MachineBlockPlacement.cpp revision 56b150b1969637892ab3484e08e69e9d12c9cf24
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absense of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/PostOrderIterator.h"
42#include "llvm/ADT/SCCIterator.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include <algorithm>
49using namespace llvm;
50
51namespace {
52/// \brief A structure for storing a weighted edge.
53///
54/// This stores an edge and its weight, computed as the product of the
55/// frequency that the starting block is entered with the probability of
56/// a particular exit block.
57struct WeightedEdge {
58  BlockFrequency EdgeFrequency;
59  MachineBasicBlock *From, *To;
60
61  bool operator<(const WeightedEdge &RHS) const {
62    return EdgeFrequency < RHS.EdgeFrequency;
63  }
64};
65}
66
67namespace {
68class BlockChain;
69/// \brief Type for our function-wide basic block -> block chain mapping.
70typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
71}
72
73namespace {
74/// \brief A chain of blocks which will be laid out contiguously.
75///
76/// This is the datastructure representing a chain of consecutive blocks that
77/// are profitable to layout together in order to maximize fallthrough
78/// probabilities. We also can use a block chain to represent a sequence of
79/// basic blocks which have some external (correctness) requirement for
80/// sequential layout.
81///
82/// Eventually, the block chains will form a directed graph over the function.
83/// We provide an SCC-supporting-iterator in order to quicky build and walk the
84/// SCCs of block chains within a function.
85///
86/// The block chains also have support for calculating and caching probability
87/// information related to the chain itself versus other chains. This is used
88/// for ranking during the final layout of block chains.
89class BlockChain {
90  /// \brief The sequence of blocks belonging to this chain.
91  ///
92  /// This is the sequence of blocks for a particular chain. These will be laid
93  /// out in-order within the function.
94  SmallVector<MachineBasicBlock *, 4> Blocks;
95
96  /// \brief A handle to the function-wide basic block to block chain mapping.
97  ///
98  /// This is retained in each block chain to simplify the computation of child
99  /// block chains for SCC-formation and iteration. We store the edges to child
100  /// basic blocks, and map them back to their associated chains using this
101  /// structure.
102  BlockToChainMapType &BlockToChain;
103
104public:
105  /// \brief Construct a new BlockChain.
106  ///
107  /// This builds a new block chain representing a single basic block in the
108  /// function. It also registers itself as the chain that block participates
109  /// in with the BlockToChain mapping.
110  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
111    : Blocks(1, BB), BlockToChain(BlockToChain) {
112    assert(BB && "Cannot create a chain with a null basic block");
113    BlockToChain[BB] = this;
114  }
115
116  /// \brief Iterator over blocks within the chain.
117  typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator;
118
119  /// \brief Beginning of blocks within the chain.
120  iterator begin() const { return Blocks.begin(); }
121
122  /// \brief End of blocks within the chain.
123  iterator end() const { return Blocks.end(); }
124
125  /// \brief Merge a block chain into this one.
126  ///
127  /// This routine merges a block chain into this one. It takes care of forming
128  /// a contiguous sequence of basic blocks, updating the edge list, and
129  /// updating the block -> chain mapping. It does not free or tear down the
130  /// old chain, but the old chain's block list is no longer valid.
131  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
132    assert(BB);
133    assert(!Blocks.empty());
134    assert(Blocks.back()->isSuccessor(BB));
135
136    // Fast path in case we don't have a chain already.
137    if (!Chain) {
138      assert(!BlockToChain[BB]);
139      Blocks.push_back(BB);
140      BlockToChain[BB] = this;
141      return;
142    }
143
144    assert(BB == *Chain->begin());
145    assert(Chain->begin() != Chain->end());
146
147    // Update the incoming blocks to point to this chain, and add them to the
148    // chain structure.
149    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
150         BI != BE; ++BI) {
151      Blocks.push_back(*BI);
152      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
153      BlockToChain[*BI] = this;
154    }
155  }
156};
157}
158
159namespace {
160class MachineBlockPlacement : public MachineFunctionPass {
161  /// \brief A typedef for a block filter set.
162  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
163
164  /// \brief A handle to the branch probability pass.
165  const MachineBranchProbabilityInfo *MBPI;
166
167  /// \brief A handle to the function-wide block frequency pass.
168  const MachineBlockFrequencyInfo *MBFI;
169
170  /// \brief A handle to the loop info.
171  const MachineLoopInfo *MLI;
172
173  /// \brief A handle to the target's instruction info.
174  const TargetInstrInfo *TII;
175
176  /// \brief A handle to the target's lowering info.
177  const TargetLowering *TLI;
178
179  /// \brief Allocator and owner of BlockChain structures.
180  ///
181  /// We build BlockChains lazily by merging together high probability BB
182  /// sequences acording to the "Algo2" in the paper mentioned at the top of
183  /// the file. To reduce malloc traffic, we allocate them using this slab-like
184  /// allocator, and destroy them after the pass completes.
185  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
186
187  /// \brief Function wide BasicBlock to BlockChain mapping.
188  ///
189  /// This mapping allows efficiently moving from any given basic block to the
190  /// BlockChain it participates in, if any. We use it to, among other things,
191  /// allow implicitly defining edges between chains as the existing edges
192  /// between basic blocks.
193  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
194
195  BlockChain *CreateChain(MachineBasicBlock *BB);
196  void mergeSuccessor(MachineBasicBlock *BB, BlockChain *Chain,
197                      BlockFilterSet *Filter = 0);
198  void buildLoopChains(MachineFunction &F, MachineLoop &L);
199  void buildCFGChains(MachineFunction &F);
200  void placeChainsTopologically(MachineFunction &F);
201  void AlignLoops(MachineFunction &F);
202
203public:
204  static char ID; // Pass identification, replacement for typeid
205  MachineBlockPlacement() : MachineFunctionPass(ID) {
206    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
207  }
208
209  bool runOnMachineFunction(MachineFunction &F);
210
211  void getAnalysisUsage(AnalysisUsage &AU) const {
212    AU.addRequired<MachineBranchProbabilityInfo>();
213    AU.addRequired<MachineBlockFrequencyInfo>();
214    AU.addRequired<MachineLoopInfo>();
215    MachineFunctionPass::getAnalysisUsage(AU);
216  }
217
218  const char *getPassName() const { return "Block Placement"; }
219};
220}
221
222char MachineBlockPlacement::ID = 0;
223INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
224                      "Branch Probability Basic Block Placement", false, false)
225INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
226INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
227INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
228INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
229                    "Branch Probability Basic Block Placement", false, false)
230
231FunctionPass *llvm::createMachineBlockPlacementPass() {
232  return new MachineBlockPlacement();
233}
234
235#ifndef NDEBUG
236/// \brief Helper to print the name of a MBB.
237///
238/// Only used by debug logging.
239static std::string getBlockName(MachineBasicBlock *BB) {
240  std::string Result;
241  raw_string_ostream OS(Result);
242  OS << "BB#" << BB->getNumber()
243     << " (derived from LLVM BB '" << BB->getName() << "')";
244  OS.flush();
245  return Result;
246}
247
248/// \brief Helper to print the number of a MBB.
249///
250/// Only used by debug logging.
251static std::string getBlockNum(MachineBasicBlock *BB) {
252  std::string Result;
253  raw_string_ostream OS(Result);
254  OS << "BB#" << BB->getNumber();
255  OS.flush();
256  return Result;
257}
258#endif
259
260/// \brief Helper to create a new chain for a single BB.
261///
262/// Takes care of growing the Chains, setting up the BlockChain object, and any
263/// debug checking logic.
264/// \returns A pointer to the new BlockChain.
265BlockChain *MachineBlockPlacement::CreateChain(MachineBasicBlock *BB) {
266  BlockChain *Chain =
267    new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
268  //assert(ActiveChains.insert(Chain));
269  return Chain;
270}
271
272/// \brief Merge a chain with any viable successor.
273///
274/// This routine walks the predecessors of the current block, looking for
275/// viable merge candidates. It has strict rules it uses to determine when
276/// a predecessor can be merged with the current block, which center around
277/// preserving the CFG structure. It performs the merge if any viable candidate
278/// is found.
279void MachineBlockPlacement::mergeSuccessor(MachineBasicBlock *BB,
280                                           BlockChain *Chain,
281                                           BlockFilterSet *Filter) {
282  assert(BB);
283  assert(Chain);
284
285  // If this block is not at the end of its chain, it cannot merge with any
286  // other chain.
287  if (Chain && *llvm::prior(Chain->end()) != BB)
288    return;
289
290  // Walk through the successors looking for the highest probability edge.
291  // FIXME: This is an annoying way to do the comparison, but it's correct.
292  // Support should be added to BranchProbability to properly compare two.
293  MachineBasicBlock *Successor = 0;
294  BlockFrequency BestFreq;
295  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
296  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
297                                        SE = BB->succ_end();
298       SI != SE; ++SI) {
299    if (BB == *SI || (Filter && !Filter->count(*SI)))
300      continue;
301
302    BlockFrequency SuccFreq(BlockFrequency::getEntryFrequency());
303    SuccFreq *= MBPI->getEdgeProbability(BB, *SI);
304    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccFreq << "\n");
305    if (!Successor || SuccFreq > BestFreq || (!(SuccFreq < BestFreq) &&
306                                              BB->isLayoutSuccessor(*SI))) {
307      Successor = *SI;
308      BestFreq = SuccFreq;
309    }
310  }
311  if (!Successor)
312    return;
313
314  // Grab a chain if it exists already for this successor and make sure the
315  // successor is at the start of the chain as we can't merge mid-chain. Also,
316  // if the successor chain is the same as our chain, we're already merged.
317  BlockChain *SuccChain = BlockToChain[Successor];
318  if (SuccChain && (SuccChain == Chain || Successor != *SuccChain->begin()))
319    return;
320
321  // We only merge chains across a CFG merge when the desired merge path is
322  // significantly hotter than the incoming edge. We define a hot edge more
323  // strictly than the BranchProbabilityInfo does, as the two predecessor
324  // blocks may have dramatically different incoming probabilities we need to
325  // account for. Therefor we use the "global" edge weight which is the
326  // branch's probability times the block frequency of the predecessor.
327  BlockFrequency MergeWeight = MBFI->getBlockFreq(BB);
328  MergeWeight *= MBPI->getEdgeProbability(BB, Successor);
329  // We only want to consider breaking the CFG when the merge weight is much
330  // higher (80% vs. 20%), so multiply it by 1/4. This will require the merged
331  // edge to be 4x more likely before we disrupt the CFG. This number matches
332  // the definition of "hot" in BranchProbabilityAnalysis (80% vs. 20%).
333  MergeWeight *= BranchProbability(1, 4);
334  for (MachineBasicBlock::pred_iterator PI = Successor->pred_begin(),
335                                        PE = Successor->pred_end();
336       PI != PE; ++PI) {
337    if (BB == *PI || Successor == *PI) continue;
338    BlockFrequency PredWeight = MBFI->getBlockFreq(*PI);
339    PredWeight *= MBPI->getEdgeProbability(*PI, Successor);
340
341    // Return on the first predecessor we find which outstrips our merge weight.
342    if (MergeWeight < PredWeight)
343      return;
344    DEBUG(dbgs() << "Breaking CFG edge!\n"
345                 << "  Edge from " << getBlockNum(BB) << " to "
346                 << getBlockNum(Successor) << ": " << MergeWeight << "\n"
347                 << "        vs. " << getBlockNum(BB) << " to "
348                 << getBlockNum(*PI) << ": " << PredWeight << "\n");
349  }
350
351  DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
352               << getBlockNum(Successor) << "\n");
353  Chain->merge(Successor, SuccChain);
354}
355
356/// \brief Forms basic block chains from the natural loop structures.
357///
358/// These chains are designed to preserve the existing *structure* of the code
359/// as much as possible. We can then stitch the chains together in a way which
360/// both preserves the topological structure and minimizes taken conditional
361/// branches.
362void MachineBlockPlacement::buildLoopChains(MachineFunction &F, MachineLoop &L) {
363  // First recurse through any nested loops, building chains for those inner
364  // loops.
365  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
366    buildLoopChains(F, **LI);
367
368  SmallPtrSet<MachineBasicBlock *, 16> LoopBlockSet(L.block_begin(),
369                                                    L.block_end());
370
371  // Begin building up a set of chains of blocks within this loop which should
372  // remain contiguous. Some of the blocks already belong to a chain which
373  // represents an inner loop.
374  for (MachineLoop::block_iterator BI = L.block_begin(), BE = L.block_end();
375       BI != BE; ++BI) {
376    MachineBasicBlock *BB = *BI;
377    BlockChain *Chain = BlockToChain[BB];
378    if (!Chain) Chain = CreateChain(BB);
379    mergeSuccessor(BB, Chain, &LoopBlockSet);
380  }
381}
382
383void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
384  // First build any loop-based chains.
385  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
386       ++LI)
387    buildLoopChains(F, **LI);
388
389  // Now walk the blocks of the function forming chains where they don't
390  // violate any CFG structure.
391  for (MachineFunction::iterator BI = F.begin(), BE = F.end();
392       BI != BE; ++BI) {
393    MachineBasicBlock *BB = BI;
394    BlockChain *Chain = BlockToChain[BB];
395    if (!Chain) Chain = CreateChain(BB);
396    mergeSuccessor(BB, Chain);
397  }
398}
399
400void MachineBlockPlacement::placeChainsTopologically(MachineFunction &F) {
401  MachineBasicBlock *EntryB = &F.front();
402  BlockChain *EntryChain = BlockToChain[EntryB];
403  assert(EntryChain && "Missing chain for entry block");
404  assert(*EntryChain->begin() == EntryB &&
405         "Entry block is not the head of the entry block chain");
406
407  // Walk the blocks in RPO, and insert each block for a chain in order the
408  // first time we see that chain.
409  MachineFunction::iterator InsertPos = F.begin();
410  SmallPtrSet<BlockChain *, 16> VisitedChains;
411  ReversePostOrderTraversal<MachineBasicBlock *> RPOT(EntryB);
412  typedef ReversePostOrderTraversal<MachineBasicBlock *>::rpo_iterator
413    rpo_iterator;
414  for (rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
415    BlockChain *Chain = BlockToChain[*I];
416    assert(Chain);
417    if(!VisitedChains.insert(Chain))
418      continue;
419    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); BI != BE;
420         ++BI) {
421      DEBUG(dbgs() << (BI == Chain->begin() ? "Placing chain "
422                                            : "          ... ")
423                   << getBlockName(*BI) << "\n");
424      if (InsertPos != MachineFunction::iterator(*BI))
425        F.splice(InsertPos, *BI);
426      else
427        ++InsertPos;
428    }
429  }
430
431  // Now that every block is in its final position, update all of the
432  // terminators.
433  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
434  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
435    // FIXME: It would be awesome of updateTerminator would just return rather
436    // than assert when the branch cannot be analyzed in order to remove this
437    // boiler plate.
438    Cond.clear();
439    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
440    if (!TII->AnalyzeBranch(*FI, TBB, FBB, Cond))
441      FI->updateTerminator();
442  }
443}
444
445/// \brief Recursive helper to align a loop and any nested loops.
446static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) {
447  // Recurse through nested loops.
448  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
449    AlignLoop(F, *I, Align);
450
451  L->getTopBlock()->setAlignment(Align);
452}
453
454/// \brief Align loop headers to target preferred alignments.
455void MachineBlockPlacement::AlignLoops(MachineFunction &F) {
456  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
457    return;
458
459  unsigned Align = TLI->getPrefLoopAlignment();
460  if (!Align)
461    return;  // Don't care about loop alignment.
462
463  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
464    AlignLoop(F, *I, Align);
465}
466
467bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
468  // Check for single-block functions and skip them.
469  if (llvm::next(F.begin()) == F.end())
470    return false;
471
472  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
473  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
474  MLI = &getAnalysis<MachineLoopInfo>();
475  TII = F.getTarget().getInstrInfo();
476  TLI = F.getTarget().getTargetLowering();
477  assert(BlockToChain.empty());
478
479  buildCFGChains(F);
480  placeChainsTopologically(F);
481  AlignLoops(F);
482
483  BlockToChain.clear();
484
485  // We always return true as we have no way to track whether the final order
486  // differs from the original order.
487  return true;
488}
489