MachineBlockPlacement.cpp revision d4895ded27179c47ef7327e3322b6a11a905eb9f
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absense of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include <algorithm>
46using namespace llvm;
47
48STATISTIC(NumCondBranches, "Number of conditional branches");
49STATISTIC(NumUncondBranches, "Number of uncondittional branches");
50STATISTIC(CondBranchTakenFreq,
51          "Potential frequency of taking conditional branches");
52STATISTIC(UncondBranchTakenFreq,
53          "Potential frequency of taking unconditional branches");
54
55namespace {
56class BlockChain;
57/// \brief Type for our function-wide basic block -> block chain mapping.
58typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
59}
60
61namespace {
62/// \brief A chain of blocks which will be laid out contiguously.
63///
64/// This is the datastructure representing a chain of consecutive blocks that
65/// are profitable to layout together in order to maximize fallthrough
66/// probabilities. We also can use a block chain to represent a sequence of
67/// basic blocks which have some external (correctness) requirement for
68/// sequential layout.
69///
70/// Eventually, the block chains will form a directed graph over the function.
71/// We provide an SCC-supporting-iterator in order to quicky build and walk the
72/// SCCs of block chains within a function.
73///
74/// The block chains also have support for calculating and caching probability
75/// information related to the chain itself versus other chains. This is used
76/// for ranking during the final layout of block chains.
77class BlockChain {
78  /// \brief The sequence of blocks belonging to this chain.
79  ///
80  /// This is the sequence of blocks for a particular chain. These will be laid
81  /// out in-order within the function.
82  SmallVector<MachineBasicBlock *, 4> Blocks;
83
84  /// \brief A handle to the function-wide basic block to block chain mapping.
85  ///
86  /// This is retained in each block chain to simplify the computation of child
87  /// block chains for SCC-formation and iteration. We store the edges to child
88  /// basic blocks, and map them back to their associated chains using this
89  /// structure.
90  BlockToChainMapType &BlockToChain;
91
92public:
93  /// \brief Construct a new BlockChain.
94  ///
95  /// This builds a new block chain representing a single basic block in the
96  /// function. It also registers itself as the chain that block participates
97  /// in with the BlockToChain mapping.
98  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
99    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
100    assert(BB && "Cannot create a chain with a null basic block");
101    BlockToChain[BB] = this;
102  }
103
104  /// \brief Iterator over blocks within the chain.
105  typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator;
106
107  /// \brief Beginning of blocks within the chain.
108  iterator begin() const { return Blocks.begin(); }
109
110  /// \brief End of blocks within the chain.
111  iterator end() const { return Blocks.end(); }
112
113  /// \brief Merge a block chain into this one.
114  ///
115  /// This routine merges a block chain into this one. It takes care of forming
116  /// a contiguous sequence of basic blocks, updating the edge list, and
117  /// updating the block -> chain mapping. It does not free or tear down the
118  /// old chain, but the old chain's block list is no longer valid.
119  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
120    assert(BB);
121    assert(!Blocks.empty());
122
123    // Fast path in case we don't have a chain already.
124    if (!Chain) {
125      assert(!BlockToChain[BB]);
126      Blocks.push_back(BB);
127      BlockToChain[BB] = this;
128      return;
129    }
130
131    assert(BB == *Chain->begin());
132    assert(Chain->begin() != Chain->end());
133
134    // Update the incoming blocks to point to this chain, and add them to the
135    // chain structure.
136    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
137         BI != BE; ++BI) {
138      Blocks.push_back(*BI);
139      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
140      BlockToChain[*BI] = this;
141    }
142  }
143
144  /// \brief Count of predecessors within the loop currently being processed.
145  ///
146  /// This count is updated at each loop we process to represent the number of
147  /// in-loop predecessors of this chain.
148  unsigned LoopPredecessors;
149};
150}
151
152namespace {
153class MachineBlockPlacement : public MachineFunctionPass {
154  /// \brief A typedef for a block filter set.
155  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
156
157  /// \brief A handle to the branch probability pass.
158  const MachineBranchProbabilityInfo *MBPI;
159
160  /// \brief A handle to the function-wide block frequency pass.
161  const MachineBlockFrequencyInfo *MBFI;
162
163  /// \brief A handle to the loop info.
164  const MachineLoopInfo *MLI;
165
166  /// \brief A handle to the target's instruction info.
167  const TargetInstrInfo *TII;
168
169  /// \brief A handle to the target's lowering info.
170  const TargetLowering *TLI;
171
172  /// \brief Allocator and owner of BlockChain structures.
173  ///
174  /// We build BlockChains lazily by merging together high probability BB
175  /// sequences acording to the "Algo2" in the paper mentioned at the top of
176  /// the file. To reduce malloc traffic, we allocate them using this slab-like
177  /// allocator, and destroy them after the pass completes.
178  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
179
180  /// \brief Function wide BasicBlock to BlockChain mapping.
181  ///
182  /// This mapping allows efficiently moving from any given basic block to the
183  /// BlockChain it participates in, if any. We use it to, among other things,
184  /// allow implicitly defining edges between chains as the existing edges
185  /// between basic blocks.
186  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
187
188  void markChainSuccessors(BlockChain &Chain,
189                           MachineBasicBlock *LoopHeaderBB,
190                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
191                           const BlockFilterSet *BlockFilter = 0);
192  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
193                                         BlockChain &Chain,
194                                         const BlockFilterSet *BlockFilter);
195  MachineBasicBlock *selectBestCandidateBlock(
196      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
197      const BlockFilterSet *BlockFilter);
198  MachineBasicBlock *getFirstUnplacedBlock(
199      MachineFunction &F,
200      const BlockChain &PlacedChain,
201      MachineFunction::iterator &PrevUnplacedBlockIt,
202      const BlockFilterSet *BlockFilter);
203  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
204                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
205                  const BlockFilterSet *BlockFilter = 0);
206  MachineBasicBlock *findBestLoopTop(MachineFunction &F,
207                                     MachineLoop &L,
208                                     const BlockFilterSet &LoopBlockSet);
209  void buildLoopChains(MachineFunction &F, MachineLoop &L);
210  void buildCFGChains(MachineFunction &F);
211  void AlignLoops(MachineFunction &F);
212
213public:
214  static char ID; // Pass identification, replacement for typeid
215  MachineBlockPlacement() : MachineFunctionPass(ID) {
216    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
217  }
218
219  bool runOnMachineFunction(MachineFunction &F);
220
221  void getAnalysisUsage(AnalysisUsage &AU) const {
222    AU.addRequired<MachineBranchProbabilityInfo>();
223    AU.addRequired<MachineBlockFrequencyInfo>();
224    AU.addRequired<MachineLoopInfo>();
225    MachineFunctionPass::getAnalysisUsage(AU);
226  }
227
228  const char *getPassName() const { return "Block Placement"; }
229};
230}
231
232char MachineBlockPlacement::ID = 0;
233INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
234                      "Branch Probability Basic Block Placement", false, false)
235INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
236INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
237INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
238INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
239                    "Branch Probability Basic Block Placement", false, false)
240
241FunctionPass *llvm::createMachineBlockPlacementPass() {
242  return new MachineBlockPlacement();
243}
244
245#ifndef NDEBUG
246/// \brief Helper to print the name of a MBB.
247///
248/// Only used by debug logging.
249static std::string getBlockName(MachineBasicBlock *BB) {
250  std::string Result;
251  raw_string_ostream OS(Result);
252  OS << "BB#" << BB->getNumber()
253     << " (derived from LLVM BB '" << BB->getName() << "')";
254  OS.flush();
255  return Result;
256}
257
258/// \brief Helper to print the number of a MBB.
259///
260/// Only used by debug logging.
261static std::string getBlockNum(MachineBasicBlock *BB) {
262  std::string Result;
263  raw_string_ostream OS(Result);
264  OS << "BB#" << BB->getNumber();
265  OS.flush();
266  return Result;
267}
268#endif
269
270/// \brief Mark a chain's successors as having one fewer preds.
271///
272/// When a chain is being merged into the "placed" chain, this routine will
273/// quickly walk the successors of each block in the chain and mark them as
274/// having one fewer active predecessor. It also adds any successors of this
275/// chain which reach the zero-predecessor state to the worklist passed in.
276void MachineBlockPlacement::markChainSuccessors(
277    BlockChain &Chain,
278    MachineBasicBlock *LoopHeaderBB,
279    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
280    const BlockFilterSet *BlockFilter) {
281  // Walk all the blocks in this chain, marking their successors as having
282  // a predecessor placed.
283  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
284       CBI != CBE; ++CBI) {
285    // Add any successors for which this is the only un-placed in-loop
286    // predecessor to the worklist as a viable candidate for CFG-neutral
287    // placement. No subsequent placement of this block will violate the CFG
288    // shape, so we get to use heuristics to choose a favorable placement.
289    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
290                                          SE = (*CBI)->succ_end();
291         SI != SE; ++SI) {
292      if (BlockFilter && !BlockFilter->count(*SI))
293        continue;
294      BlockChain &SuccChain = *BlockToChain[*SI];
295      // Disregard edges within a fixed chain, or edges to the loop header.
296      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
297        continue;
298
299      // This is a cross-chain edge that is within the loop, so decrement the
300      // loop predecessor count of the destination chain.
301      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
302        BlockWorkList.push_back(*SuccChain.begin());
303    }
304  }
305}
306
307/// \brief Select the best successor for a block.
308///
309/// This looks across all successors of a particular block and attempts to
310/// select the "best" one to be the layout successor. It only considers direct
311/// successors which also pass the block filter. It will attempt to avoid
312/// breaking CFG structure, but cave and break such structures in the case of
313/// very hot successor edges.
314///
315/// \returns The best successor block found, or null if none are viable.
316MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
317    MachineBasicBlock *BB, BlockChain &Chain,
318    const BlockFilterSet *BlockFilter) {
319  const BranchProbability HotProb(4, 5); // 80%
320
321  MachineBasicBlock *BestSucc = 0;
322  // FIXME: Due to the performance of the probability and weight routines in
323  // the MBPI analysis, we manually compute probabilities using the edge
324  // weights. This is suboptimal as it means that the somewhat subtle
325  // definition of edge weight semantics is encoded here as well. We should
326  // improve the MBPI interface to effeciently support query patterns such as
327  // this.
328  uint32_t BestWeight = 0;
329  uint32_t WeightScale = 0;
330  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
331  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
332  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
333                                        SE = BB->succ_end();
334       SI != SE; ++SI) {
335    if (BlockFilter && !BlockFilter->count(*SI))
336      continue;
337    BlockChain &SuccChain = *BlockToChain[*SI];
338    if (&SuccChain == &Chain) {
339      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
340      continue;
341    }
342    if (*SI != *SuccChain.begin()) {
343      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
344      continue;
345    }
346
347    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
348    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
349
350    // Only consider successors which are either "hot", or wouldn't violate
351    // any CFG constraints.
352    if (SuccChain.LoopPredecessors != 0) {
353      if (SuccProb < HotProb) {
354        DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
355        continue;
356      }
357
358      // Make sure that a hot successor doesn't have a globally more important
359      // predecessor.
360      BlockFrequency CandidateEdgeFreq
361        = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
362      bool BadCFGConflict = false;
363      for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
364                                            PE = (*SI)->pred_end();
365           PI != PE; ++PI) {
366        if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
367            BlockToChain[*PI] == &Chain)
368          continue;
369        BlockFrequency PredEdgeFreq
370          = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
371        if (PredEdgeFreq >= CandidateEdgeFreq) {
372          BadCFGConflict = true;
373          break;
374        }
375      }
376      if (BadCFGConflict) {
377        DEBUG(dbgs() << "    " << getBlockName(*SI)
378                               << " -> non-cold CFG conflict\n");
379        continue;
380      }
381    }
382
383    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
384                 << " (prob)"
385                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
386                 << "\n");
387    if (BestSucc && BestWeight >= SuccWeight)
388      continue;
389    BestSucc = *SI;
390    BestWeight = SuccWeight;
391  }
392  return BestSucc;
393}
394
395namespace {
396/// \brief Predicate struct to detect blocks already placed.
397class IsBlockPlaced {
398  const BlockChain &PlacedChain;
399  const BlockToChainMapType &BlockToChain;
400
401public:
402  IsBlockPlaced(const BlockChain &PlacedChain,
403                const BlockToChainMapType &BlockToChain)
404      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
405
406  bool operator()(MachineBasicBlock *BB) const {
407    return BlockToChain.lookup(BB) == &PlacedChain;
408  }
409};
410}
411
412/// \brief Select the best block from a worklist.
413///
414/// This looks through the provided worklist as a list of candidate basic
415/// blocks and select the most profitable one to place. The definition of
416/// profitable only really makes sense in the context of a loop. This returns
417/// the most frequently visited block in the worklist, which in the case of
418/// a loop, is the one most desirable to be physically close to the rest of the
419/// loop body in order to improve icache behavior.
420///
421/// \returns The best block found, or null if none are viable.
422MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
423    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
424    const BlockFilterSet *BlockFilter) {
425  // Once we need to walk the worklist looking for a candidate, cleanup the
426  // worklist of already placed entries.
427  // FIXME: If this shows up on profiles, it could be folded (at the cost of
428  // some code complexity) into the loop below.
429  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
430                                IsBlockPlaced(Chain, BlockToChain)),
431                 WorkList.end());
432
433  MachineBasicBlock *BestBlock = 0;
434  BlockFrequency BestFreq;
435  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
436                                                      WBE = WorkList.end();
437       WBI != WBE; ++WBI) {
438    assert(!BlockFilter || BlockFilter->count(*WBI));
439    BlockChain &SuccChain = *BlockToChain[*WBI];
440    if (&SuccChain == &Chain) {
441      DEBUG(dbgs() << "    " << getBlockName(*WBI)
442                   << " -> Already merged!\n");
443      continue;
444    }
445    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
446
447    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
448    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
449                 << " (freq)\n");
450    if (BestBlock && BestFreq >= CandidateFreq)
451      continue;
452    BestBlock = *WBI;
453    BestFreq = CandidateFreq;
454  }
455  return BestBlock;
456}
457
458/// \brief Retrieve the first unplaced basic block.
459///
460/// This routine is called when we are unable to use the CFG to walk through
461/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
462/// We walk through the function's blocks in order, starting from the
463/// LastUnplacedBlockIt. We update this iterator on each call to avoid
464/// re-scanning the entire sequence on repeated calls to this routine.
465MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
466    MachineFunction &F, const BlockChain &PlacedChain,
467    MachineFunction::iterator &PrevUnplacedBlockIt,
468    const BlockFilterSet *BlockFilter) {
469  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
470       ++I) {
471    if (BlockFilter && !BlockFilter->count(I))
472      continue;
473    if (BlockToChain[I] != &PlacedChain) {
474      PrevUnplacedBlockIt = I;
475      // Now select the head of the chain to which the unplaced block belongs
476      // as the block to place. This will force the entire chain to be placed,
477      // and satisfies the requirements of merging chains.
478      return *BlockToChain[I]->begin();
479    }
480  }
481  return 0;
482}
483
484void MachineBlockPlacement::buildChain(
485    MachineBasicBlock *BB,
486    BlockChain &Chain,
487    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
488    const BlockFilterSet *BlockFilter) {
489  assert(BB);
490  assert(BlockToChain[BB] == &Chain);
491  MachineFunction &F = *BB->getParent();
492  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
493
494  MachineBasicBlock *LoopHeaderBB = BB;
495  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
496  BB = *llvm::prior(Chain.end());
497  for (;;) {
498    assert(BB);
499    assert(BlockToChain[BB] == &Chain);
500    assert(*llvm::prior(Chain.end()) == BB);
501    MachineBasicBlock *BestSucc = 0;
502
503    // Look for the best viable successor if there is one to place immediately
504    // after this block.
505    BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
506
507    // If an immediate successor isn't available, look for the best viable
508    // block among those we've identified as not violating the loop's CFG at
509    // this point. This won't be a fallthrough, but it will increase locality.
510    if (!BestSucc)
511      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
512
513    if (!BestSucc) {
514      BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
515                                       BlockFilter);
516      if (!BestSucc)
517        break;
518
519      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
520                      "layout successor until the CFG reduces\n");
521    }
522
523    // Place this block, updating the datastructures to reflect its placement.
524    BlockChain &SuccChain = *BlockToChain[BestSucc];
525    // Zero out LoopPredecessors for the successor we're about to merge in case
526    // we selected a successor that didn't fit naturally into the CFG.
527    SuccChain.LoopPredecessors = 0;
528    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
529                 << " to " << getBlockNum(BestSucc) << "\n");
530    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
531    Chain.merge(BestSucc, &SuccChain);
532    BB = *llvm::prior(Chain.end());
533  }
534
535  DEBUG(dbgs() << "Finished forming chain for header block "
536               << getBlockNum(*Chain.begin()) << "\n");
537}
538
539/// \brief Find the best loop top block for layout.
540///
541/// This routine implements the logic to analyze the loop looking for the best
542/// block to layout at the top of the loop. Typically this is done to maximize
543/// fallthrough opportunities.
544MachineBasicBlock *
545MachineBlockPlacement::findBestLoopTop(MachineFunction &F,
546                                       MachineLoop &L,
547                                       const BlockFilterSet &LoopBlockSet) {
548  BlockFrequency BestExitEdgeFreq;
549  MachineBasicBlock *ExitingBB = 0;
550  MachineBasicBlock *LoopingBB = 0;
551  // If there are exits to outer loops, loop rotation can severely limit
552  // fallthrough opportunites unless it selects such an exit. Keep a set of
553  // blocks where rotating to exit with that block will reach an outer loop.
554  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
555
556  DEBUG(dbgs() << "Finding best loop exit for: "
557               << getBlockName(L.getHeader()) << "\n");
558  for (MachineLoop::block_iterator I = L.block_begin(),
559                                   E = L.block_end();
560       I != E; ++I) {
561    BlockChain &Chain = *BlockToChain[*I];
562    // Ensure that this block is at the end of a chain; otherwise it could be
563    // mid-way through an inner loop or a successor of an analyzable branch.
564    if (*I != *llvm::prior(Chain.end()))
565      continue;
566
567    // Now walk the successors. We need to establish whether this has a viable
568    // exiting successor and whether it has a viable non-exiting successor.
569    // We store the old exiting state and restore it if a viable looping
570    // successor isn't found.
571    MachineBasicBlock *OldExitingBB = ExitingBB;
572    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
573    // We also compute and store the best looping successor for use in layout.
574    MachineBasicBlock *BestLoopSucc = 0;
575    // FIXME: Due to the performance of the probability and weight routines in
576    // the MBPI analysis, we use the internal weights. This is only valid
577    // because it is purely a ranking function, we don't care about anything
578    // but the relative values.
579    uint32_t BestLoopSuccWeight = 0;
580    // FIXME: We also manually compute the probabilities to avoid quadratic
581    // behavior.
582    uint32_t WeightScale = 0;
583    uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
584    for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
585                                          SE = (*I)->succ_end();
586         SI != SE; ++SI) {
587      if ((*SI)->isLandingPad())
588        continue;
589      if (*SI == *I)
590        continue;
591      BlockChain &SuccChain = *BlockToChain[*SI];
592      // Don't split chains, either this chain or the successor's chain.
593      if (&Chain == &SuccChain || *SI != *SuccChain.begin()) {
594        DEBUG(dbgs() << "    " << (LoopBlockSet.count(*SI) ? "looping: "
595                                                           : "exiting: ")
596                     << getBlockName(*I) << " -> "
597                     << getBlockName(*SI) << " (chain conflict)\n");
598        continue;
599      }
600
601      uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
602      if (LoopBlockSet.count(*SI)) {
603        DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
604                     << getBlockName(*SI) << " (" << SuccWeight << ")\n");
605        if (BestLoopSucc && BestLoopSuccWeight >= SuccWeight)
606          continue;
607
608        BestLoopSucc = *SI;
609        BestLoopSuccWeight = SuccWeight;
610        continue;
611      }
612
613      BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
614      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
615      DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
616                   << getBlockName(*SI) << " (" << ExitEdgeFreq << ")\n");
617      // Note that we slightly bias this toward an existing layout successor to
618      // retain incoming order in the absence of better information.
619      // FIXME: Should we bias this more strongly? It's pretty weak.
620      if (!ExitingBB || ExitEdgeFreq > BestExitEdgeFreq ||
621          ((*I)->isLayoutSuccessor(*SI) &&
622           !(ExitEdgeFreq < BestExitEdgeFreq))) {
623        BestExitEdgeFreq = ExitEdgeFreq;
624        ExitingBB = *I;
625      }
626
627      if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI))
628        if (ExitLoop->contains(&L))
629          BlocksExitingToOuterLoop.insert(*I);
630    }
631
632    // Restore the old exiting state, no viable looping successor was found.
633    if (!BestLoopSucc) {
634      ExitingBB = OldExitingBB;
635      BestExitEdgeFreq = OldBestExitEdgeFreq;
636      continue;
637    }
638
639    // If this was best exiting block thus far, also record the looping block.
640    if (ExitingBB == *I)
641      LoopingBB = BestLoopSucc;
642  }
643  // Without a candidate exitting block or with only a single block in the
644  // loop, just use the loop header to layout the loop.
645  if (!ExitingBB || L.getNumBlocks() == 1)
646    return L.getHeader();
647
648  // Also, if we have exit blocks which lead to outer loops but didn't select
649  // one of them as the exiting block we are rotating toward, disable loop
650  // rotation altogether.
651  if (!BlocksExitingToOuterLoop.empty() &&
652      !BlocksExitingToOuterLoop.count(ExitingBB))
653    return L.getHeader();
654
655  assert(LoopingBB && "All successors of a loop block are exit blocks!");
656  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
657  DEBUG(dbgs() << "  Best top block: " << getBlockName(LoopingBB) << "\n");
658  return LoopingBB;
659}
660
661/// \brief Forms basic block chains from the natural loop structures.
662///
663/// These chains are designed to preserve the existing *structure* of the code
664/// as much as possible. We can then stitch the chains together in a way which
665/// both preserves the topological structure and minimizes taken conditional
666/// branches.
667void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
668                                            MachineLoop &L) {
669  // First recurse through any nested loops, building chains for those inner
670  // loops.
671  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
672    buildLoopChains(F, **LI);
673
674  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
675  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
676
677  MachineBasicBlock *LayoutTop = findBestLoopTop(F, L, LoopBlockSet);
678  BlockChain &LoopChain = *BlockToChain[LayoutTop];
679
680  // FIXME: This is a really lame way of walking the chains in the loop: we
681  // walk the blocks, and use a set to prevent visiting a particular chain
682  // twice.
683  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
684  assert(LoopChain.LoopPredecessors == 0);
685  UpdatedPreds.insert(&LoopChain);
686  for (MachineLoop::block_iterator BI = L.block_begin(),
687                                   BE = L.block_end();
688       BI != BE; ++BI) {
689    BlockChain &Chain = *BlockToChain[*BI];
690    if (!UpdatedPreds.insert(&Chain))
691      continue;
692
693    assert(Chain.LoopPredecessors == 0);
694    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
695         BCI != BCE; ++BCI) {
696      assert(BlockToChain[*BCI] == &Chain);
697      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
698                                            PE = (*BCI)->pred_end();
699           PI != PE; ++PI) {
700        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
701          continue;
702        ++Chain.LoopPredecessors;
703      }
704    }
705
706    if (Chain.LoopPredecessors == 0)
707      BlockWorkList.push_back(*Chain.begin());
708  }
709
710  buildChain(LayoutTop, LoopChain, BlockWorkList, &LoopBlockSet);
711
712  DEBUG({
713    // Crash at the end so we get all of the debugging output first.
714    bool BadLoop = false;
715    if (LoopChain.LoopPredecessors) {
716      BadLoop = true;
717      dbgs() << "Loop chain contains a block without its preds placed!\n"
718             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
719             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
720    }
721    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
722         BCI != BCE; ++BCI)
723      if (!LoopBlockSet.erase(*BCI)) {
724        // We don't mark the loop as bad here because there are real situations
725        // where this can occur. For example, with an unanalyzable fallthrough
726        // from a loop block to a non-loop block or vice versa.
727        dbgs() << "Loop chain contains a block not contained by the loop!\n"
728               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
729               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
730               << "  Bad block:    " << getBlockName(*BCI) << "\n";
731      }
732
733    if (!LoopBlockSet.empty()) {
734      BadLoop = true;
735      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
736                                    LBE = LoopBlockSet.end();
737           LBI != LBE; ++LBI)
738        dbgs() << "Loop contains blocks never placed into a chain!\n"
739               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
740               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
741               << "  Bad block:    " << getBlockName(*LBI) << "\n";
742    }
743    assert(!BadLoop && "Detected problems with the placement of this loop.");
744  });
745}
746
747void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
748  // Ensure that every BB in the function has an associated chain to simplify
749  // the assumptions of the remaining algorithm.
750  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
751  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
752    MachineBasicBlock *BB = FI;
753    BlockChain *Chain
754      = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
755    // Also, merge any blocks which we cannot reason about and must preserve
756    // the exact fallthrough behavior for.
757    for (;;) {
758      Cond.clear();
759      MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
760      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
761        break;
762
763      MachineFunction::iterator NextFI(llvm::next(FI));
764      MachineBasicBlock *NextBB = NextFI;
765      // Ensure that the layout successor is a viable block, as we know that
766      // fallthrough is a possibility.
767      assert(NextFI != FE && "Can't fallthrough past the last block.");
768      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
769                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
770                   << "\n");
771      Chain->merge(NextBB, 0);
772      FI = NextFI;
773      BB = NextBB;
774    }
775  }
776
777  // Build any loop-based chains.
778  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
779       ++LI)
780    buildLoopChains(F, **LI);
781
782  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
783
784  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
785  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
786    MachineBasicBlock *BB = &*FI;
787    BlockChain &Chain = *BlockToChain[BB];
788    if (!UpdatedPreds.insert(&Chain))
789      continue;
790
791    assert(Chain.LoopPredecessors == 0);
792    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
793         BCI != BCE; ++BCI) {
794      assert(BlockToChain[*BCI] == &Chain);
795      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
796                                            PE = (*BCI)->pred_end();
797           PI != PE; ++PI) {
798        if (BlockToChain[*PI] == &Chain)
799          continue;
800        ++Chain.LoopPredecessors;
801      }
802    }
803
804    if (Chain.LoopPredecessors == 0)
805      BlockWorkList.push_back(*Chain.begin());
806  }
807
808  BlockChain &FunctionChain = *BlockToChain[&F.front()];
809  buildChain(&F.front(), FunctionChain, BlockWorkList);
810
811  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
812  DEBUG({
813    // Crash at the end so we get all of the debugging output first.
814    bool BadFunc = false;
815    FunctionBlockSetType FunctionBlockSet;
816    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
817      FunctionBlockSet.insert(FI);
818
819    for (BlockChain::iterator BCI = FunctionChain.begin(),
820                              BCE = FunctionChain.end();
821         BCI != BCE; ++BCI)
822      if (!FunctionBlockSet.erase(*BCI)) {
823        BadFunc = true;
824        dbgs() << "Function chain contains a block not in the function!\n"
825               << "  Bad block:    " << getBlockName(*BCI) << "\n";
826      }
827
828    if (!FunctionBlockSet.empty()) {
829      BadFunc = true;
830      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
831                                          FBE = FunctionBlockSet.end();
832           FBI != FBE; ++FBI)
833        dbgs() << "Function contains blocks never placed into a chain!\n"
834               << "  Bad block:    " << getBlockName(*FBI) << "\n";
835    }
836    assert(!BadFunc && "Detected problems with the block placement.");
837  });
838
839  // Splice the blocks into place.
840  MachineFunction::iterator InsertPos = F.begin();
841  for (BlockChain::iterator BI = FunctionChain.begin(),
842                            BE = FunctionChain.end();
843       BI != BE; ++BI) {
844    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
845                                                  : "          ... ")
846          << getBlockName(*BI) << "\n");
847    if (InsertPos != MachineFunction::iterator(*BI))
848      F.splice(InsertPos, *BI);
849    else
850      ++InsertPos;
851
852    // Update the terminator of the previous block.
853    if (BI == FunctionChain.begin())
854      continue;
855    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
856
857    // FIXME: It would be awesome of updateTerminator would just return rather
858    // than assert when the branch cannot be analyzed in order to remove this
859    // boiler plate.
860    Cond.clear();
861    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
862    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
863      PrevBB->updateTerminator();
864  }
865
866  // Fixup the last block.
867  Cond.clear();
868  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
869  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
870    F.back().updateTerminator();
871}
872
873/// \brief Recursive helper to align a loop and any nested loops.
874static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) {
875  // Recurse through nested loops.
876  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
877    AlignLoop(F, *I, Align);
878
879  L->getTopBlock()->setAlignment(Align);
880}
881
882/// \brief Align loop headers to target preferred alignments.
883void MachineBlockPlacement::AlignLoops(MachineFunction &F) {
884  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
885    return;
886
887  unsigned Align = TLI->getPrefLoopAlignment();
888  if (!Align)
889    return;  // Don't care about loop alignment.
890
891  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
892    AlignLoop(F, *I, Align);
893}
894
895bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
896  // Check for single-block functions and skip them.
897  if (llvm::next(F.begin()) == F.end())
898    return false;
899
900  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
901  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
902  MLI = &getAnalysis<MachineLoopInfo>();
903  TII = F.getTarget().getInstrInfo();
904  TLI = F.getTarget().getTargetLowering();
905  assert(BlockToChain.empty());
906
907  buildCFGChains(F);
908  AlignLoops(F);
909
910  BlockToChain.clear();
911  ChainAllocator.DestroyAll();
912
913  // We always return true as we have no way to track whether the final order
914  // differs from the original order.
915  return true;
916}
917
918namespace {
919/// \brief A pass to compute block placement statistics.
920///
921/// A separate pass to compute interesting statistics for evaluating block
922/// placement. This is separate from the actual placement pass so that they can
923/// be computed in the absense of any placement transformations or when using
924/// alternative placement strategies.
925class MachineBlockPlacementStats : public MachineFunctionPass {
926  /// \brief A handle to the branch probability pass.
927  const MachineBranchProbabilityInfo *MBPI;
928
929  /// \brief A handle to the function-wide block frequency pass.
930  const MachineBlockFrequencyInfo *MBFI;
931
932public:
933  static char ID; // Pass identification, replacement for typeid
934  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
935    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
936  }
937
938  bool runOnMachineFunction(MachineFunction &F);
939
940  void getAnalysisUsage(AnalysisUsage &AU) const {
941    AU.addRequired<MachineBranchProbabilityInfo>();
942    AU.addRequired<MachineBlockFrequencyInfo>();
943    AU.setPreservesAll();
944    MachineFunctionPass::getAnalysisUsage(AU);
945  }
946
947  const char *getPassName() const { return "Block Placement Stats"; }
948};
949}
950
951char MachineBlockPlacementStats::ID = 0;
952INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
953                      "Basic Block Placement Stats", false, false)
954INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
955INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
956INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
957                    "Basic Block Placement Stats", false, false)
958
959FunctionPass *llvm::createMachineBlockPlacementStatsPass() {
960  return new MachineBlockPlacementStats();
961}
962
963bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
964  // Check for single-block functions and skip them.
965  if (llvm::next(F.begin()) == F.end())
966    return false;
967
968  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
969  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
970
971  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
972    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
973    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
974                                                  : NumUncondBranches;
975    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
976                                                      : UncondBranchTakenFreq;
977    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
978                                          SE = I->succ_end();
979         SI != SE; ++SI) {
980      // Skip if this successor is a fallthrough.
981      if (I->isLayoutSuccessor(*SI))
982        continue;
983
984      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
985      ++NumBranches;
986      BranchTakenFreq += EdgeFreq.getFrequency();
987    }
988  }
989
990  return false;
991}
992
993