MachineBlockPlacement.cpp revision 6313d941d29d77f62662c4bd13f12314e6b4b86e
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absense of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumCondBranches, "Number of conditional branches");
49STATISTIC(NumUncondBranches, "Number of uncondittional branches");
50STATISTIC(CondBranchTakenFreq,
51          "Potential frequency of taking conditional branches");
52STATISTIC(UncondBranchTakenFreq,
53          "Potential frequency of taking unconditional branches");
54
55namespace {
56class BlockChain;
57/// \brief Type for our function-wide basic block -> block chain mapping.
58typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
59}
60
61namespace {
62/// \brief A chain of blocks which will be laid out contiguously.
63///
64/// This is the datastructure representing a chain of consecutive blocks that
65/// are profitable to layout together in order to maximize fallthrough
66/// probabilities. We also can use a block chain to represent a sequence of
67/// basic blocks which have some external (correctness) requirement for
68/// sequential layout.
69///
70/// Eventually, the block chains will form a directed graph over the function.
71/// We provide an SCC-supporting-iterator in order to quicky build and walk the
72/// SCCs of block chains within a function.
73///
74/// The block chains also have support for calculating and caching probability
75/// information related to the chain itself versus other chains. This is used
76/// for ranking during the final layout of block chains.
77class BlockChain {
78  /// \brief The sequence of blocks belonging to this chain.
79  ///
80  /// This is the sequence of blocks for a particular chain. These will be laid
81  /// out in-order within the function.
82  SmallVector<MachineBasicBlock *, 4> Blocks;
83
84  /// \brief A handle to the function-wide basic block to block chain mapping.
85  ///
86  /// This is retained in each block chain to simplify the computation of child
87  /// block chains for SCC-formation and iteration. We store the edges to child
88  /// basic blocks, and map them back to their associated chains using this
89  /// structure.
90  BlockToChainMapType &BlockToChain;
91
92public:
93  /// \brief Construct a new BlockChain.
94  ///
95  /// This builds a new block chain representing a single basic block in the
96  /// function. It also registers itself as the chain that block participates
97  /// in with the BlockToChain mapping.
98  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
99    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
100    assert(BB && "Cannot create a chain with a null basic block");
101    BlockToChain[BB] = this;
102  }
103
104  /// \brief Iterator over blocks within the chain.
105  typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator;
106
107  /// \brief Beginning of blocks within the chain.
108  iterator begin() const { return Blocks.begin(); }
109
110  /// \brief End of blocks within the chain.
111  iterator end() const { return Blocks.end(); }
112
113  /// \brief Merge a block chain into this one.
114  ///
115  /// This routine merges a block chain into this one. It takes care of forming
116  /// a contiguous sequence of basic blocks, updating the edge list, and
117  /// updating the block -> chain mapping. It does not free or tear down the
118  /// old chain, but the old chain's block list is no longer valid.
119  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
120    assert(BB);
121    assert(!Blocks.empty());
122
123    // Fast path in case we don't have a chain already.
124    if (!Chain) {
125      assert(!BlockToChain[BB]);
126      Blocks.push_back(BB);
127      BlockToChain[BB] = this;
128      return;
129    }
130
131    assert(BB == *Chain->begin());
132    assert(Chain->begin() != Chain->end());
133
134    // Update the incoming blocks to point to this chain, and add them to the
135    // chain structure.
136    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
137         BI != BE; ++BI) {
138      Blocks.push_back(*BI);
139      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
140      BlockToChain[*BI] = this;
141    }
142  }
143
144#ifndef NDEBUG
145  /// \brief Dump the blocks in this chain.
146  void dump() LLVM_ATTRIBUTE_USED {
147    for (iterator I = begin(), E = end(); I != E; ++I)
148      (*I)->dump();
149  }
150#endif // NDEBUG
151
152  /// \brief Count of predecessors within the loop currently being processed.
153  ///
154  /// This count is updated at each loop we process to represent the number of
155  /// in-loop predecessors of this chain.
156  unsigned LoopPredecessors;
157};
158}
159
160namespace {
161class MachineBlockPlacement : public MachineFunctionPass {
162  /// \brief A typedef for a block filter set.
163  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
164
165  /// \brief A handle to the branch probability pass.
166  const MachineBranchProbabilityInfo *MBPI;
167
168  /// \brief A handle to the function-wide block frequency pass.
169  const MachineBlockFrequencyInfo *MBFI;
170
171  /// \brief A handle to the loop info.
172  const MachineLoopInfo *MLI;
173
174  /// \brief A handle to the target's instruction info.
175  const TargetInstrInfo *TII;
176
177  /// \brief A handle to the target's lowering info.
178  const TargetLowering *TLI;
179
180  /// \brief Allocator and owner of BlockChain structures.
181  ///
182  /// We build BlockChains lazily by merging together high probability BB
183  /// sequences acording to the "Algo2" in the paper mentioned at the top of
184  /// the file. To reduce malloc traffic, we allocate them using this slab-like
185  /// allocator, and destroy them after the pass completes.
186  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
187
188  /// \brief Function wide BasicBlock to BlockChain mapping.
189  ///
190  /// This mapping allows efficiently moving from any given basic block to the
191  /// BlockChain it participates in, if any. We use it to, among other things,
192  /// allow implicitly defining edges between chains as the existing edges
193  /// between basic blocks.
194  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
195
196  void markChainSuccessors(BlockChain &Chain,
197                           MachineBasicBlock *LoopHeaderBB,
198                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
199                           const BlockFilterSet *BlockFilter = 0);
200  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
201                                         BlockChain &Chain,
202                                         const BlockFilterSet *BlockFilter);
203  MachineBasicBlock *selectBestCandidateBlock(
204      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
205      const BlockFilterSet *BlockFilter);
206  MachineBasicBlock *getFirstUnplacedBlock(
207      MachineFunction &F,
208      const BlockChain &PlacedChain,
209      MachineFunction::iterator &PrevUnplacedBlockIt,
210      const BlockFilterSet *BlockFilter);
211  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
212                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
213                  const BlockFilterSet *BlockFilter = 0);
214  MachineBasicBlock *findBestLoopTop(MachineFunction &F,
215                                     MachineLoop &L,
216                                     const BlockFilterSet &LoopBlockSet);
217  void buildLoopChains(MachineFunction &F, MachineLoop &L);
218  void buildCFGChains(MachineFunction &F);
219  void AlignLoops(MachineFunction &F);
220
221public:
222  static char ID; // Pass identification, replacement for typeid
223  MachineBlockPlacement() : MachineFunctionPass(ID) {
224    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
225  }
226
227  bool runOnMachineFunction(MachineFunction &F);
228
229  void getAnalysisUsage(AnalysisUsage &AU) const {
230    AU.addRequired<MachineBranchProbabilityInfo>();
231    AU.addRequired<MachineBlockFrequencyInfo>();
232    AU.addRequired<MachineLoopInfo>();
233    MachineFunctionPass::getAnalysisUsage(AU);
234  }
235};
236}
237
238char MachineBlockPlacement::ID = 0;
239char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
240INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
241                      "Branch Probability Basic Block Placement", false, false)
242INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
243INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
244INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
245INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
246                    "Branch Probability Basic Block Placement", false, false)
247
248#ifndef NDEBUG
249/// \brief Helper to print the name of a MBB.
250///
251/// Only used by debug logging.
252static std::string getBlockName(MachineBasicBlock *BB) {
253  std::string Result;
254  raw_string_ostream OS(Result);
255  OS << "BB#" << BB->getNumber()
256     << " (derived from LLVM BB '" << BB->getName() << "')";
257  OS.flush();
258  return Result;
259}
260
261/// \brief Helper to print the number of a MBB.
262///
263/// Only used by debug logging.
264static std::string getBlockNum(MachineBasicBlock *BB) {
265  std::string Result;
266  raw_string_ostream OS(Result);
267  OS << "BB#" << BB->getNumber();
268  OS.flush();
269  return Result;
270}
271#endif
272
273/// \brief Mark a chain's successors as having one fewer preds.
274///
275/// When a chain is being merged into the "placed" chain, this routine will
276/// quickly walk the successors of each block in the chain and mark them as
277/// having one fewer active predecessor. It also adds any successors of this
278/// chain which reach the zero-predecessor state to the worklist passed in.
279void MachineBlockPlacement::markChainSuccessors(
280    BlockChain &Chain,
281    MachineBasicBlock *LoopHeaderBB,
282    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
283    const BlockFilterSet *BlockFilter) {
284  // Walk all the blocks in this chain, marking their successors as having
285  // a predecessor placed.
286  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
287       CBI != CBE; ++CBI) {
288    // Add any successors for which this is the only un-placed in-loop
289    // predecessor to the worklist as a viable candidate for CFG-neutral
290    // placement. No subsequent placement of this block will violate the CFG
291    // shape, so we get to use heuristics to choose a favorable placement.
292    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
293                                          SE = (*CBI)->succ_end();
294         SI != SE; ++SI) {
295      if (BlockFilter && !BlockFilter->count(*SI))
296        continue;
297      BlockChain &SuccChain = *BlockToChain[*SI];
298      // Disregard edges within a fixed chain, or edges to the loop header.
299      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
300        continue;
301
302      // This is a cross-chain edge that is within the loop, so decrement the
303      // loop predecessor count of the destination chain.
304      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
305        BlockWorkList.push_back(*SuccChain.begin());
306    }
307  }
308}
309
310/// \brief Select the best successor for a block.
311///
312/// This looks across all successors of a particular block and attempts to
313/// select the "best" one to be the layout successor. It only considers direct
314/// successors which also pass the block filter. It will attempt to avoid
315/// breaking CFG structure, but cave and break such structures in the case of
316/// very hot successor edges.
317///
318/// \returns The best successor block found, or null if none are viable.
319MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
320    MachineBasicBlock *BB, BlockChain &Chain,
321    const BlockFilterSet *BlockFilter) {
322  const BranchProbability HotProb(4, 5); // 80%
323
324  MachineBasicBlock *BestSucc = 0;
325  // FIXME: Due to the performance of the probability and weight routines in
326  // the MBPI analysis, we manually compute probabilities using the edge
327  // weights. This is suboptimal as it means that the somewhat subtle
328  // definition of edge weight semantics is encoded here as well. We should
329  // improve the MBPI interface to effeciently support query patterns such as
330  // this.
331  uint32_t BestWeight = 0;
332  uint32_t WeightScale = 0;
333  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
334  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
335  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
336                                        SE = BB->succ_end();
337       SI != SE; ++SI) {
338    if (BlockFilter && !BlockFilter->count(*SI))
339      continue;
340    BlockChain &SuccChain = *BlockToChain[*SI];
341    if (&SuccChain == &Chain) {
342      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
343      continue;
344    }
345    if (*SI != *SuccChain.begin()) {
346      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
347      continue;
348    }
349
350    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
351    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
352
353    // Only consider successors which are either "hot", or wouldn't violate
354    // any CFG constraints.
355    if (SuccChain.LoopPredecessors != 0) {
356      if (SuccProb < HotProb) {
357        DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
358        continue;
359      }
360
361      // Make sure that a hot successor doesn't have a globally more important
362      // predecessor.
363      BlockFrequency CandidateEdgeFreq
364        = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
365      bool BadCFGConflict = false;
366      for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
367                                            PE = (*SI)->pred_end();
368           PI != PE; ++PI) {
369        if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
370            BlockToChain[*PI] == &Chain)
371          continue;
372        BlockFrequency PredEdgeFreq
373          = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
374        if (PredEdgeFreq >= CandidateEdgeFreq) {
375          BadCFGConflict = true;
376          break;
377        }
378      }
379      if (BadCFGConflict) {
380        DEBUG(dbgs() << "    " << getBlockName(*SI)
381                               << " -> non-cold CFG conflict\n");
382        continue;
383      }
384    }
385
386    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
387                 << " (prob)"
388                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
389                 << "\n");
390    if (BestSucc && BestWeight >= SuccWeight)
391      continue;
392    BestSucc = *SI;
393    BestWeight = SuccWeight;
394  }
395  return BestSucc;
396}
397
398namespace {
399/// \brief Predicate struct to detect blocks already placed.
400class IsBlockPlaced {
401  const BlockChain &PlacedChain;
402  const BlockToChainMapType &BlockToChain;
403
404public:
405  IsBlockPlaced(const BlockChain &PlacedChain,
406                const BlockToChainMapType &BlockToChain)
407      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
408
409  bool operator()(MachineBasicBlock *BB) const {
410    return BlockToChain.lookup(BB) == &PlacedChain;
411  }
412};
413}
414
415/// \brief Select the best block from a worklist.
416///
417/// This looks through the provided worklist as a list of candidate basic
418/// blocks and select the most profitable one to place. The definition of
419/// profitable only really makes sense in the context of a loop. This returns
420/// the most frequently visited block in the worklist, which in the case of
421/// a loop, is the one most desirable to be physically close to the rest of the
422/// loop body in order to improve icache behavior.
423///
424/// \returns The best block found, or null if none are viable.
425MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
426    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
427    const BlockFilterSet *BlockFilter) {
428  // Once we need to walk the worklist looking for a candidate, cleanup the
429  // worklist of already placed entries.
430  // FIXME: If this shows up on profiles, it could be folded (at the cost of
431  // some code complexity) into the loop below.
432  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
433                                IsBlockPlaced(Chain, BlockToChain)),
434                 WorkList.end());
435
436  MachineBasicBlock *BestBlock = 0;
437  BlockFrequency BestFreq;
438  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
439                                                      WBE = WorkList.end();
440       WBI != WBE; ++WBI) {
441    assert(!BlockFilter || BlockFilter->count(*WBI));
442    BlockChain &SuccChain = *BlockToChain[*WBI];
443    if (&SuccChain == &Chain) {
444      DEBUG(dbgs() << "    " << getBlockName(*WBI)
445                   << " -> Already merged!\n");
446      continue;
447    }
448    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
449
450    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
451    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
452                 << " (freq)\n");
453    if (BestBlock && BestFreq >= CandidateFreq)
454      continue;
455    BestBlock = *WBI;
456    BestFreq = CandidateFreq;
457  }
458  return BestBlock;
459}
460
461/// \brief Retrieve the first unplaced basic block.
462///
463/// This routine is called when we are unable to use the CFG to walk through
464/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
465/// We walk through the function's blocks in order, starting from the
466/// LastUnplacedBlockIt. We update this iterator on each call to avoid
467/// re-scanning the entire sequence on repeated calls to this routine.
468MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
469    MachineFunction &F, const BlockChain &PlacedChain,
470    MachineFunction::iterator &PrevUnplacedBlockIt,
471    const BlockFilterSet *BlockFilter) {
472  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
473       ++I) {
474    if (BlockFilter && !BlockFilter->count(I))
475      continue;
476    if (BlockToChain[I] != &PlacedChain) {
477      PrevUnplacedBlockIt = I;
478      // Now select the head of the chain to which the unplaced block belongs
479      // as the block to place. This will force the entire chain to be placed,
480      // and satisfies the requirements of merging chains.
481      return *BlockToChain[I]->begin();
482    }
483  }
484  return 0;
485}
486
487void MachineBlockPlacement::buildChain(
488    MachineBasicBlock *BB,
489    BlockChain &Chain,
490    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
491    const BlockFilterSet *BlockFilter) {
492  assert(BB);
493  assert(BlockToChain[BB] == &Chain);
494  MachineFunction &F = *BB->getParent();
495  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
496
497  MachineBasicBlock *LoopHeaderBB = BB;
498  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
499  BB = *llvm::prior(Chain.end());
500  for (;;) {
501    assert(BB);
502    assert(BlockToChain[BB] == &Chain);
503    assert(*llvm::prior(Chain.end()) == BB);
504    MachineBasicBlock *BestSucc = 0;
505
506    // Look for the best viable successor if there is one to place immediately
507    // after this block.
508    BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
509
510    // If an immediate successor isn't available, look for the best viable
511    // block among those we've identified as not violating the loop's CFG at
512    // this point. This won't be a fallthrough, but it will increase locality.
513    if (!BestSucc)
514      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
515
516    if (!BestSucc) {
517      BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
518                                       BlockFilter);
519      if (!BestSucc)
520        break;
521
522      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
523                      "layout successor until the CFG reduces\n");
524    }
525
526    // Place this block, updating the datastructures to reflect its placement.
527    BlockChain &SuccChain = *BlockToChain[BestSucc];
528    // Zero out LoopPredecessors for the successor we're about to merge in case
529    // we selected a successor that didn't fit naturally into the CFG.
530    SuccChain.LoopPredecessors = 0;
531    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
532                 << " to " << getBlockNum(BestSucc) << "\n");
533    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
534    Chain.merge(BestSucc, &SuccChain);
535    BB = *llvm::prior(Chain.end());
536  }
537
538  DEBUG(dbgs() << "Finished forming chain for header block "
539               << getBlockNum(*Chain.begin()) << "\n");
540}
541
542/// \brief Find the best loop top block for layout.
543///
544/// This routine implements the logic to analyze the loop looking for the best
545/// block to layout at the top of the loop. Typically this is done to maximize
546/// fallthrough opportunities.
547MachineBasicBlock *
548MachineBlockPlacement::findBestLoopTop(MachineFunction &F,
549                                       MachineLoop &L,
550                                       const BlockFilterSet &LoopBlockSet) {
551  BlockFrequency BestExitEdgeFreq;
552  MachineBasicBlock *ExitingBB = 0;
553  MachineBasicBlock *LoopingBB = 0;
554  // If there are exits to outer loops, loop rotation can severely limit
555  // fallthrough opportunites unless it selects such an exit. Keep a set of
556  // blocks where rotating to exit with that block will reach an outer loop.
557  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
558
559  DEBUG(dbgs() << "Finding best loop exit for: "
560               << getBlockName(L.getHeader()) << "\n");
561  for (MachineLoop::block_iterator I = L.block_begin(),
562                                   E = L.block_end();
563       I != E; ++I) {
564    BlockChain &Chain = *BlockToChain[*I];
565    // Ensure that this block is at the end of a chain; otherwise it could be
566    // mid-way through an inner loop or a successor of an analyzable branch.
567    if (*I != *llvm::prior(Chain.end()))
568      continue;
569
570    // Now walk the successors. We need to establish whether this has a viable
571    // exiting successor and whether it has a viable non-exiting successor.
572    // We store the old exiting state and restore it if a viable looping
573    // successor isn't found.
574    MachineBasicBlock *OldExitingBB = ExitingBB;
575    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
576    // We also compute and store the best looping successor for use in layout.
577    MachineBasicBlock *BestLoopSucc = 0;
578    // FIXME: Due to the performance of the probability and weight routines in
579    // the MBPI analysis, we use the internal weights. This is only valid
580    // because it is purely a ranking function, we don't care about anything
581    // but the relative values.
582    uint32_t BestLoopSuccWeight = 0;
583    // FIXME: We also manually compute the probabilities to avoid quadratic
584    // behavior.
585    uint32_t WeightScale = 0;
586    uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
587    for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
588                                          SE = (*I)->succ_end();
589         SI != SE; ++SI) {
590      if ((*SI)->isLandingPad())
591        continue;
592      if (*SI == *I)
593        continue;
594      BlockChain &SuccChain = *BlockToChain[*SI];
595      // Don't split chains, either this chain or the successor's chain.
596      if (&Chain == &SuccChain || *SI != *SuccChain.begin()) {
597        DEBUG(dbgs() << "    " << (LoopBlockSet.count(*SI) ? "looping: "
598                                                           : "exiting: ")
599                     << getBlockName(*I) << " -> "
600                     << getBlockName(*SI) << " (chain conflict)\n");
601        continue;
602      }
603
604      uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
605      if (LoopBlockSet.count(*SI)) {
606        DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
607                     << getBlockName(*SI) << " (" << SuccWeight << ")\n");
608        if (BestLoopSucc && BestLoopSuccWeight >= SuccWeight)
609          continue;
610
611        BestLoopSucc = *SI;
612        BestLoopSuccWeight = SuccWeight;
613        continue;
614      }
615
616      BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
617      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
618      DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
619                   << getBlockName(*SI) << " (" << ExitEdgeFreq << ")\n");
620      // Note that we slightly bias this toward an existing layout successor to
621      // retain incoming order in the absence of better information.
622      // FIXME: Should we bias this more strongly? It's pretty weak.
623      if (!ExitingBB || ExitEdgeFreq > BestExitEdgeFreq ||
624          ((*I)->isLayoutSuccessor(*SI) &&
625           !(ExitEdgeFreq < BestExitEdgeFreq))) {
626        BestExitEdgeFreq = ExitEdgeFreq;
627        ExitingBB = *I;
628      }
629
630      if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI))
631        if (ExitLoop->contains(&L))
632          BlocksExitingToOuterLoop.insert(*I);
633    }
634
635    // Restore the old exiting state, no viable looping successor was found.
636    if (!BestLoopSucc) {
637      ExitingBB = OldExitingBB;
638      BestExitEdgeFreq = OldBestExitEdgeFreq;
639      continue;
640    }
641
642    // If this was best exiting block thus far, also record the looping block.
643    if (ExitingBB == *I)
644      LoopingBB = BestLoopSucc;
645  }
646  // Without a candidate exitting block or with only a single block in the
647  // loop, just use the loop header to layout the loop.
648  if (!ExitingBB || L.getNumBlocks() == 1)
649    return L.getHeader();
650
651  // Also, if we have exit blocks which lead to outer loops but didn't select
652  // one of them as the exiting block we are rotating toward, disable loop
653  // rotation altogether.
654  if (!BlocksExitingToOuterLoop.empty() &&
655      !BlocksExitingToOuterLoop.count(ExitingBB))
656    return L.getHeader();
657
658  assert(LoopingBB && "All successors of a loop block are exit blocks!");
659  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
660  DEBUG(dbgs() << "  Best top block: " << getBlockName(LoopingBB) << "\n");
661  return LoopingBB;
662}
663
664/// \brief Forms basic block chains from the natural loop structures.
665///
666/// These chains are designed to preserve the existing *structure* of the code
667/// as much as possible. We can then stitch the chains together in a way which
668/// both preserves the topological structure and minimizes taken conditional
669/// branches.
670void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
671                                            MachineLoop &L) {
672  // First recurse through any nested loops, building chains for those inner
673  // loops.
674  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
675    buildLoopChains(F, **LI);
676
677  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
678  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
679
680  MachineBasicBlock *LayoutTop = findBestLoopTop(F, L, LoopBlockSet);
681  BlockChain &LoopChain = *BlockToChain[LayoutTop];
682
683  // FIXME: This is a really lame way of walking the chains in the loop: we
684  // walk the blocks, and use a set to prevent visiting a particular chain
685  // twice.
686  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
687  assert(LoopChain.LoopPredecessors == 0);
688  UpdatedPreds.insert(&LoopChain);
689  for (MachineLoop::block_iterator BI = L.block_begin(),
690                                   BE = L.block_end();
691       BI != BE; ++BI) {
692    BlockChain &Chain = *BlockToChain[*BI];
693    if (!UpdatedPreds.insert(&Chain))
694      continue;
695
696    assert(Chain.LoopPredecessors == 0);
697    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
698         BCI != BCE; ++BCI) {
699      assert(BlockToChain[*BCI] == &Chain);
700      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
701                                            PE = (*BCI)->pred_end();
702           PI != PE; ++PI) {
703        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
704          continue;
705        ++Chain.LoopPredecessors;
706      }
707    }
708
709    if (Chain.LoopPredecessors == 0)
710      BlockWorkList.push_back(*Chain.begin());
711  }
712
713  buildChain(LayoutTop, LoopChain, BlockWorkList, &LoopBlockSet);
714
715  DEBUG({
716    // Crash at the end so we get all of the debugging output first.
717    bool BadLoop = false;
718    if (LoopChain.LoopPredecessors) {
719      BadLoop = true;
720      dbgs() << "Loop chain contains a block without its preds placed!\n"
721             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
722             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
723    }
724    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
725         BCI != BCE; ++BCI)
726      if (!LoopBlockSet.erase(*BCI)) {
727        // We don't mark the loop as bad here because there are real situations
728        // where this can occur. For example, with an unanalyzable fallthrough
729        // from a loop block to a non-loop block or vice versa.
730        dbgs() << "Loop chain contains a block not contained by the loop!\n"
731               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
732               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
733               << "  Bad block:    " << getBlockName(*BCI) << "\n";
734      }
735
736    if (!LoopBlockSet.empty()) {
737      BadLoop = true;
738      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
739                                    LBE = LoopBlockSet.end();
740           LBI != LBE; ++LBI)
741        dbgs() << "Loop contains blocks never placed into a chain!\n"
742               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
743               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
744               << "  Bad block:    " << getBlockName(*LBI) << "\n";
745    }
746    assert(!BadLoop && "Detected problems with the placement of this loop.");
747  });
748}
749
750void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
751  // Ensure that every BB in the function has an associated chain to simplify
752  // the assumptions of the remaining algorithm.
753  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
754  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
755    MachineBasicBlock *BB = FI;
756    BlockChain *Chain
757      = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
758    // Also, merge any blocks which we cannot reason about and must preserve
759    // the exact fallthrough behavior for.
760    for (;;) {
761      Cond.clear();
762      MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
763      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
764        break;
765
766      MachineFunction::iterator NextFI(llvm::next(FI));
767      MachineBasicBlock *NextBB = NextFI;
768      // Ensure that the layout successor is a viable block, as we know that
769      // fallthrough is a possibility.
770      assert(NextFI != FE && "Can't fallthrough past the last block.");
771      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
772                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
773                   << "\n");
774      Chain->merge(NextBB, 0);
775      FI = NextFI;
776      BB = NextBB;
777    }
778  }
779
780  // Build any loop-based chains.
781  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
782       ++LI)
783    buildLoopChains(F, **LI);
784
785  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
786
787  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
788  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
789    MachineBasicBlock *BB = &*FI;
790    BlockChain &Chain = *BlockToChain[BB];
791    if (!UpdatedPreds.insert(&Chain))
792      continue;
793
794    assert(Chain.LoopPredecessors == 0);
795    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
796         BCI != BCE; ++BCI) {
797      assert(BlockToChain[*BCI] == &Chain);
798      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
799                                            PE = (*BCI)->pred_end();
800           PI != PE; ++PI) {
801        if (BlockToChain[*PI] == &Chain)
802          continue;
803        ++Chain.LoopPredecessors;
804      }
805    }
806
807    if (Chain.LoopPredecessors == 0)
808      BlockWorkList.push_back(*Chain.begin());
809  }
810
811  BlockChain &FunctionChain = *BlockToChain[&F.front()];
812  buildChain(&F.front(), FunctionChain, BlockWorkList);
813
814  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
815  DEBUG({
816    // Crash at the end so we get all of the debugging output first.
817    bool BadFunc = false;
818    FunctionBlockSetType FunctionBlockSet;
819    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
820      FunctionBlockSet.insert(FI);
821
822    for (BlockChain::iterator BCI = FunctionChain.begin(),
823                              BCE = FunctionChain.end();
824         BCI != BCE; ++BCI)
825      if (!FunctionBlockSet.erase(*BCI)) {
826        BadFunc = true;
827        dbgs() << "Function chain contains a block not in the function!\n"
828               << "  Bad block:    " << getBlockName(*BCI) << "\n";
829      }
830
831    if (!FunctionBlockSet.empty()) {
832      BadFunc = true;
833      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
834                                          FBE = FunctionBlockSet.end();
835           FBI != FBE; ++FBI)
836        dbgs() << "Function contains blocks never placed into a chain!\n"
837               << "  Bad block:    " << getBlockName(*FBI) << "\n";
838    }
839    assert(!BadFunc && "Detected problems with the block placement.");
840  });
841
842  // Splice the blocks into place.
843  MachineFunction::iterator InsertPos = F.begin();
844  for (BlockChain::iterator BI = FunctionChain.begin(),
845                            BE = FunctionChain.end();
846       BI != BE; ++BI) {
847    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
848                                                  : "          ... ")
849          << getBlockName(*BI) << "\n");
850    if (InsertPos != MachineFunction::iterator(*BI))
851      F.splice(InsertPos, *BI);
852    else
853      ++InsertPos;
854
855    // Update the terminator of the previous block.
856    if (BI == FunctionChain.begin())
857      continue;
858    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
859
860    // FIXME: It would be awesome of updateTerminator would just return rather
861    // than assert when the branch cannot be analyzed in order to remove this
862    // boiler plate.
863    Cond.clear();
864    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
865    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
866      PrevBB->updateTerminator();
867  }
868
869  // Fixup the last block.
870  Cond.clear();
871  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
872  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
873    F.back().updateTerminator();
874}
875
876/// \brief Recursive helper to align a loop and any nested loops.
877static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) {
878  // Recurse through nested loops.
879  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
880    AlignLoop(F, *I, Align);
881
882  L->getTopBlock()->setAlignment(Align);
883}
884
885/// \brief Align loop headers to target preferred alignments.
886void MachineBlockPlacement::AlignLoops(MachineFunction &F) {
887  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
888    return;
889
890  unsigned Align = TLI->getPrefLoopAlignment();
891  if (!Align)
892    return;  // Don't care about loop alignment.
893
894  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
895    AlignLoop(F, *I, Align);
896}
897
898bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
899  // Check for single-block functions and skip them.
900  if (llvm::next(F.begin()) == F.end())
901    return false;
902
903  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
904  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
905  MLI = &getAnalysis<MachineLoopInfo>();
906  TII = F.getTarget().getInstrInfo();
907  TLI = F.getTarget().getTargetLowering();
908  assert(BlockToChain.empty());
909
910  buildCFGChains(F);
911  AlignLoops(F);
912
913  BlockToChain.clear();
914  ChainAllocator.DestroyAll();
915
916  // We always return true as we have no way to track whether the final order
917  // differs from the original order.
918  return true;
919}
920
921namespace {
922/// \brief A pass to compute block placement statistics.
923///
924/// A separate pass to compute interesting statistics for evaluating block
925/// placement. This is separate from the actual placement pass so that they can
926/// be computed in the absense of any placement transformations or when using
927/// alternative placement strategies.
928class MachineBlockPlacementStats : public MachineFunctionPass {
929  /// \brief A handle to the branch probability pass.
930  const MachineBranchProbabilityInfo *MBPI;
931
932  /// \brief A handle to the function-wide block frequency pass.
933  const MachineBlockFrequencyInfo *MBFI;
934
935public:
936  static char ID; // Pass identification, replacement for typeid
937  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
938    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
939  }
940
941  bool runOnMachineFunction(MachineFunction &F);
942
943  void getAnalysisUsage(AnalysisUsage &AU) const {
944    AU.addRequired<MachineBranchProbabilityInfo>();
945    AU.addRequired<MachineBlockFrequencyInfo>();
946    AU.setPreservesAll();
947    MachineFunctionPass::getAnalysisUsage(AU);
948  }
949};
950}
951
952char MachineBlockPlacementStats::ID = 0;
953char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
954INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
955                      "Basic Block Placement Stats", false, false)
956INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
957INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
958INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
959                    "Basic Block Placement Stats", false, false)
960
961bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
962  // Check for single-block functions and skip them.
963  if (llvm::next(F.begin()) == F.end())
964    return false;
965
966  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
967  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
968
969  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
970    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
971    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
972                                                  : NumUncondBranches;
973    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
974                                                      : UncondBranchTakenFreq;
975    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
976                                          SE = I->succ_end();
977         SI != SE; ++SI) {
978      // Skip if this successor is a fallthrough.
979      if (I->isLayoutSuccessor(*SI))
980        continue;
981
982      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
983      ++NumBranches;
984      BranchTakenFreq += EdgeFreq.getFrequency();
985    }
986  }
987
988  return false;
989}
990
991