MachineBlockPlacement.cpp revision b0dadb9dd52aed7a82e24542be8adf881d91c929
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absense of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/PostOrderIterator.h"
42#include "llvm/ADT/SCCIterator.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include <algorithm>
49using namespace llvm;
50
51STATISTIC(NumCondBranches, "Number of conditional branches");
52STATISTIC(NumUncondBranches, "Number of uncondittional branches");
53STATISTIC(CondBranchTakenFreq,
54          "Potential frequency of taking conditional branches");
55STATISTIC(UncondBranchTakenFreq,
56          "Potential frequency of taking unconditional branches");
57
58namespace {
59/// \brief A structure for storing a weighted edge.
60///
61/// This stores an edge and its weight, computed as the product of the
62/// frequency that the starting block is entered with the probability of
63/// a particular exit block.
64struct WeightedEdge {
65  BlockFrequency EdgeFrequency;
66  MachineBasicBlock *From, *To;
67
68  bool operator<(const WeightedEdge &RHS) const {
69    return EdgeFrequency < RHS.EdgeFrequency;
70  }
71};
72}
73
74namespace {
75class BlockChain;
76/// \brief Type for our function-wide basic block -> block chain mapping.
77typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
78}
79
80namespace {
81/// \brief A chain of blocks which will be laid out contiguously.
82///
83/// This is the datastructure representing a chain of consecutive blocks that
84/// are profitable to layout together in order to maximize fallthrough
85/// probabilities. We also can use a block chain to represent a sequence of
86/// basic blocks which have some external (correctness) requirement for
87/// sequential layout.
88///
89/// Eventually, the block chains will form a directed graph over the function.
90/// We provide an SCC-supporting-iterator in order to quicky build and walk the
91/// SCCs of block chains within a function.
92///
93/// The block chains also have support for calculating and caching probability
94/// information related to the chain itself versus other chains. This is used
95/// for ranking during the final layout of block chains.
96class BlockChain {
97  /// \brief The sequence of blocks belonging to this chain.
98  ///
99  /// This is the sequence of blocks for a particular chain. These will be laid
100  /// out in-order within the function.
101  SmallVector<MachineBasicBlock *, 4> Blocks;
102
103  /// \brief A handle to the function-wide basic block to block chain mapping.
104  ///
105  /// This is retained in each block chain to simplify the computation of child
106  /// block chains for SCC-formation and iteration. We store the edges to child
107  /// basic blocks, and map them back to their associated chains using this
108  /// structure.
109  BlockToChainMapType &BlockToChain;
110
111public:
112  /// \brief Construct a new BlockChain.
113  ///
114  /// This builds a new block chain representing a single basic block in the
115  /// function. It also registers itself as the chain that block participates
116  /// in with the BlockToChain mapping.
117  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
118    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
119    assert(BB && "Cannot create a chain with a null basic block");
120    BlockToChain[BB] = this;
121  }
122
123  /// \brief Iterator over blocks within the chain.
124  typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator;
125
126  /// \brief Beginning of blocks within the chain.
127  iterator begin() const { return Blocks.begin(); }
128
129  /// \brief End of blocks within the chain.
130  iterator end() const { return Blocks.end(); }
131
132  /// \brief Merge a block chain into this one.
133  ///
134  /// This routine merges a block chain into this one. It takes care of forming
135  /// a contiguous sequence of basic blocks, updating the edge list, and
136  /// updating the block -> chain mapping. It does not free or tear down the
137  /// old chain, but the old chain's block list is no longer valid.
138  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
139    assert(BB);
140    assert(!Blocks.empty());
141
142    // Fast path in case we don't have a chain already.
143    if (!Chain) {
144      assert(!BlockToChain[BB]);
145      Blocks.push_back(BB);
146      BlockToChain[BB] = this;
147      return;
148    }
149
150    assert(BB == *Chain->begin());
151    assert(Chain->begin() != Chain->end());
152
153    // Update the incoming blocks to point to this chain, and add them to the
154    // chain structure.
155    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
156         BI != BE; ++BI) {
157      Blocks.push_back(*BI);
158      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
159      BlockToChain[*BI] = this;
160    }
161  }
162
163  /// \brief Count of predecessors within the loop currently being processed.
164  ///
165  /// This count is updated at each loop we process to represent the number of
166  /// in-loop predecessors of this chain.
167  unsigned LoopPredecessors;
168};
169}
170
171namespace {
172class MachineBlockPlacement : public MachineFunctionPass {
173  /// \brief A typedef for a block filter set.
174  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
175
176  /// \brief A handle to the branch probability pass.
177  const MachineBranchProbabilityInfo *MBPI;
178
179  /// \brief A handle to the function-wide block frequency pass.
180  const MachineBlockFrequencyInfo *MBFI;
181
182  /// \brief A handle to the loop info.
183  const MachineLoopInfo *MLI;
184
185  /// \brief A handle to the target's instruction info.
186  const TargetInstrInfo *TII;
187
188  /// \brief A handle to the target's lowering info.
189  const TargetLowering *TLI;
190
191  /// \brief Allocator and owner of BlockChain structures.
192  ///
193  /// We build BlockChains lazily by merging together high probability BB
194  /// sequences acording to the "Algo2" in the paper mentioned at the top of
195  /// the file. To reduce malloc traffic, we allocate them using this slab-like
196  /// allocator, and destroy them after the pass completes.
197  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
198
199  /// \brief Function wide BasicBlock to BlockChain mapping.
200  ///
201  /// This mapping allows efficiently moving from any given basic block to the
202  /// BlockChain it participates in, if any. We use it to, among other things,
203  /// allow implicitly defining edges between chains as the existing edges
204  /// between basic blocks.
205  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
206
207  void markChainSuccessors(BlockChain &Chain,
208                           MachineBasicBlock *LoopHeaderBB,
209                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
210                           const BlockFilterSet *BlockFilter = 0);
211  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
212                                         BlockChain &Chain,
213                                         const BlockFilterSet *BlockFilter);
214  MachineBasicBlock *selectBestCandidateBlock(
215      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
216      const BlockFilterSet *BlockFilter);
217  MachineBasicBlock *getFirstUnplacedBlock(
218      MachineFunction &F,
219      const BlockChain &PlacedChain,
220      MachineFunction::iterator &PrevUnplacedBlockIt,
221      const BlockFilterSet *BlockFilter);
222  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
223                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
224                  const BlockFilterSet *BlockFilter = 0);
225  void buildLoopChains(MachineFunction &F, MachineLoop &L);
226  void buildCFGChains(MachineFunction &F);
227  void AlignLoops(MachineFunction &F);
228
229public:
230  static char ID; // Pass identification, replacement for typeid
231  MachineBlockPlacement() : MachineFunctionPass(ID) {
232    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
233  }
234
235  bool runOnMachineFunction(MachineFunction &F);
236
237  void getAnalysisUsage(AnalysisUsage &AU) const {
238    AU.addRequired<MachineBranchProbabilityInfo>();
239    AU.addRequired<MachineBlockFrequencyInfo>();
240    AU.addRequired<MachineLoopInfo>();
241    MachineFunctionPass::getAnalysisUsage(AU);
242  }
243
244  const char *getPassName() const { return "Block Placement"; }
245};
246}
247
248char MachineBlockPlacement::ID = 0;
249INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
250                      "Branch Probability Basic Block Placement", false, false)
251INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
252INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
253INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
254INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
255                    "Branch Probability Basic Block Placement", false, false)
256
257FunctionPass *llvm::createMachineBlockPlacementPass() {
258  return new MachineBlockPlacement();
259}
260
261#ifndef NDEBUG
262/// \brief Helper to print the name of a MBB.
263///
264/// Only used by debug logging.
265static std::string getBlockName(MachineBasicBlock *BB) {
266  std::string Result;
267  raw_string_ostream OS(Result);
268  OS << "BB#" << BB->getNumber()
269     << " (derived from LLVM BB '" << BB->getName() << "')";
270  OS.flush();
271  return Result;
272}
273
274/// \brief Helper to print the number of a MBB.
275///
276/// Only used by debug logging.
277static std::string getBlockNum(MachineBasicBlock *BB) {
278  std::string Result;
279  raw_string_ostream OS(Result);
280  OS << "BB#" << BB->getNumber();
281  OS.flush();
282  return Result;
283}
284#endif
285
286/// \brief Mark a chain's successors as having one fewer preds.
287///
288/// When a chain is being merged into the "placed" chain, this routine will
289/// quickly walk the successors of each block in the chain and mark them as
290/// having one fewer active predecessor. It also adds any successors of this
291/// chain which reach the zero-predecessor state to the worklist passed in.
292void MachineBlockPlacement::markChainSuccessors(
293    BlockChain &Chain,
294    MachineBasicBlock *LoopHeaderBB,
295    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
296    const BlockFilterSet *BlockFilter) {
297  // Walk all the blocks in this chain, marking their successors as having
298  // a predecessor placed.
299  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
300       CBI != CBE; ++CBI) {
301    // Add any successors for which this is the only un-placed in-loop
302    // predecessor to the worklist as a viable candidate for CFG-neutral
303    // placement. No subsequent placement of this block will violate the CFG
304    // shape, so we get to use heuristics to choose a favorable placement.
305    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
306                                          SE = (*CBI)->succ_end();
307         SI != SE; ++SI) {
308      if (BlockFilter && !BlockFilter->count(*SI))
309        continue;
310      BlockChain &SuccChain = *BlockToChain[*SI];
311      // Disregard edges within a fixed chain, or edges to the loop header.
312      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
313        continue;
314
315      // This is a cross-chain edge that is within the loop, so decrement the
316      // loop predecessor count of the destination chain.
317      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
318        BlockWorkList.push_back(*SI);
319    }
320  }
321}
322
323/// \brief Select the best successor for a block.
324///
325/// This looks across all successors of a particular block and attempts to
326/// select the "best" one to be the layout successor. It only considers direct
327/// successors which also pass the block filter. It will attempt to avoid
328/// breaking CFG structure, but cave and break such structures in the case of
329/// very hot successor edges.
330///
331/// \returns The best successor block found, or null if none are viable.
332MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
333    MachineBasicBlock *BB, BlockChain &Chain,
334    const BlockFilterSet *BlockFilter) {
335  const BranchProbability HotProb(4, 5); // 80%
336
337  MachineBasicBlock *BestSucc = 0;
338  // FIXME: Due to the performance of the probability and weight routines in
339  // the MBPI analysis, we manually compute probabilities using the edge
340  // weights. This is suboptimal as it means that the somewhat subtle
341  // definition of edge weight semantics is encoded here as well. We should
342  // improve the MBPI interface to effeciently support query patterns such as
343  // this.
344  uint32_t BestWeight = 0;
345  uint32_t WeightScale = 0;
346  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
347  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
348  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
349                                        SE = BB->succ_end();
350       SI != SE; ++SI) {
351    if (BlockFilter && !BlockFilter->count(*SI))
352      continue;
353    BlockChain &SuccChain = *BlockToChain[*SI];
354    if (&SuccChain == &Chain) {
355      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
356      continue;
357    }
358    if (*SI != *SuccChain.begin()) {
359      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
360      continue;
361    }
362
363    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
364    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
365
366    // Only consider successors which are either "hot", or wouldn't violate
367    // any CFG constraints.
368    if (SuccChain.LoopPredecessors != 0) {
369      if (SuccProb < HotProb) {
370        DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
371        continue;
372      }
373
374      // Make sure that a hot successor doesn't have a globally more important
375      // predecessor.
376      BlockFrequency CandidateEdgeFreq
377        = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
378      bool BadCFGConflict = false;
379      for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
380                                            PE = (*SI)->pred_end();
381           PI != PE; ++PI) {
382        if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
383            BlockToChain[*PI] == &Chain)
384          continue;
385        BlockFrequency PredEdgeFreq
386          = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
387        if (PredEdgeFreq >= CandidateEdgeFreq) {
388          BadCFGConflict = true;
389          break;
390        }
391      }
392      if (BadCFGConflict) {
393        DEBUG(dbgs() << "    " << getBlockName(*SI)
394                               << " -> non-cold CFG conflict\n");
395        continue;
396      }
397    }
398
399    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
400                 << " (prob)"
401                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
402                 << "\n");
403    if (BestSucc && BestWeight >= SuccWeight)
404      continue;
405    BestSucc = *SI;
406    BestWeight = SuccWeight;
407  }
408  return BestSucc;
409}
410
411namespace {
412/// \brief Predicate struct to detect blocks already placed.
413class IsBlockPlaced {
414  const BlockChain &PlacedChain;
415  const BlockToChainMapType &BlockToChain;
416
417public:
418  IsBlockPlaced(const BlockChain &PlacedChain,
419                const BlockToChainMapType &BlockToChain)
420      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
421
422  bool operator()(MachineBasicBlock *BB) const {
423    return BlockToChain.lookup(BB) == &PlacedChain;
424  }
425};
426}
427
428/// \brief Select the best block from a worklist.
429///
430/// This looks through the provided worklist as a list of candidate basic
431/// blocks and select the most profitable one to place. The definition of
432/// profitable only really makes sense in the context of a loop. This returns
433/// the most frequently visited block in the worklist, which in the case of
434/// a loop, is the one most desirable to be physically close to the rest of the
435/// loop body in order to improve icache behavior.
436///
437/// \returns The best block found, or null if none are viable.
438MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
439    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
440    const BlockFilterSet *BlockFilter) {
441  // Once we need to walk the worklist looking for a candidate, cleanup the
442  // worklist of already placed entries.
443  // FIXME: If this shows up on profiles, it could be folded (at the cost of
444  // some code complexity) into the loop below.
445  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
446                                IsBlockPlaced(Chain, BlockToChain)),
447                 WorkList.end());
448
449  MachineBasicBlock *BestBlock = 0;
450  BlockFrequency BestFreq;
451  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
452                                                      WBE = WorkList.end();
453       WBI != WBE; ++WBI) {
454    assert(!BlockFilter || BlockFilter->count(*WBI));
455    BlockChain &SuccChain = *BlockToChain[*WBI];
456    if (&SuccChain == &Chain) {
457      DEBUG(dbgs() << "    " << getBlockName(*WBI)
458                   << " -> Already merged!\n");
459      continue;
460    }
461    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
462
463    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
464    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
465                 << " (freq)\n");
466    if (BestBlock && BestFreq >= CandidateFreq)
467      continue;
468    BestBlock = *WBI;
469    BestFreq = CandidateFreq;
470  }
471  return BestBlock;
472}
473
474/// \brief Retrieve the first unplaced basic block.
475///
476/// This routine is called when we are unable to use the CFG to walk through
477/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
478/// We walk through the function's blocks in order, starting from the
479/// LastUnplacedBlockIt. We update this iterator on each call to avoid
480/// re-scanning the entire sequence on repeated calls to this routine.
481MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
482    MachineFunction &F, const BlockChain &PlacedChain,
483    MachineFunction::iterator &PrevUnplacedBlockIt,
484    const BlockFilterSet *BlockFilter) {
485  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
486       ++I) {
487    if (BlockFilter && !BlockFilter->count(I))
488      continue;
489    if (BlockToChain[I] != &PlacedChain) {
490      PrevUnplacedBlockIt = I;
491      return I;
492    }
493  }
494  return 0;
495}
496
497void MachineBlockPlacement::buildChain(
498    MachineBasicBlock *BB,
499    BlockChain &Chain,
500    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
501    const BlockFilterSet *BlockFilter) {
502  assert(BB);
503  assert(BlockToChain[BB] == &Chain);
504  assert(*Chain.begin() == BB);
505  MachineFunction &F = *BB->getParent();
506  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
507
508  MachineBasicBlock *LoopHeaderBB = BB;
509  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
510  BB = *llvm::prior(Chain.end());
511  for (;;) {
512    assert(BB);
513    assert(BlockToChain[BB] == &Chain);
514    assert(*llvm::prior(Chain.end()) == BB);
515    MachineBasicBlock *BestSucc = 0;
516
517    // Look for the best viable successor if there is one to place immediately
518    // after this block.
519    BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
520
521    // If an immediate successor isn't available, look for the best viable
522    // block among those we've identified as not violating the loop's CFG at
523    // this point. This won't be a fallthrough, but it will increase locality.
524    if (!BestSucc)
525      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
526
527    if (!BestSucc) {
528      BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
529                                       BlockFilter);
530      if (!BestSucc)
531        break;
532
533      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
534                      "layout successor until the CFG reduces\n");
535    }
536
537    // Place this block, updating the datastructures to reflect its placement.
538    BlockChain &SuccChain = *BlockToChain[BestSucc];
539    // Zero out LoopPredecessors for the successor we're about to merge in case
540    // we selected a successor that didn't fit naturally into the CFG.
541    SuccChain.LoopPredecessors = 0;
542    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
543                 << " to " << getBlockNum(BestSucc) << "\n");
544    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
545    Chain.merge(BestSucc, &SuccChain);
546    BB = *llvm::prior(Chain.end());
547  };
548
549  DEBUG(dbgs() << "Finished forming chain for header block "
550               << getBlockNum(*Chain.begin()) << "\n");
551}
552
553/// \brief Forms basic block chains from the natural loop structures.
554///
555/// These chains are designed to preserve the existing *structure* of the code
556/// as much as possible. We can then stitch the chains together in a way which
557/// both preserves the topological structure and minimizes taken conditional
558/// branches.
559void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
560                                            MachineLoop &L) {
561  // First recurse through any nested loops, building chains for those inner
562  // loops.
563  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
564    buildLoopChains(F, **LI);
565
566  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
567  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
568  BlockChain &LoopChain = *BlockToChain[L.getHeader()];
569
570  // FIXME: This is a really lame way of walking the chains in the loop: we
571  // walk the blocks, and use a set to prevent visiting a particular chain
572  // twice.
573  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
574  for (MachineLoop::block_iterator BI = L.block_begin(),
575                                   BE = L.block_end();
576       BI != BE; ++BI) {
577    BlockChain &Chain = *BlockToChain[*BI];
578    if (!UpdatedPreds.insert(&Chain) || BI == L.block_begin())
579      continue;
580
581    assert(Chain.LoopPredecessors == 0);
582    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
583         BCI != BCE; ++BCI) {
584      assert(BlockToChain[*BCI] == &Chain);
585      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
586                                            PE = (*BCI)->pred_end();
587           PI != PE; ++PI) {
588        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
589          continue;
590        ++Chain.LoopPredecessors;
591      }
592    }
593
594    if (Chain.LoopPredecessors == 0)
595      BlockWorkList.push_back(*BI);
596  }
597
598  buildChain(*L.block_begin(), LoopChain, BlockWorkList, &LoopBlockSet);
599
600  DEBUG({
601    // Crash at the end so we get all of the debugging output first.
602    bool BadLoop = false;
603    if (LoopChain.LoopPredecessors) {
604      BadLoop = true;
605      dbgs() << "Loop chain contains a block without its preds placed!\n"
606             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
607             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
608    }
609    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
610         BCI != BCE; ++BCI)
611      if (!LoopBlockSet.erase(*BCI)) {
612        // We don't mark the loop as bad here because there are real situations
613        // where this can occur. For example, with an unanalyzable fallthrough
614        // from a loop block to a non-loop block.
615        // FIXME: Such constructs shouldn't exist. Track them down and fix them.
616        dbgs() << "Loop chain contains a block not contained by the loop!\n"
617               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
618               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
619               << "  Bad block:    " << getBlockName(*BCI) << "\n";
620      }
621
622    if (!LoopBlockSet.empty()) {
623      BadLoop = true;
624      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
625                                    LBE = LoopBlockSet.end();
626           LBI != LBE; ++LBI)
627        dbgs() << "Loop contains blocks never placed into a chain!\n"
628               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
629               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
630               << "  Bad block:    " << getBlockName(*LBI) << "\n";
631    }
632    assert(!BadLoop && "Detected problems with the placement of this loop.");
633  });
634}
635
636void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
637  // Ensure that every BB in the function has an associated chain to simplify
638  // the assumptions of the remaining algorithm.
639  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
640  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
641    MachineBasicBlock *BB = FI;
642    BlockChain *&Chain = BlockToChain[BB];
643    Chain = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
644    // Also, merge any blocks which we cannot reason about and must preserve
645    // the exact fallthrough behavior for.
646    for (;;) {
647      Cond.clear();
648      MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
649      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
650        break;
651
652      MachineFunction::iterator NextFI(llvm::next(FI));
653      MachineBasicBlock *NextBB = NextFI;
654      // Ensure that the layout successor is a viable block, as we know that
655      // fallthrough is a possibility.
656      assert(NextFI != FE && "Can't fallthrough past the last block.");
657      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
658                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
659                   << "\n");
660      Chain->merge(NextBB, 0);
661      FI = NextFI;
662      BB = NextBB;
663    }
664  }
665
666  // Build any loop-based chains.
667  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
668       ++LI)
669    buildLoopChains(F, **LI);
670
671  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
672
673  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
674  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
675    MachineBasicBlock *BB = &*FI;
676    BlockChain &Chain = *BlockToChain[BB];
677    if (!UpdatedPreds.insert(&Chain))
678      continue;
679
680    assert(Chain.LoopPredecessors == 0);
681    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
682         BCI != BCE; ++BCI) {
683      assert(BlockToChain[*BCI] == &Chain);
684      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
685                                            PE = (*BCI)->pred_end();
686           PI != PE; ++PI) {
687        if (BlockToChain[*PI] == &Chain)
688          continue;
689        ++Chain.LoopPredecessors;
690      }
691    }
692
693    if (Chain.LoopPredecessors == 0)
694      BlockWorkList.push_back(BB);
695  }
696
697  BlockChain &FunctionChain = *BlockToChain[&F.front()];
698  buildChain(&F.front(), FunctionChain, BlockWorkList);
699
700  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
701  DEBUG({
702    // Crash at the end so we get all of the debugging output first.
703    bool BadFunc = false;
704    FunctionBlockSetType FunctionBlockSet;
705    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
706      FunctionBlockSet.insert(FI);
707
708    for (BlockChain::iterator BCI = FunctionChain.begin(),
709                              BCE = FunctionChain.end();
710         BCI != BCE; ++BCI)
711      if (!FunctionBlockSet.erase(*BCI)) {
712        BadFunc = true;
713        dbgs() << "Function chain contains a block not in the function!\n"
714               << "  Bad block:    " << getBlockName(*BCI) << "\n";
715      }
716
717    if (!FunctionBlockSet.empty()) {
718      BadFunc = true;
719      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
720                                          FBE = FunctionBlockSet.end();
721           FBI != FBE; ++FBI)
722        dbgs() << "Function contains blocks never placed into a chain!\n"
723               << "  Bad block:    " << getBlockName(*FBI) << "\n";
724    }
725    assert(!BadFunc && "Detected problems with the block placement.");
726  });
727
728  // Splice the blocks into place.
729  MachineFunction::iterator InsertPos = F.begin();
730  for (BlockChain::iterator BI = FunctionChain.begin(),
731                            BE = FunctionChain.end();
732       BI != BE; ++BI) {
733    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
734                                                  : "          ... ")
735          << getBlockName(*BI) << "\n");
736    if (InsertPos != MachineFunction::iterator(*BI))
737      F.splice(InsertPos, *BI);
738    else
739      ++InsertPos;
740
741    // Update the terminator of the previous block.
742    if (BI == FunctionChain.begin())
743      continue;
744    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
745
746    // FIXME: It would be awesome of updateTerminator would just return rather
747    // than assert when the branch cannot be analyzed in order to remove this
748    // boiler plate.
749    Cond.clear();
750    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
751    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
752      PrevBB->updateTerminator();
753  }
754
755  // Fixup the last block.
756  Cond.clear();
757  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
758  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
759    F.back().updateTerminator();
760}
761
762/// \brief Recursive helper to align a loop and any nested loops.
763static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) {
764  // Recurse through nested loops.
765  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
766    AlignLoop(F, *I, Align);
767
768  L->getTopBlock()->setAlignment(Align);
769}
770
771/// \brief Align loop headers to target preferred alignments.
772void MachineBlockPlacement::AlignLoops(MachineFunction &F) {
773  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
774    return;
775
776  unsigned Align = TLI->getPrefLoopAlignment();
777  if (!Align)
778    return;  // Don't care about loop alignment.
779
780  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
781    AlignLoop(F, *I, Align);
782}
783
784bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
785  // Check for single-block functions and skip them.
786  if (llvm::next(F.begin()) == F.end())
787    return false;
788
789  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
790  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
791  MLI = &getAnalysis<MachineLoopInfo>();
792  TII = F.getTarget().getInstrInfo();
793  TLI = F.getTarget().getTargetLowering();
794  assert(BlockToChain.empty());
795
796  buildCFGChains(F);
797  AlignLoops(F);
798
799  BlockToChain.clear();
800  ChainAllocator.DestroyAll();
801
802  // We always return true as we have no way to track whether the final order
803  // differs from the original order.
804  return true;
805}
806
807namespace {
808/// \brief A pass to compute block placement statistics.
809///
810/// A separate pass to compute interesting statistics for evaluating block
811/// placement. This is separate from the actual placement pass so that they can
812/// be computed in the absense of any placement transformations or when using
813/// alternative placement strategies.
814class MachineBlockPlacementStats : public MachineFunctionPass {
815  /// \brief A handle to the branch probability pass.
816  const MachineBranchProbabilityInfo *MBPI;
817
818  /// \brief A handle to the function-wide block frequency pass.
819  const MachineBlockFrequencyInfo *MBFI;
820
821public:
822  static char ID; // Pass identification, replacement for typeid
823  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
824    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
825  }
826
827  bool runOnMachineFunction(MachineFunction &F);
828
829  void getAnalysisUsage(AnalysisUsage &AU) const {
830    AU.addRequired<MachineBranchProbabilityInfo>();
831    AU.addRequired<MachineBlockFrequencyInfo>();
832    AU.setPreservesAll();
833    MachineFunctionPass::getAnalysisUsage(AU);
834  }
835
836  const char *getPassName() const { return "Block Placement Stats"; }
837};
838}
839
840char MachineBlockPlacementStats::ID = 0;
841INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
842                      "Basic Block Placement Stats", false, false)
843INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
844INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
845INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
846                    "Basic Block Placement Stats", false, false)
847
848FunctionPass *llvm::createMachineBlockPlacementStatsPass() {
849  return new MachineBlockPlacementStats();
850}
851
852bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
853  // Check for single-block functions and skip them.
854  if (llvm::next(F.begin()) == F.end())
855    return false;
856
857  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
858  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
859
860  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
861    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
862    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
863                                                  : NumUncondBranches;
864    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
865                                                      : UncondBranchTakenFreq;
866    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
867                                          SE = I->succ_end();
868         SI != SE; ++SI) {
869      // Skip if this successor is a fallthrough.
870      if (I->isLayoutSuccessor(*SI))
871        continue;
872
873      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
874      ++NumBranches;
875      BranchTakenFreq += EdgeFreq.getFrequency();
876    }
877  }
878
879  return false;
880}
881
882