228  bool runOnMachineFunction(MachineFunction &F);
229
230  void getAnalysisUsage(AnalysisUsage &AU) const {
231    AU.addRequired<MachineBranchProbabilityInfo>();
232    AU.addRequired<MachineBlockFrequencyInfo>();
233    AU.addRequired<MachineLoopInfo>();
234    MachineFunctionPass::getAnalysisUsage(AU);
235  }
236};
237}
238
239char MachineBlockPlacement::ID = 0;
240char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
241INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
242                      "Branch Probability Basic Block Placement", false, false)
243INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
244INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
245INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
246INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
247                    "Branch Probability Basic Block Placement", false, false)
248
249#ifndef NDEBUG
250/// \brief Helper to print the name of a MBB.
251///
252/// Only used by debug logging.
253static std::string getBlockName(MachineBasicBlock *BB) {
254  std::string Result;
255  raw_string_ostream OS(Result);
256  OS << "BB#" << BB->getNumber()
257     << " (derived from LLVM BB '" << BB->getName() << "')";
258  OS.flush();
259  return Result;
260}
261
262/// \brief Helper to print the number of a MBB.
263///
264/// Only used by debug logging.
265static std::string getBlockNum(MachineBasicBlock *BB) {
266  std::string Result;
267  raw_string_ostream OS(Result);
268  OS << "BB#" << BB->getNumber();
269  OS.flush();
270  return Result;
271}
272#endif
273
274/// \brief Mark a chain's successors as having one fewer preds.
275///
276/// When a chain is being merged into the "placed" chain, this routine will
277/// quickly walk the successors of each block in the chain and mark them as
278/// having one fewer active predecessor. It also adds any successors of this
279/// chain which reach the zero-predecessor state to the worklist passed in.
280void MachineBlockPlacement::markChainSuccessors(
281    BlockChain &Chain,
282    MachineBasicBlock *LoopHeaderBB,
283    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
284    const BlockFilterSet *BlockFilter) {
285  // Walk all the blocks in this chain, marking their successors as having
286  // a predecessor placed.
287  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
288       CBI != CBE; ++CBI) {
289    // Add any successors for which this is the only un-placed in-loop
290    // predecessor to the worklist as a viable candidate for CFG-neutral
291    // placement. No subsequent placement of this block will violate the CFG
292    // shape, so we get to use heuristics to choose a favorable placement.
293    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
294                                          SE = (*CBI)->succ_end();
295         SI != SE; ++SI) {
296      if (BlockFilter && !BlockFilter->count(*SI))
297        continue;
298      BlockChain &SuccChain = *BlockToChain[*SI];
299      // Disregard edges within a fixed chain, or edges to the loop header.
300      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
301        continue;
302
303      // This is a cross-chain edge that is within the loop, so decrement the
304      // loop predecessor count of the destination chain.
305      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
306        BlockWorkList.push_back(*SuccChain.begin());
307    }
308  }
309}
310
311/// \brief Select the best successor for a block.
312///
313/// This looks across all successors of a particular block and attempts to
314/// select the "best" one to be the layout successor. It only considers direct
315/// successors which also pass the block filter. It will attempt to avoid
316/// breaking CFG structure, but cave and break such structures in the case of
317/// very hot successor edges.
318///
319/// \returns The best successor block found, or null if none are viable.
320MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
321    MachineBasicBlock *BB, BlockChain &Chain,
322    const BlockFilterSet *BlockFilter) {
323  const BranchProbability HotProb(4, 5); // 80%
324
325  MachineBasicBlock *BestSucc = 0;
326  // FIXME: Due to the performance of the probability and weight routines in
327  // the MBPI analysis, we manually compute probabilities using the edge
328  // weights. This is suboptimal as it means that the somewhat subtle
329  // definition of edge weight semantics is encoded here as well. We should
330  // improve the MBPI interface to effeciently support query patterns such as
331  // this.
332  uint32_t BestWeight = 0;
333  uint32_t WeightScale = 0;
334  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
335  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
336  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
337                                        SE = BB->succ_end();
338       SI != SE; ++SI) {
339    if (BlockFilter && !BlockFilter->count(*SI))
340      continue;
341    BlockChain &SuccChain = *BlockToChain[*SI];
342    if (&SuccChain == &Chain) {
343      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
344      continue;
345    }
346    if (*SI != *SuccChain.begin()) {
347      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
348      continue;
349    }
350
351    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
352    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
353
354    // Only consider successors which are either "hot", or wouldn't violate
355    // any CFG constraints.
356    if (SuccChain.LoopPredecessors != 0) {
357      if (SuccProb < HotProb) {
358        DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
359        continue;
360      }
361
362      // Make sure that a hot successor doesn't have a globally more important
363      // predecessor.
364      BlockFrequency CandidateEdgeFreq
365        = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
366      bool BadCFGConflict = false;
367      for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
368                                            PE = (*SI)->pred_end();
369           PI != PE; ++PI) {
370        if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
371            BlockToChain[*PI] == &Chain)
372          continue;
373        BlockFrequency PredEdgeFreq
374          = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
375        if (PredEdgeFreq >= CandidateEdgeFreq) {
376          BadCFGConflict = true;
377          break;
378        }
379      }
380      if (BadCFGConflict) {
381        DEBUG(dbgs() << "    " << getBlockName(*SI)
382                               << " -> non-cold CFG conflict\n");
383        continue;
384      }
385    }
386
387    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
388                 << " (prob)"
389                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
390                 << "\n");
391    if (BestSucc && BestWeight >= SuccWeight)
392      continue;
393    BestSucc = *SI;
394    BestWeight = SuccWeight;
395  }
396  return BestSucc;
397}
398
399namespace {
400/// \brief Predicate struct to detect blocks already placed.
401class IsBlockPlaced {
402  const BlockChain &PlacedChain;
403  const BlockToChainMapType &BlockToChain;
404
405public:
406  IsBlockPlaced(const BlockChain &PlacedChain,
407                const BlockToChainMapType &BlockToChain)
408      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
409
410  bool operator()(MachineBasicBlock *BB) const {
411    return BlockToChain.lookup(BB) == &PlacedChain;
412  }
413};
414}
415
416/// \brief Select the best block from a worklist.
417///
418/// This looks through the provided worklist as a list of candidate basic
419/// blocks and select the most profitable one to place. The definition of
420/// profitable only really makes sense in the context of a loop. This returns
421/// the most frequently visited block in the worklist, which in the case of
422/// a loop, is the one most desirable to be physically close to the rest of the
423/// loop body in order to improve icache behavior.
424///
425/// \returns The best block found, or null if none are viable.
426MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
427    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
428    const BlockFilterSet *BlockFilter) {
429  // Once we need to walk the worklist looking for a candidate, cleanup the
430  // worklist of already placed entries.
431  // FIXME: If this shows up on profiles, it could be folded (at the cost of
432  // some code complexity) into the loop below.
433  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
434                                IsBlockPlaced(Chain, BlockToChain)),
435                 WorkList.end());
436
437  MachineBasicBlock *BestBlock = 0;
438  BlockFrequency BestFreq;
439  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
440                                                      WBE = WorkList.end();
441       WBI != WBE; ++WBI) {
442    BlockChain &SuccChain = *BlockToChain[*WBI];
443    if (&SuccChain == &Chain) {
444      DEBUG(dbgs() << "    " << getBlockName(*WBI)
445                   << " -> Already merged!\n");
446      continue;
447    }
448    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
449
450    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
451    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
452                 << " (freq)\n");
453    if (BestBlock && BestFreq >= CandidateFreq)
454      continue;
455    BestBlock = *WBI;
456    BestFreq = CandidateFreq;
457  }
458  return BestBlock;
459}
460
461/// \brief Retrieve the first unplaced basic block.
462///
463/// This routine is called when we are unable to use the CFG to walk through
464/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
465/// We walk through the function's blocks in order, starting from the
466/// LastUnplacedBlockIt. We update this iterator on each call to avoid
467/// re-scanning the entire sequence on repeated calls to this routine.
468MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
469    MachineFunction &F, const BlockChain &PlacedChain,
470    MachineFunction::iterator &PrevUnplacedBlockIt,
471    const BlockFilterSet *BlockFilter) {
472  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
473       ++I) {
474    if (BlockFilter && !BlockFilter->count(I))
475      continue;
476    if (BlockToChain[I] != &PlacedChain) {
477      PrevUnplacedBlockIt = I;
478      // Now select the head of the chain to which the unplaced block belongs
479      // as the block to place. This will force the entire chain to be placed,
480      // and satisfies the requirements of merging chains.
481      return *BlockToChain[I]->begin();
482    }
483  }
484  return 0;
485}
486
487void MachineBlockPlacement::buildChain(
488    MachineBasicBlock *BB,
489    BlockChain &Chain,
490    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
491    const BlockFilterSet *BlockFilter) {
492  assert(BB);
493  assert(BlockToChain[BB] == &Chain);
494  MachineFunction &F = *BB->getParent();
495  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
496
497  MachineBasicBlock *LoopHeaderBB = BB;
498  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
499  BB = *llvm::prior(Chain.end());
500  for (;;) {
501    assert(BB);
502    assert(BlockToChain[BB] == &Chain);
503    assert(*llvm::prior(Chain.end()) == BB);
504    MachineBasicBlock *BestSucc = 0;
505
506    // Look for the best viable successor if there is one to place immediately
507    // after this block.
508    BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
509
510    // If an immediate successor isn't available, look for the best viable
511    // block among those we've identified as not violating the loop's CFG at
512    // this point. This won't be a fallthrough, but it will increase locality.
513    if (!BestSucc)
514      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
515
516    if (!BestSucc) {
517      BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
518                                       BlockFilter);
519      if (!BestSucc)
520        break;
521
522      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
523                      "layout successor until the CFG reduces\n");
524    }
525
526    // Place this block, updating the datastructures to reflect its placement.
527    BlockChain &SuccChain = *BlockToChain[BestSucc];
528    // Zero out LoopPredecessors for the successor we're about to merge in case
529    // we selected a successor that didn't fit naturally into the CFG.
530    SuccChain.LoopPredecessors = 0;
531    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
532                 << " to " << getBlockNum(BestSucc) << "\n");
533    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
534    Chain.merge(BestSucc, &SuccChain);
535    BB = *llvm::prior(Chain.end());
536  }
537
538  DEBUG(dbgs() << "Finished forming chain for header block "
539               << getBlockNum(*Chain.begin()) << "\n");
540}
541
542/// \brief Find the best loop top block for layout.
543///
544/// This routine implements the logic to analyze the loop looking for the best
545/// block to layout at the top of the loop. Typically this is done to maximize
546/// fallthrough opportunities.
547MachineBasicBlock *
548MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
549                                        MachineLoop &L,
550                                        const BlockFilterSet &LoopBlockSet) {
551  // We don't want to layout the loop linearly in all cases. If the loop header
552  // is just a normal basic block in the loop, we want to look for what block
553  // within the loop is the best one to layout at the top. However, if the loop
554  // header has be pre-merged into a chain due to predecessors not having
555  // analyzable branches, *and* the predecessor it is merged with is *not* part
556  // of the loop, rotating the header into the middle of the loop will create
557  // a non-contiguous range of blocks which is Very Bad. So start with the
558  // header and only rotate if safe.
559  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
560  if (!LoopBlockSet.count(*HeaderChain.begin()))
561    return 0;
562
563  BlockFrequency BestExitEdgeFreq;
564  unsigned BestExitLoopDepth = 0;
565  MachineBasicBlock *ExitingBB = 0;
566  // If there are exits to outer loops, loop rotation can severely limit
567  // fallthrough opportunites unless it selects such an exit. Keep a set of
568  // blocks where rotating to exit with that block will reach an outer loop.
569  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
570
571  DEBUG(dbgs() << "Finding best loop exit for: "
572               << getBlockName(L.getHeader()) << "\n");
573  for (MachineLoop::block_iterator I = L.block_begin(),
574                                   E = L.block_end();
575       I != E; ++I) {
576    BlockChain &Chain = *BlockToChain[*I];
577    // Ensure that this block is at the end of a chain; otherwise it could be
578    // mid-way through an inner loop or a successor of an analyzable branch.
579    if (*I != *llvm::prior(Chain.end()))
580      continue;
581
582    // Now walk the successors. We need to establish whether this has a viable
583    // exiting successor and whether it has a viable non-exiting successor.
584    // We store the old exiting state and restore it if a viable looping
585    // successor isn't found.
586    MachineBasicBlock *OldExitingBB = ExitingBB;
587    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
588    bool HasLoopingSucc = false;
589    // FIXME: Due to the performance of the probability and weight routines in
590    // the MBPI analysis, we use the internal weights and manually compute the
591    // probabilities to avoid quadratic behavior.
592    uint32_t WeightScale = 0;
593    uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
594    for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
595                                          SE = (*I)->succ_end();
596         SI != SE; ++SI) {
597      if ((*SI)->isLandingPad())
598        continue;
599      if (*SI == *I)
600        continue;
601      BlockChain &SuccChain = *BlockToChain[*SI];
602      // Don't split chains, either this chain or the successor's chain.
603      if (&Chain == &SuccChain) {
604        DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
605                     << getBlockName(*SI) << " (chain conflict)\n");
606        continue;
607      }
608
609      uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
610      if (LoopBlockSet.count(*SI)) {
611        DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
612                     << getBlockName(*SI) << " (" << SuccWeight << ")\n");
613        HasLoopingSucc = true;
614        continue;
615      }
616
617      unsigned SuccLoopDepth = 0;
618      if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
619        SuccLoopDepth = ExitLoop->getLoopDepth();
620        if (ExitLoop->contains(&L))
621          BlocksExitingToOuterLoop.insert(*I);
622      }
623
624      BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
625      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
626      DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
627                   << getBlockName(*SI) << " [L:" << SuccLoopDepth
628                   << "] (" << ExitEdgeFreq << ")\n");
629      // Note that we slightly bias this toward an existing layout successor to
630      // retain incoming order in the absence of better information.
631      // FIXME: Should we bias this more strongly? It's pretty weak.
632      if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
633          ExitEdgeFreq > BestExitEdgeFreq ||
634          ((*I)->isLayoutSuccessor(*SI) &&
635           !(ExitEdgeFreq < BestExitEdgeFreq))) {
636        BestExitEdgeFreq = ExitEdgeFreq;
637        ExitingBB = *I;
638      }
639    }
640
641    // Restore the old exiting state, no viable looping successor was found.
642    if (!HasLoopingSucc) {
643      ExitingBB = OldExitingBB;
644      BestExitEdgeFreq = OldBestExitEdgeFreq;
645      continue;
646    }
647  }
648  // Without a candidate exiting block or with only a single block in the
649  // loop, just use the loop header to layout the loop.
650  if (!ExitingBB || L.getNumBlocks() == 1)
651    return 0;
652
653  // Also, if we have exit blocks which lead to outer loops but didn't select
654  // one of them as the exiting block we are rotating toward, disable loop
655  // rotation altogether.
656  if (!BlocksExitingToOuterLoop.empty() &&
657      !BlocksExitingToOuterLoop.count(ExitingBB))
658    return 0;
659
660  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
661  return ExitingBB;
662}
663
664/// \brief Attempt to rotate an exiting block to the bottom of the loop.
665///
666/// Once we have built a chain, try to rotate it to line up the hot exit block
667/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
668/// branches. For example, if the loop has fallthrough into its header and out
669/// of its bottom already, don't rotate it.
670void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
671                                       MachineBasicBlock *ExitingBB,
672                                       const BlockFilterSet &LoopBlockSet) {
673  if (!ExitingBB)
674    return;
675
676  MachineBasicBlock *Top = *LoopChain.begin();
677  bool ViableTopFallthrough = false;
678  for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
679                                        PE = Top->pred_end();
680       PI != PE; ++PI) {
681    BlockChain *PredChain = BlockToChain[*PI];
682    if (!LoopBlockSet.count(*PI) &&
683        (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
684      ViableTopFallthrough = true;
685      break;
686    }
687  }
688
689  // If the header has viable fallthrough, check whether the current loop
690  // bottom is a viable exiting block. If so, bail out as rotating will
691  // introduce an unnecessary branch.
692  if (ViableTopFallthrough) {
693    MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
694    for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
695                                          SE = Bottom->succ_end();
696         SI != SE; ++SI) {
697      BlockChain *SuccChain = BlockToChain[*SI];
698      if (!LoopBlockSet.count(*SI) &&
699          (!SuccChain || *SI == *SuccChain->begin()))
700        return;
701    }
702  }
703
704  BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
705                                          ExitingBB);
706  if (ExitIt == LoopChain.end())
707    return;
708
709  std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
710}
711
712/// \brief Forms basic block chains from the natural loop structures.
713///
714/// These chains are designed to preserve the existing *structure* of the code
715/// as much as possible. We can then stitch the chains together in a way which
716/// both preserves the topological structure and minimizes taken conditional
717/// branches.
718void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
719                                            MachineLoop &L) {
720  // First recurse through any nested loops, building chains for those inner
721  // loops.
722  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
723    buildLoopChains(F, **LI);
724
725  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
726  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
727
728  MachineBasicBlock *ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
729  BlockChain &LoopChain = *BlockToChain[L.getHeader()];
730
731  // FIXME: This is a really lame way of walking the chains in the loop: we
732  // walk the blocks, and use a set to prevent visiting a particular chain
733  // twice.
734  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
735  assert(LoopChain.LoopPredecessors == 0);
736  UpdatedPreds.insert(&LoopChain);
737  for (MachineLoop::block_iterator BI = L.block_begin(),
738                                   BE = L.block_end();
739       BI != BE; ++BI) {
740    BlockChain &Chain = *BlockToChain[*BI];
741    if (!UpdatedPreds.insert(&Chain))
742      continue;
743
744    assert(Chain.LoopPredecessors == 0);
745    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
746         BCI != BCE; ++BCI) {
747      assert(BlockToChain[*BCI] == &Chain);
748      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
749                                            PE = (*BCI)->pred_end();
750           PI != PE; ++PI) {
751        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
752          continue;
753        ++Chain.LoopPredecessors;
754      }
755    }
756
757    if (Chain.LoopPredecessors == 0)
758      BlockWorkList.push_back(*Chain.begin());
759  }
760
761  buildChain(L.getHeader(), LoopChain, BlockWorkList, &LoopBlockSet);
762  rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
763
764  DEBUG({
765    // Crash at the end so we get all of the debugging output first.
766    bool BadLoop = false;
767    if (LoopChain.LoopPredecessors) {
768      BadLoop = true;
769      dbgs() << "Loop chain contains a block without its preds placed!\n"
770             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
771             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
772    }
773    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
774         BCI != BCE; ++BCI) {
775      dbgs() << "          ... " << getBlockName(*BCI) << "\n";
776      if (!LoopBlockSet.erase(*BCI)) {
777        // We don't mark the loop as bad here because there are real situations
778        // where this can occur. For example, with an unanalyzable fallthrough
779        // from a loop block to a non-loop block or vice versa.
780        dbgs() << "Loop chain contains a block not contained by the loop!\n"
781               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
782               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
783               << "  Bad block:    " << getBlockName(*BCI) << "\n";
784      }
785    }
786
787    if (!LoopBlockSet.empty()) {
788      BadLoop = true;
789      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
790                                    LBE = LoopBlockSet.end();
791           LBI != LBE; ++LBI)
792        dbgs() << "Loop contains blocks never placed into a chain!\n"
793               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
794               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
795               << "  Bad block:    " << getBlockName(*LBI) << "\n";
796    }
797    assert(!BadLoop && "Detected problems with the placement of this loop.");
798  });
799}
800
801void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
802  // Ensure that every BB in the function has an associated chain to simplify
803  // the assumptions of the remaining algorithm.
804  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
805  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
806    MachineBasicBlock *BB = FI;
807    BlockChain *Chain
808      = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
809    // Also, merge any blocks which we cannot reason about and must preserve
810    // the exact fallthrough behavior for.
811    for (;;) {
812      Cond.clear();
813      MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
814      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
815        break;
816
817      MachineFunction::iterator NextFI(llvm::next(FI));
818      MachineBasicBlock *NextBB = NextFI;
819      // Ensure that the layout successor is a viable block, as we know that
820      // fallthrough is a possibility.
821      assert(NextFI != FE && "Can't fallthrough past the last block.");
822      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
823                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
824                   << "\n");
825      Chain->merge(NextBB, 0);
826      FI = NextFI;
827      BB = NextBB;
828    }
829  }
830
831  // Build any loop-based chains.
832  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
833       ++LI)
834    buildLoopChains(F, **LI);
835
836  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
837
838  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
839  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
840    MachineBasicBlock *BB = &*FI;
841    BlockChain &Chain = *BlockToChain[BB];
842    if (!UpdatedPreds.insert(&Chain))
843      continue;
844
845    assert(Chain.LoopPredecessors == 0);
846    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
847         BCI != BCE; ++BCI) {
848      assert(BlockToChain[*BCI] == &Chain);
849      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
850                                            PE = (*BCI)->pred_end();
851           PI != PE; ++PI) {
852        if (BlockToChain[*PI] == &Chain)
853          continue;
854        ++Chain.LoopPredecessors;
855      }
856    }
857
858    if (Chain.LoopPredecessors == 0)
859      BlockWorkList.push_back(*Chain.begin());
860  }
861
862  BlockChain &FunctionChain = *BlockToChain[&F.front()];
863  buildChain(&F.front(), FunctionChain, BlockWorkList);
864
865  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
866  DEBUG({
867    // Crash at the end so we get all of the debugging output first.
868    bool BadFunc = false;
869    FunctionBlockSetType FunctionBlockSet;
870    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
871      FunctionBlockSet.insert(FI);
872
873    for (BlockChain::iterator BCI = FunctionChain.begin(),
874                              BCE = FunctionChain.end();
875         BCI != BCE; ++BCI)
876      if (!FunctionBlockSet.erase(*BCI)) {
877        BadFunc = true;
878        dbgs() << "Function chain contains a block not in the function!\n"
879               << "  Bad block:    " << getBlockName(*BCI) << "\n";
880      }
881
882    if (!FunctionBlockSet.empty()) {
883      BadFunc = true;
884      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
885                                          FBE = FunctionBlockSet.end();
886           FBI != FBE; ++FBI)
887        dbgs() << "Function contains blocks never placed into a chain!\n"
888               << "  Bad block:    " << getBlockName(*FBI) << "\n";
889    }
890    assert(!BadFunc && "Detected problems with the block placement.");
891  });
892
893  // Splice the blocks into place.
894  MachineFunction::iterator InsertPos = F.begin();
895  for (BlockChain::iterator BI = FunctionChain.begin(),
896                            BE = FunctionChain.end();
897       BI != BE; ++BI) {
898    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
899                                                  : "          ... ")
900          << getBlockName(*BI) << "\n");
901    if (InsertPos != MachineFunction::iterator(*BI))
902      F.splice(InsertPos, *BI);
903    else
904      ++InsertPos;
905
906    // Update the terminator of the previous block.
907    if (BI == FunctionChain.begin())
908      continue;
909    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
910
911    // FIXME: It would be awesome of updateTerminator would just return rather
912    // than assert when the branch cannot be analyzed in order to remove this
913    // boiler plate.
914    Cond.clear();
915    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
916    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
917      PrevBB->updateTerminator();
918  }
919
920  // Fixup the last block.
921  Cond.clear();
922  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
923  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
924    F.back().updateTerminator();
925
926  // Walk through the backedges of the function now that we have fully laid out
927  // the basic blocks and align the destination of each backedge. We don't rely
928  // on the loop info here so that we can align backedges in unnatural CFGs and
929  // backedges that were introduced purely because of the loop rotations done
930  // during this layout pass.
931  // FIXME: This isn't quite right, we shouldn't align backedges that result
932  // from blocks being sunken below the exit block for the function.
933  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
934    return;
935  unsigned Align = TLI->getPrefLoopAlignment();
936  if (!Align)
937    return;  // Don't care about loop alignment.
938
939  SmallPtrSet<MachineBasicBlock *, 16> PreviousBlocks;
940  for (BlockChain::iterator BI = FunctionChain.begin(),
941                            BE = FunctionChain.end();
942       BI != BE; ++BI) {
943    PreviousBlocks.insert(*BI);
944    // Set alignment on the destination of all the back edges in the new
945    // ordering.
946    for (MachineBasicBlock::succ_iterator SI = (*BI)->succ_begin(),
947                                          SE = (*BI)->succ_end();
948         SI != SE; ++SI)
949      if (PreviousBlocks.count(*SI))
950        (*SI)->setAlignment(Align);
951  }
952}
953
954bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
955  // Check for single-block functions and skip them.
956  if (llvm::next(F.begin()) == F.end())
957    return false;
958
959  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
960  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
961  MLI = &getAnalysis<MachineLoopInfo>();
962  TII = F.getTarget().getInstrInfo();
963  TLI = F.getTarget().getTargetLowering();
964  assert(BlockToChain.empty());
965
966  buildCFGChains(F);
967
968  BlockToChain.clear();
969  ChainAllocator.DestroyAll();
970
971  // We always return true as we have no way to track whether the final order
972  // differs from the original order.
973  return true;
974}
975
976namespace {
977/// \brief A pass to compute block placement statistics.
978///
979/// A separate pass to compute interesting statistics for evaluating block
980/// placement. This is separate from the actual placement pass so that they can
981/// be computed in the absense of any placement transformations or when using
982/// alternative placement strategies.
983class MachineBlockPlacementStats : public MachineFunctionPass {
984  /// \brief A handle to the branch probability pass.
985  const MachineBranchProbabilityInfo *MBPI;
986
987  /// \brief A handle to the function-wide block frequency pass.
988  const MachineBlockFrequencyInfo *MBFI;
989
990public:
991  static char ID; // Pass identification, replacement for typeid
992  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
993    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
994  }
995
996  bool runOnMachineFunction(MachineFunction &F);
997
998  void getAnalysisUsage(AnalysisUsage &AU) const {
999    AU.addRequired<MachineBranchProbabilityInfo>();
1000    AU.addRequired<MachineBlockFrequencyInfo>();
1001    AU.setPreservesAll();
1002    MachineFunctionPass::getAnalysisUsage(AU);
1003  }
1004};
1005}
1006
1007char MachineBlockPlacementStats::ID = 0;
1008char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1009INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1010                      "Basic Block Placement Stats", false, false)
1011INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1012INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1013INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1014                    "Basic Block Placement Stats", false, false)
1015
1016bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1017  // Check for single-block functions and skip them.
1018  if (llvm::next(F.begin()) == F.end())
1019    return false;
1020
1021  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1022  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1023
1024  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1025    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1026    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
1027                                                  : NumUncondBranches;
1028    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
1029                                                      : UncondBranchTakenFreq;
1030    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1031                                          SE = I->succ_end();
1032         SI != SE; ++SI) {
1033      // Skip if this successor is a fallthrough.
1034      if (I->isLayoutSuccessor(*SI))
1035        continue;
1036
1037      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1038      ++NumBranches;
1039      BranchTakenFreq += EdgeFreq.getFrequency();
1040    }
1041  }
1042
1043  return false;
1044}
1045
1046