MachineBlockPlacement.cpp revision 74b4762234eaeff94058999758a83acc0b54cba6
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absence of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumCondBranches, "Number of conditional branches");
49STATISTIC(NumUncondBranches, "Number of uncondittional branches");
50STATISTIC(CondBranchTakenFreq,
51          "Potential frequency of taking conditional branches");
52STATISTIC(UncondBranchTakenFreq,
53          "Potential frequency of taking unconditional branches");
54
55namespace {
56class BlockChain;
57/// \brief Type for our function-wide basic block -> block chain mapping.
58typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
59}
60
61namespace {
62/// \brief A chain of blocks which will be laid out contiguously.
63///
64/// This is the datastructure representing a chain of consecutive blocks that
65/// are profitable to layout together in order to maximize fallthrough
66/// probabilities and code locality. We also can use a block chain to represent
67/// a sequence of basic blocks which have some external (correctness)
68/// requirement for sequential layout.
69///
70/// Chains can be built around a single basic block and can be merged to grow
71/// them. They participate in a block-to-chain mapping, which is updated
72/// automatically as chains are merged together.
73class BlockChain {
74  /// \brief The sequence of blocks belonging to this chain.
75  ///
76  /// This is the sequence of blocks for a particular chain. These will be laid
77  /// out in-order within the function.
78  SmallVector<MachineBasicBlock *, 4> Blocks;
79
80  /// \brief A handle to the function-wide basic block to block chain mapping.
81  ///
82  /// This is retained in each block chain to simplify the computation of child
83  /// block chains for SCC-formation and iteration. We store the edges to child
84  /// basic blocks, and map them back to their associated chains using this
85  /// structure.
86  BlockToChainMapType &BlockToChain;
87
88public:
89  /// \brief Construct a new BlockChain.
90  ///
91  /// This builds a new block chain representing a single basic block in the
92  /// function. It also registers itself as the chain that block participates
93  /// in with the BlockToChain mapping.
94  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
95    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
96    assert(BB && "Cannot create a chain with a null basic block");
97    BlockToChain[BB] = this;
98  }
99
100  /// \brief Iterator over blocks within the chain.
101  typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
102
103  /// \brief Beginning of blocks within the chain.
104  iterator begin() { return Blocks.begin(); }
105
106  /// \brief End of blocks within the chain.
107  iterator end() { return Blocks.end(); }
108
109  /// \brief Merge a block chain into this one.
110  ///
111  /// This routine merges a block chain into this one. It takes care of forming
112  /// a contiguous sequence of basic blocks, updating the edge list, and
113  /// updating the block -> chain mapping. It does not free or tear down the
114  /// old chain, but the old chain's block list is no longer valid.
115  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
116    assert(BB);
117    assert(!Blocks.empty());
118
119    // Fast path in case we don't have a chain already.
120    if (!Chain) {
121      assert(!BlockToChain[BB]);
122      Blocks.push_back(BB);
123      BlockToChain[BB] = this;
124      return;
125    }
126
127    assert(BB == *Chain->begin());
128    assert(Chain->begin() != Chain->end());
129
130    // Update the incoming blocks to point to this chain, and add them to the
131    // chain structure.
132    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
133         BI != BE; ++BI) {
134      Blocks.push_back(*BI);
135      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
136      BlockToChain[*BI] = this;
137    }
138  }
139
140#ifndef NDEBUG
141  /// \brief Dump the blocks in this chain.
142  void dump() LLVM_ATTRIBUTE_USED {
143    for (iterator I = begin(), E = end(); I != E; ++I)
144      (*I)->dump();
145  }
146#endif // NDEBUG
147
148  /// \brief Count of predecessors within the loop currently being processed.
149  ///
150  /// This count is updated at each loop we process to represent the number of
151  /// in-loop predecessors of this chain.
152  unsigned LoopPredecessors;
153};
154}
155
156namespace {
157class MachineBlockPlacement : public MachineFunctionPass {
158  /// \brief A typedef for a block filter set.
159  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
160
161  /// \brief A handle to the branch probability pass.
162  const MachineBranchProbabilityInfo *MBPI;
163
164  /// \brief A handle to the function-wide block frequency pass.
165  const MachineBlockFrequencyInfo *MBFI;
166
167  /// \brief A handle to the loop info.
168  const MachineLoopInfo *MLI;
169
170  /// \brief A handle to the target's instruction info.
171  const TargetInstrInfo *TII;
172
173  /// \brief A handle to the target's lowering info.
174  const TargetLowering *TLI;
175
176  /// \brief Allocator and owner of BlockChain structures.
177  ///
178  /// We build BlockChains lazily while processing the loop structure of
179  /// a function. To reduce malloc traffic, we allocate them using this
180  /// slab-like allocator, and destroy them after the pass completes. An
181  /// important guarantee is that this allocator produces stable pointers to
182  /// the chains.
183  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
184
185  /// \brief Function wide BasicBlock to BlockChain mapping.
186  ///
187  /// This mapping allows efficiently moving from any given basic block to the
188  /// BlockChain it participates in, if any. We use it to, among other things,
189  /// allow implicitly defining edges between chains as the existing edges
190  /// between basic blocks.
191  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
192
193  void markChainSuccessors(BlockChain &Chain,
194                           MachineBasicBlock *LoopHeaderBB,
195                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
196                           const BlockFilterSet *BlockFilter = 0);
197  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
198                                         BlockChain &Chain,
199                                         const BlockFilterSet *BlockFilter);
200  MachineBasicBlock *selectBestCandidateBlock(
201      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
202      const BlockFilterSet *BlockFilter);
203  MachineBasicBlock *getFirstUnplacedBlock(
204      MachineFunction &F,
205      const BlockChain &PlacedChain,
206      MachineFunction::iterator &PrevUnplacedBlockIt,
207      const BlockFilterSet *BlockFilter);
208  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
209                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
210                  const BlockFilterSet *BlockFilter = 0);
211  MachineBasicBlock *findBestLoopTop(MachineLoop &L,
212                                     const BlockFilterSet &LoopBlockSet);
213  MachineBasicBlock *findBestLoopExit(MachineFunction &F,
214                                      MachineLoop &L,
215                                      const BlockFilterSet &LoopBlockSet);
216  void buildLoopChains(MachineFunction &F, MachineLoop &L);
217  void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
218                  const BlockFilterSet &LoopBlockSet);
219  void buildCFGChains(MachineFunction &F);
220
221public:
222  static char ID; // Pass identification, replacement for typeid
223  MachineBlockPlacement() : MachineFunctionPass(ID) {
224    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
225  }
226
227  bool runOnMachineFunction(MachineFunction &F);
228
229  void getAnalysisUsage(AnalysisUsage &AU) const {
230    AU.addRequired<MachineBranchProbabilityInfo>();
231    AU.addRequired<MachineBlockFrequencyInfo>();
232    AU.addRequired<MachineLoopInfo>();
233    MachineFunctionPass::getAnalysisUsage(AU);
234  }
235};
236}
237
238char MachineBlockPlacement::ID = 0;
239char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
240INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
241                      "Branch Probability Basic Block Placement", false, false)
242INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
243INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
244INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
245INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
246                    "Branch Probability Basic Block Placement", false, false)
247
248#ifndef NDEBUG
249/// \brief Helper to print the name of a MBB.
250///
251/// Only used by debug logging.
252static std::string getBlockName(MachineBasicBlock *BB) {
253  std::string Result;
254  raw_string_ostream OS(Result);
255  OS << "BB#" << BB->getNumber()
256     << " (derived from LLVM BB '" << BB->getName() << "')";
257  OS.flush();
258  return Result;
259}
260
261/// \brief Helper to print the number of a MBB.
262///
263/// Only used by debug logging.
264static std::string getBlockNum(MachineBasicBlock *BB) {
265  std::string Result;
266  raw_string_ostream OS(Result);
267  OS << "BB#" << BB->getNumber();
268  OS.flush();
269  return Result;
270}
271#endif
272
273/// \brief Mark a chain's successors as having one fewer preds.
274///
275/// When a chain is being merged into the "placed" chain, this routine will
276/// quickly walk the successors of each block in the chain and mark them as
277/// having one fewer active predecessor. It also adds any successors of this
278/// chain which reach the zero-predecessor state to the worklist passed in.
279void MachineBlockPlacement::markChainSuccessors(
280    BlockChain &Chain,
281    MachineBasicBlock *LoopHeaderBB,
282    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
283    const BlockFilterSet *BlockFilter) {
284  // Walk all the blocks in this chain, marking their successors as having
285  // a predecessor placed.
286  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
287       CBI != CBE; ++CBI) {
288    // Add any successors for which this is the only un-placed in-loop
289    // predecessor to the worklist as a viable candidate for CFG-neutral
290    // placement. No subsequent placement of this block will violate the CFG
291    // shape, so we get to use heuristics to choose a favorable placement.
292    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
293                                          SE = (*CBI)->succ_end();
294         SI != SE; ++SI) {
295      if (BlockFilter && !BlockFilter->count(*SI))
296        continue;
297      BlockChain &SuccChain = *BlockToChain[*SI];
298      // Disregard edges within a fixed chain, or edges to the loop header.
299      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
300        continue;
301
302      // This is a cross-chain edge that is within the loop, so decrement the
303      // loop predecessor count of the destination chain.
304      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
305        BlockWorkList.push_back(*SuccChain.begin());
306    }
307  }
308}
309
310/// \brief Select the best successor for a block.
311///
312/// This looks across all successors of a particular block and attempts to
313/// select the "best" one to be the layout successor. It only considers direct
314/// successors which also pass the block filter. It will attempt to avoid
315/// breaking CFG structure, but cave and break such structures in the case of
316/// very hot successor edges.
317///
318/// \returns The best successor block found, or null if none are viable.
319MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
320    MachineBasicBlock *BB, BlockChain &Chain,
321    const BlockFilterSet *BlockFilter) {
322  const BranchProbability HotProb(4, 5); // 80%
323
324  MachineBasicBlock *BestSucc = 0;
325  // FIXME: Due to the performance of the probability and weight routines in
326  // the MBPI analysis, we manually compute probabilities using the edge
327  // weights. This is suboptimal as it means that the somewhat subtle
328  // definition of edge weight semantics is encoded here as well. We should
329  // improve the MBPI interface to efficiently support query patterns such as
330  // this.
331  uint32_t BestWeight = 0;
332  uint32_t WeightScale = 0;
333  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
334  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
335  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
336                                        SE = BB->succ_end();
337       SI != SE; ++SI) {
338    if (BlockFilter && !BlockFilter->count(*SI))
339      continue;
340    BlockChain &SuccChain = *BlockToChain[*SI];
341    if (&SuccChain == &Chain) {
342      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
343      continue;
344    }
345    if (*SI != *SuccChain.begin()) {
346      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
347      continue;
348    }
349
350    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
351    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
352
353    // Only consider successors which are either "hot", or wouldn't violate
354    // any CFG constraints.
355    if (SuccChain.LoopPredecessors != 0) {
356      if (SuccProb < HotProb) {
357        DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
358        continue;
359      }
360
361      // Make sure that a hot successor doesn't have a globally more important
362      // predecessor.
363      BlockFrequency CandidateEdgeFreq
364        = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
365      bool BadCFGConflict = false;
366      for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
367                                            PE = (*SI)->pred_end();
368           PI != PE; ++PI) {
369        if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
370            BlockToChain[*PI] == &Chain)
371          continue;
372        BlockFrequency PredEdgeFreq
373          = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
374        if (PredEdgeFreq >= CandidateEdgeFreq) {
375          BadCFGConflict = true;
376          break;
377        }
378      }
379      if (BadCFGConflict) {
380        DEBUG(dbgs() << "    " << getBlockName(*SI)
381                               << " -> non-cold CFG conflict\n");
382        continue;
383      }
384    }
385
386    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
387                 << " (prob)"
388                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
389                 << "\n");
390    if (BestSucc && BestWeight >= SuccWeight)
391      continue;
392    BestSucc = *SI;
393    BestWeight = SuccWeight;
394  }
395  return BestSucc;
396}
397
398namespace {
399/// \brief Predicate struct to detect blocks already placed.
400class IsBlockPlaced {
401  const BlockChain &PlacedChain;
402  const BlockToChainMapType &BlockToChain;
403
404public:
405  IsBlockPlaced(const BlockChain &PlacedChain,
406                const BlockToChainMapType &BlockToChain)
407      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
408
409  bool operator()(MachineBasicBlock *BB) const {
410    return BlockToChain.lookup(BB) == &PlacedChain;
411  }
412};
413}
414
415/// \brief Select the best block from a worklist.
416///
417/// This looks through the provided worklist as a list of candidate basic
418/// blocks and select the most profitable one to place. The definition of
419/// profitable only really makes sense in the context of a loop. This returns
420/// the most frequently visited block in the worklist, which in the case of
421/// a loop, is the one most desirable to be physically close to the rest of the
422/// loop body in order to improve icache behavior.
423///
424/// \returns The best block found, or null if none are viable.
425MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
426    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
427    const BlockFilterSet *BlockFilter) {
428  // Once we need to walk the worklist looking for a candidate, cleanup the
429  // worklist of already placed entries.
430  // FIXME: If this shows up on profiles, it could be folded (at the cost of
431  // some code complexity) into the loop below.
432  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
433                                IsBlockPlaced(Chain, BlockToChain)),
434                 WorkList.end());
435
436  MachineBasicBlock *BestBlock = 0;
437  BlockFrequency BestFreq;
438  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
439                                                      WBE = WorkList.end();
440       WBI != WBE; ++WBI) {
441    BlockChain &SuccChain = *BlockToChain[*WBI];
442    if (&SuccChain == &Chain) {
443      DEBUG(dbgs() << "    " << getBlockName(*WBI)
444                   << " -> Already merged!\n");
445      continue;
446    }
447    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
448
449    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
450    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
451                 << " (freq)\n");
452    if (BestBlock && BestFreq >= CandidateFreq)
453      continue;
454    BestBlock = *WBI;
455    BestFreq = CandidateFreq;
456  }
457  return BestBlock;
458}
459
460/// \brief Retrieve the first unplaced basic block.
461///
462/// This routine is called when we are unable to use the CFG to walk through
463/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
464/// We walk through the function's blocks in order, starting from the
465/// LastUnplacedBlockIt. We update this iterator on each call to avoid
466/// re-scanning the entire sequence on repeated calls to this routine.
467MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
468    MachineFunction &F, const BlockChain &PlacedChain,
469    MachineFunction::iterator &PrevUnplacedBlockIt,
470    const BlockFilterSet *BlockFilter) {
471  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
472       ++I) {
473    if (BlockFilter && !BlockFilter->count(I))
474      continue;
475    if (BlockToChain[I] != &PlacedChain) {
476      PrevUnplacedBlockIt = I;
477      // Now select the head of the chain to which the unplaced block belongs
478      // as the block to place. This will force the entire chain to be placed,
479      // and satisfies the requirements of merging chains.
480      return *BlockToChain[I]->begin();
481    }
482  }
483  return 0;
484}
485
486void MachineBlockPlacement::buildChain(
487    MachineBasicBlock *BB,
488    BlockChain &Chain,
489    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
490    const BlockFilterSet *BlockFilter) {
491  assert(BB);
492  assert(BlockToChain[BB] == &Chain);
493  MachineFunction &F = *BB->getParent();
494  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
495
496  MachineBasicBlock *LoopHeaderBB = BB;
497  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
498  BB = *llvm::prior(Chain.end());
499  for (;;) {
500    assert(BB);
501    assert(BlockToChain[BB] == &Chain);
502    assert(*llvm::prior(Chain.end()) == BB);
503
504    // Look for the best viable successor if there is one to place immediately
505    // after this block.
506    MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
507
508    // If an immediate successor isn't available, look for the best viable
509    // block among those we've identified as not violating the loop's CFG at
510    // this point. This won't be a fallthrough, but it will increase locality.
511    if (!BestSucc)
512      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
513
514    if (!BestSucc) {
515      BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
516                                       BlockFilter);
517      if (!BestSucc)
518        break;
519
520      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
521                      "layout successor until the CFG reduces\n");
522    }
523
524    // Place this block, updating the datastructures to reflect its placement.
525    BlockChain &SuccChain = *BlockToChain[BestSucc];
526    // Zero out LoopPredecessors for the successor we're about to merge in case
527    // we selected a successor that didn't fit naturally into the CFG.
528    SuccChain.LoopPredecessors = 0;
529    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
530                 << " to " << getBlockNum(BestSucc) << "\n");
531    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
532    Chain.merge(BestSucc, &SuccChain);
533    BB = *llvm::prior(Chain.end());
534  }
535
536  DEBUG(dbgs() << "Finished forming chain for header block "
537               << getBlockNum(*Chain.begin()) << "\n");
538}
539
540/// \brief Find the best loop top block for layout.
541///
542/// Look for a block which is strictly better than the loop header for laying
543/// out at the top of the loop. This looks for one and only one pattern:
544/// a latch block with no conditional exit. This block will cause a conditional
545/// jump around it or will be the bottom of the loop if we lay it out in place,
546/// but if it it doesn't end up at the bottom of the loop for any reason,
547/// rotation alone won't fix it. Because such a block will always result in an
548/// unconditional jump (for the backedge) rotating it in front of the loop
549/// header is always profitable.
550MachineBasicBlock *
551MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
552                                       const BlockFilterSet &LoopBlockSet) {
553  // Check that the header hasn't been fused with a preheader block due to
554  // crazy branches. If it has, we need to start with the header at the top to
555  // prevent pulling the preheader into the loop body.
556  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
557  if (!LoopBlockSet.count(*HeaderChain.begin()))
558    return L.getHeader();
559
560  DEBUG(dbgs() << "Finding best loop top for: "
561               << getBlockName(L.getHeader()) << "\n");
562
563  BlockFrequency BestPredFreq;
564  MachineBasicBlock *BestPred = 0;
565  for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
566                                        PE = L.getHeader()->pred_end();
567       PI != PE; ++PI) {
568    MachineBasicBlock *Pred = *PI;
569    if (!LoopBlockSet.count(Pred))
570      continue;
571    DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
572                 << Pred->succ_size() << " successors, "
573                 << MBFI->getBlockFreq(Pred) << " freq\n");
574    if (Pred->succ_size() > 1)
575      continue;
576
577    BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
578    if (!BestPred || PredFreq > BestPredFreq ||
579        (!(PredFreq < BestPredFreq) &&
580         Pred->isLayoutSuccessor(L.getHeader()))) {
581      BestPred = Pred;
582      BestPredFreq = PredFreq;
583    }
584  }
585
586  // If no direct predecessor is fine, just use the loop header.
587  if (!BestPred)
588    return L.getHeader();
589
590  // Walk backwards through any straight line of predecessors.
591  while (BestPred->pred_size() == 1 &&
592         (*BestPred->pred_begin())->succ_size() == 1 &&
593         *BestPred->pred_begin() != L.getHeader())
594    BestPred = *BestPred->pred_begin();
595
596  DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
597  return BestPred;
598}
599
600
601/// \brief Find the best loop exiting block for layout.
602///
603/// This routine implements the logic to analyze the loop looking for the best
604/// block to layout at the top of the loop. Typically this is done to maximize
605/// fallthrough opportunities.
606MachineBasicBlock *
607MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
608                                        MachineLoop &L,
609                                        const BlockFilterSet &LoopBlockSet) {
610  // We don't want to layout the loop linearly in all cases. If the loop header
611  // is just a normal basic block in the loop, we want to look for what block
612  // within the loop is the best one to layout at the top. However, if the loop
613  // header has be pre-merged into a chain due to predecessors not having
614  // analyzable branches, *and* the predecessor it is merged with is *not* part
615  // of the loop, rotating the header into the middle of the loop will create
616  // a non-contiguous range of blocks which is Very Bad. So start with the
617  // header and only rotate if safe.
618  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
619  if (!LoopBlockSet.count(*HeaderChain.begin()))
620    return 0;
621
622  BlockFrequency BestExitEdgeFreq;
623  unsigned BestExitLoopDepth = 0;
624  MachineBasicBlock *ExitingBB = 0;
625  // If there are exits to outer loops, loop rotation can severely limit
626  // fallthrough opportunites unless it selects such an exit. Keep a set of
627  // blocks where rotating to exit with that block will reach an outer loop.
628  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
629
630  DEBUG(dbgs() << "Finding best loop exit for: "
631               << getBlockName(L.getHeader()) << "\n");
632  for (MachineLoop::block_iterator I = L.block_begin(),
633                                   E = L.block_end();
634       I != E; ++I) {
635    BlockChain &Chain = *BlockToChain[*I];
636    // Ensure that this block is at the end of a chain; otherwise it could be
637    // mid-way through an inner loop or a successor of an analyzable branch.
638    if (*I != *llvm::prior(Chain.end()))
639      continue;
640
641    // Now walk the successors. We need to establish whether this has a viable
642    // exiting successor and whether it has a viable non-exiting successor.
643    // We store the old exiting state and restore it if a viable looping
644    // successor isn't found.
645    MachineBasicBlock *OldExitingBB = ExitingBB;
646    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
647    bool HasLoopingSucc = false;
648    // FIXME: Due to the performance of the probability and weight routines in
649    // the MBPI analysis, we use the internal weights and manually compute the
650    // probabilities to avoid quadratic behavior.
651    uint32_t WeightScale = 0;
652    uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
653    for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
654                                          SE = (*I)->succ_end();
655         SI != SE; ++SI) {
656      if ((*SI)->isLandingPad())
657        continue;
658      if (*SI == *I)
659        continue;
660      BlockChain &SuccChain = *BlockToChain[*SI];
661      // Don't split chains, either this chain or the successor's chain.
662      if (&Chain == &SuccChain) {
663        DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
664                     << getBlockName(*SI) << " (chain conflict)\n");
665        continue;
666      }
667
668      uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
669      if (LoopBlockSet.count(*SI)) {
670        DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
671                     << getBlockName(*SI) << " (" << SuccWeight << ")\n");
672        HasLoopingSucc = true;
673        continue;
674      }
675
676      unsigned SuccLoopDepth = 0;
677      if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
678        SuccLoopDepth = ExitLoop->getLoopDepth();
679        if (ExitLoop->contains(&L))
680          BlocksExitingToOuterLoop.insert(*I);
681      }
682
683      BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
684      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
685      DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
686                   << getBlockName(*SI) << " [L:" << SuccLoopDepth
687                   << "] (" << ExitEdgeFreq << ")\n");
688      // Note that we slightly bias this toward an existing layout successor to
689      // retain incoming order in the absence of better information.
690      // FIXME: Should we bias this more strongly? It's pretty weak.
691      if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
692          ExitEdgeFreq > BestExitEdgeFreq ||
693          ((*I)->isLayoutSuccessor(*SI) &&
694           !(ExitEdgeFreq < BestExitEdgeFreq))) {
695        BestExitEdgeFreq = ExitEdgeFreq;
696        ExitingBB = *I;
697      }
698    }
699
700    // Restore the old exiting state, no viable looping successor was found.
701    if (!HasLoopingSucc) {
702      ExitingBB = OldExitingBB;
703      BestExitEdgeFreq = OldBestExitEdgeFreq;
704      continue;
705    }
706  }
707  // Without a candidate exiting block or with only a single block in the
708  // loop, just use the loop header to layout the loop.
709  if (!ExitingBB || L.getNumBlocks() == 1)
710    return 0;
711
712  // Also, if we have exit blocks which lead to outer loops but didn't select
713  // one of them as the exiting block we are rotating toward, disable loop
714  // rotation altogether.
715  if (!BlocksExitingToOuterLoop.empty() &&
716      !BlocksExitingToOuterLoop.count(ExitingBB))
717    return 0;
718
719  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
720  return ExitingBB;
721}
722
723/// \brief Attempt to rotate an exiting block to the bottom of the loop.
724///
725/// Once we have built a chain, try to rotate it to line up the hot exit block
726/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
727/// branches. For example, if the loop has fallthrough into its header and out
728/// of its bottom already, don't rotate it.
729void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
730                                       MachineBasicBlock *ExitingBB,
731                                       const BlockFilterSet &LoopBlockSet) {
732  if (!ExitingBB)
733    return;
734
735  MachineBasicBlock *Top = *LoopChain.begin();
736  bool ViableTopFallthrough = false;
737  for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
738                                        PE = Top->pred_end();
739       PI != PE; ++PI) {
740    BlockChain *PredChain = BlockToChain[*PI];
741    if (!LoopBlockSet.count(*PI) &&
742        (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
743      ViableTopFallthrough = true;
744      break;
745    }
746  }
747
748  // If the header has viable fallthrough, check whether the current loop
749  // bottom is a viable exiting block. If so, bail out as rotating will
750  // introduce an unnecessary branch.
751  if (ViableTopFallthrough) {
752    MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
753    for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
754                                          SE = Bottom->succ_end();
755         SI != SE; ++SI) {
756      BlockChain *SuccChain = BlockToChain[*SI];
757      if (!LoopBlockSet.count(*SI) &&
758          (!SuccChain || *SI == *SuccChain->begin()))
759        return;
760    }
761  }
762
763  BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
764                                          ExitingBB);
765  if (ExitIt == LoopChain.end())
766    return;
767
768  std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
769}
770
771/// \brief Forms basic block chains from the natural loop structures.
772///
773/// These chains are designed to preserve the existing *structure* of the code
774/// as much as possible. We can then stitch the chains together in a way which
775/// both preserves the topological structure and minimizes taken conditional
776/// branches.
777void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
778                                            MachineLoop &L) {
779  // First recurse through any nested loops, building chains for those inner
780  // loops.
781  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
782    buildLoopChains(F, **LI);
783
784  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
785  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
786
787  // First check to see if there is an obviously preferable top block for the
788  // loop. This will default to the header, but may end up as one of the
789  // predecessors to the header if there is one which will result in strictly
790  // fewer branches in the loop body.
791  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
792
793  // If we selected just the header for the loop top, look for a potentially
794  // profitable exit block in the event that rotating the loop can eliminate
795  // branches by placing an exit edge at the bottom.
796  MachineBasicBlock *ExitingBB = 0;
797  if (LoopTop == L.getHeader())
798    ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
799
800  BlockChain &LoopChain = *BlockToChain[LoopTop];
801
802  // FIXME: This is a really lame way of walking the chains in the loop: we
803  // walk the blocks, and use a set to prevent visiting a particular chain
804  // twice.
805  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
806  assert(LoopChain.LoopPredecessors == 0);
807  UpdatedPreds.insert(&LoopChain);
808  for (MachineLoop::block_iterator BI = L.block_begin(),
809                                   BE = L.block_end();
810       BI != BE; ++BI) {
811    BlockChain &Chain = *BlockToChain[*BI];
812    if (!UpdatedPreds.insert(&Chain))
813      continue;
814
815    assert(Chain.LoopPredecessors == 0);
816    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
817         BCI != BCE; ++BCI) {
818      assert(BlockToChain[*BCI] == &Chain);
819      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
820                                            PE = (*BCI)->pred_end();
821           PI != PE; ++PI) {
822        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
823          continue;
824        ++Chain.LoopPredecessors;
825      }
826    }
827
828    if (Chain.LoopPredecessors == 0)
829      BlockWorkList.push_back(*Chain.begin());
830  }
831
832  buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
833  rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
834
835  DEBUG({
836    // Crash at the end so we get all of the debugging output first.
837    bool BadLoop = false;
838    if (LoopChain.LoopPredecessors) {
839      BadLoop = true;
840      dbgs() << "Loop chain contains a block without its preds placed!\n"
841             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
842             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
843    }
844    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
845         BCI != BCE; ++BCI) {
846      dbgs() << "          ... " << getBlockName(*BCI) << "\n";
847      if (!LoopBlockSet.erase(*BCI)) {
848        // We don't mark the loop as bad here because there are real situations
849        // where this can occur. For example, with an unanalyzable fallthrough
850        // from a loop block to a non-loop block or vice versa.
851        dbgs() << "Loop chain contains a block not contained by the loop!\n"
852               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
853               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
854               << "  Bad block:    " << getBlockName(*BCI) << "\n";
855      }
856    }
857
858    if (!LoopBlockSet.empty()) {
859      BadLoop = true;
860      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
861                                    LBE = LoopBlockSet.end();
862           LBI != LBE; ++LBI)
863        dbgs() << "Loop contains blocks never placed into a chain!\n"
864               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
865               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
866               << "  Bad block:    " << getBlockName(*LBI) << "\n";
867    }
868    assert(!BadLoop && "Detected problems with the placement of this loop.");
869  });
870}
871
872void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
873  // Ensure that every BB in the function has an associated chain to simplify
874  // the assumptions of the remaining algorithm.
875  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
876  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
877    MachineBasicBlock *BB = FI;
878    BlockChain *Chain
879      = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
880    // Also, merge any blocks which we cannot reason about and must preserve
881    // the exact fallthrough behavior for.
882    for (;;) {
883      Cond.clear();
884      MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
885      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
886        break;
887
888      MachineFunction::iterator NextFI(llvm::next(FI));
889      MachineBasicBlock *NextBB = NextFI;
890      // Ensure that the layout successor is a viable block, as we know that
891      // fallthrough is a possibility.
892      assert(NextFI != FE && "Can't fallthrough past the last block.");
893      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
894                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
895                   << "\n");
896      Chain->merge(NextBB, 0);
897      FI = NextFI;
898      BB = NextBB;
899    }
900  }
901
902  // Build any loop-based chains.
903  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
904       ++LI)
905    buildLoopChains(F, **LI);
906
907  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
908
909  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
910  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
911    MachineBasicBlock *BB = &*FI;
912    BlockChain &Chain = *BlockToChain[BB];
913    if (!UpdatedPreds.insert(&Chain))
914      continue;
915
916    assert(Chain.LoopPredecessors == 0);
917    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
918         BCI != BCE; ++BCI) {
919      assert(BlockToChain[*BCI] == &Chain);
920      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
921                                            PE = (*BCI)->pred_end();
922           PI != PE; ++PI) {
923        if (BlockToChain[*PI] == &Chain)
924          continue;
925        ++Chain.LoopPredecessors;
926      }
927    }
928
929    if (Chain.LoopPredecessors == 0)
930      BlockWorkList.push_back(*Chain.begin());
931  }
932
933  BlockChain &FunctionChain = *BlockToChain[&F.front()];
934  buildChain(&F.front(), FunctionChain, BlockWorkList);
935
936  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
937  DEBUG({
938    // Crash at the end so we get all of the debugging output first.
939    bool BadFunc = false;
940    FunctionBlockSetType FunctionBlockSet;
941    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
942      FunctionBlockSet.insert(FI);
943
944    for (BlockChain::iterator BCI = FunctionChain.begin(),
945                              BCE = FunctionChain.end();
946         BCI != BCE; ++BCI)
947      if (!FunctionBlockSet.erase(*BCI)) {
948        BadFunc = true;
949        dbgs() << "Function chain contains a block not in the function!\n"
950               << "  Bad block:    " << getBlockName(*BCI) << "\n";
951      }
952
953    if (!FunctionBlockSet.empty()) {
954      BadFunc = true;
955      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
956                                          FBE = FunctionBlockSet.end();
957           FBI != FBE; ++FBI)
958        dbgs() << "Function contains blocks never placed into a chain!\n"
959               << "  Bad block:    " << getBlockName(*FBI) << "\n";
960    }
961    assert(!BadFunc && "Detected problems with the block placement.");
962  });
963
964  // Splice the blocks into place.
965  MachineFunction::iterator InsertPos = F.begin();
966  for (BlockChain::iterator BI = FunctionChain.begin(),
967                            BE = FunctionChain.end();
968       BI != BE; ++BI) {
969    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
970                                                  : "          ... ")
971          << getBlockName(*BI) << "\n");
972    if (InsertPos != MachineFunction::iterator(*BI))
973      F.splice(InsertPos, *BI);
974    else
975      ++InsertPos;
976
977    // Update the terminator of the previous block.
978    if (BI == FunctionChain.begin())
979      continue;
980    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
981
982    // FIXME: It would be awesome of updateTerminator would just return rather
983    // than assert when the branch cannot be analyzed in order to remove this
984    // boiler plate.
985    Cond.clear();
986    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
987    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
988      // If PrevBB has a two-way branch, try to re-order the branches
989      // such that we branch to the successor with higher weight first.
990      if (TBB && !Cond.empty() && FBB &&
991          MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
992          !TII->ReverseBranchCondition(Cond)) {
993        DEBUG(dbgs() << "Reverse order of the two branches: "
994                     << getBlockName(PrevBB) << "\n");
995        DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
996                     << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
997        DebugLoc dl;  // FIXME: this is nowhere
998        TII->RemoveBranch(*PrevBB);
999        TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1000      }
1001      PrevBB->updateTerminator();
1002    }
1003  }
1004
1005  // Fixup the last block.
1006  Cond.clear();
1007  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
1008  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1009    F.back().updateTerminator();
1010
1011  // Walk through the backedges of the function now that we have fully laid out
1012  // the basic blocks and align the destination of each backedge. We don't rely
1013  // exclusively on the loop info here so that we can align backedges in
1014  // unnatural CFGs and backedges that were introduced purely because of the
1015  // loop rotations done during this layout pass.
1016  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
1017    return;
1018  unsigned Align = TLI->getPrefLoopAlignment();
1019  if (!Align)
1020    return;  // Don't care about loop alignment.
1021  if (FunctionChain.begin() == FunctionChain.end())
1022    return;  // Empty chain.
1023
1024  const BranchProbability ColdProb(1, 5); // 20%
1025  BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1026  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1027  for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
1028                            BE = FunctionChain.end();
1029       BI != BE; ++BI) {
1030    // Don't align non-looping basic blocks. These are unlikely to execute
1031    // enough times to matter in practice. Note that we'll still handle
1032    // unnatural CFGs inside of a natural outer loop (the common case) and
1033    // rotated loops.
1034    MachineLoop *L = MLI->getLoopFor(*BI);
1035    if (!L)
1036      continue;
1037
1038    // If the block is cold relative to the function entry don't waste space
1039    // aligning it.
1040    BlockFrequency Freq = MBFI->getBlockFreq(*BI);
1041    if (Freq < WeightedEntryFreq)
1042      continue;
1043
1044    // If the block is cold relative to its loop header, don't align it
1045    // regardless of what edges into the block exist.
1046    MachineBasicBlock *LoopHeader = L->getHeader();
1047    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1048    if (Freq < (LoopHeaderFreq * ColdProb))
1049      continue;
1050
1051    // Check for the existence of a non-layout predecessor which would benefit
1052    // from aligning this block.
1053    MachineBasicBlock *LayoutPred = *llvm::prior(BI);
1054
1055    // Force alignment if all the predecessors are jumps. We already checked
1056    // that the block isn't cold above.
1057    if (!LayoutPred->isSuccessor(*BI)) {
1058      (*BI)->setAlignment(Align);
1059      continue;
1060    }
1061
1062    // Align this block if the layout predecessor's edge into this block is
1063    // cold relative to the block. When this is true, othe predecessors make up
1064    // all of the hot entries into the block and thus alignment is likely to be
1065    // important.
1066    BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
1067    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1068    if (LayoutEdgeFreq <= (Freq * ColdProb))
1069      (*BI)->setAlignment(Align);
1070  }
1071}
1072
1073bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1074  // Check for single-block functions and skip them.
1075  if (llvm::next(F.begin()) == F.end())
1076    return false;
1077
1078  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1079  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1080  MLI = &getAnalysis<MachineLoopInfo>();
1081  TII = F.getTarget().getInstrInfo();
1082  TLI = F.getTarget().getTargetLowering();
1083  assert(BlockToChain.empty());
1084
1085  buildCFGChains(F);
1086
1087  BlockToChain.clear();
1088  ChainAllocator.DestroyAll();
1089
1090  // We always return true as we have no way to track whether the final order
1091  // differs from the original order.
1092  return true;
1093}
1094
1095namespace {
1096/// \brief A pass to compute block placement statistics.
1097///
1098/// A separate pass to compute interesting statistics for evaluating block
1099/// placement. This is separate from the actual placement pass so that they can
1100/// be computed in the absence of any placement transformations or when using
1101/// alternative placement strategies.
1102class MachineBlockPlacementStats : public MachineFunctionPass {
1103  /// \brief A handle to the branch probability pass.
1104  const MachineBranchProbabilityInfo *MBPI;
1105
1106  /// \brief A handle to the function-wide block frequency pass.
1107  const MachineBlockFrequencyInfo *MBFI;
1108
1109public:
1110  static char ID; // Pass identification, replacement for typeid
1111  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1112    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1113  }
1114
1115  bool runOnMachineFunction(MachineFunction &F);
1116
1117  void getAnalysisUsage(AnalysisUsage &AU) const {
1118    AU.addRequired<MachineBranchProbabilityInfo>();
1119    AU.addRequired<MachineBlockFrequencyInfo>();
1120    AU.setPreservesAll();
1121    MachineFunctionPass::getAnalysisUsage(AU);
1122  }
1123};
1124}
1125
1126char MachineBlockPlacementStats::ID = 0;
1127char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1128INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1129                      "Basic Block Placement Stats", false, false)
1130INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1131INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1132INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1133                    "Basic Block Placement Stats", false, false)
1134
1135bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1136  // Check for single-block functions and skip them.
1137  if (llvm::next(F.begin()) == F.end())
1138    return false;
1139
1140  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1141  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1142
1143  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1144    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1145    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
1146                                                  : NumUncondBranches;
1147    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
1148                                                      : UncondBranchTakenFreq;
1149    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1150                                          SE = I->succ_end();
1151         SI != SE; ++SI) {
1152      // Skip if this successor is a fallthrough.
1153      if (I->isLayoutSuccessor(*SI))
1154        continue;
1155
1156      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1157      ++NumBranches;
1158      BranchTakenFreq += EdgeFreq.getFrequency();
1159    }
1160  }
1161
1162  return false;
1163}
1164
1165