MachineBlockPlacement.cpp revision fa97658b1c71f747cfe0f3e1f1bcbd86d7fa9f75
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absense of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Support/Allocator.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/PostOrderIterator.h"
42#include "llvm/ADT/SCCIterator.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include <algorithm>
49using namespace llvm;
50
51STATISTIC(NumCondBranches, "Number of conditional branches");
52STATISTIC(NumUncondBranches, "Number of uncondittional branches");
53STATISTIC(CondBranchTakenFreq,
54          "Potential frequency of taking conditional branches");
55STATISTIC(UncondBranchTakenFreq,
56          "Potential frequency of taking unconditional branches");
57
58namespace {
59/// \brief A structure for storing a weighted edge.
60///
61/// This stores an edge and its weight, computed as the product of the
62/// frequency that the starting block is entered with the probability of
63/// a particular exit block.
64struct WeightedEdge {
65  BlockFrequency EdgeFrequency;
66  MachineBasicBlock *From, *To;
67
68  bool operator<(const WeightedEdge &RHS) const {
69    return EdgeFrequency < RHS.EdgeFrequency;
70  }
71};
72}
73
74namespace {
75class BlockChain;
76/// \brief Type for our function-wide basic block -> block chain mapping.
77typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
78}
79
80namespace {
81/// \brief A chain of blocks which will be laid out contiguously.
82///
83/// This is the datastructure representing a chain of consecutive blocks that
84/// are profitable to layout together in order to maximize fallthrough
85/// probabilities. We also can use a block chain to represent a sequence of
86/// basic blocks which have some external (correctness) requirement for
87/// sequential layout.
88///
89/// Eventually, the block chains will form a directed graph over the function.
90/// We provide an SCC-supporting-iterator in order to quicky build and walk the
91/// SCCs of block chains within a function.
92///
93/// The block chains also have support for calculating and caching probability
94/// information related to the chain itself versus other chains. This is used
95/// for ranking during the final layout of block chains.
96class BlockChain {
97  /// \brief The sequence of blocks belonging to this chain.
98  ///
99  /// This is the sequence of blocks for a particular chain. These will be laid
100  /// out in-order within the function.
101  SmallVector<MachineBasicBlock *, 4> Blocks;
102
103  /// \brief A handle to the function-wide basic block to block chain mapping.
104  ///
105  /// This is retained in each block chain to simplify the computation of child
106  /// block chains for SCC-formation and iteration. We store the edges to child
107  /// basic blocks, and map them back to their associated chains using this
108  /// structure.
109  BlockToChainMapType &BlockToChain;
110
111public:
112  /// \brief Construct a new BlockChain.
113  ///
114  /// This builds a new block chain representing a single basic block in the
115  /// function. It also registers itself as the chain that block participates
116  /// in with the BlockToChain mapping.
117  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
118    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
119    assert(BB && "Cannot create a chain with a null basic block");
120    BlockToChain[BB] = this;
121  }
122
123  /// \brief Iterator over blocks within the chain.
124  typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator;
125
126  /// \brief Beginning of blocks within the chain.
127  iterator begin() const { return Blocks.begin(); }
128
129  /// \brief End of blocks within the chain.
130  iterator end() const { return Blocks.end(); }
131
132  /// \brief Merge a block chain into this one.
133  ///
134  /// This routine merges a block chain into this one. It takes care of forming
135  /// a contiguous sequence of basic blocks, updating the edge list, and
136  /// updating the block -> chain mapping. It does not free or tear down the
137  /// old chain, but the old chain's block list is no longer valid.
138  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
139    assert(BB);
140    assert(!Blocks.empty());
141
142    // Fast path in case we don't have a chain already.
143    if (!Chain) {
144      assert(!BlockToChain[BB]);
145      Blocks.push_back(BB);
146      BlockToChain[BB] = this;
147      return;
148    }
149
150    assert(BB == *Chain->begin());
151    assert(Chain->begin() != Chain->end());
152
153    // Update the incoming blocks to point to this chain, and add them to the
154    // chain structure.
155    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
156         BI != BE; ++BI) {
157      Blocks.push_back(*BI);
158      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
159      BlockToChain[*BI] = this;
160    }
161  }
162
163  /// \brief Count of predecessors within the loop currently being processed.
164  ///
165  /// This count is updated at each loop we process to represent the number of
166  /// in-loop predecessors of this chain.
167  unsigned LoopPredecessors;
168};
169}
170
171namespace {
172class MachineBlockPlacement : public MachineFunctionPass {
173  /// \brief A typedef for a block filter set.
174  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
175
176  /// \brief A handle to the branch probability pass.
177  const MachineBranchProbabilityInfo *MBPI;
178
179  /// \brief A handle to the function-wide block frequency pass.
180  const MachineBlockFrequencyInfo *MBFI;
181
182  /// \brief A handle to the loop info.
183  const MachineLoopInfo *MLI;
184
185  /// \brief A handle to the target's instruction info.
186  const TargetInstrInfo *TII;
187
188  /// \brief A handle to the target's lowering info.
189  const TargetLowering *TLI;
190
191  /// \brief Allocator and owner of BlockChain structures.
192  ///
193  /// We build BlockChains lazily by merging together high probability BB
194  /// sequences acording to the "Algo2" in the paper mentioned at the top of
195  /// the file. To reduce malloc traffic, we allocate them using this slab-like
196  /// allocator, and destroy them after the pass completes.
197  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
198
199  /// \brief Function wide BasicBlock to BlockChain mapping.
200  ///
201  /// This mapping allows efficiently moving from any given basic block to the
202  /// BlockChain it participates in, if any. We use it to, among other things,
203  /// allow implicitly defining edges between chains as the existing edges
204  /// between basic blocks.
205  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
206
207  void markChainSuccessors(BlockChain &Chain,
208                           MachineBasicBlock *LoopHeaderBB,
209                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
210                           const BlockFilterSet *BlockFilter = 0);
211  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
212                                         BlockChain &Chain,
213                                         const BlockFilterSet *BlockFilter);
214  MachineBasicBlock *selectBestCandidateBlock(
215      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
216      const BlockFilterSet *BlockFilter);
217  MachineBasicBlock *getFirstUnplacedBlock(const BlockChain &PlacedChain,
218                                           ArrayRef<MachineBasicBlock *> Blocks,
219                                           unsigned &PrevUnplacedBlockIdx);
220  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
221                  ArrayRef<MachineBasicBlock *> Blocks,
222                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
223                  const BlockFilterSet *BlockFilter = 0);
224  void buildLoopChains(MachineFunction &F, MachineLoop &L);
225  void buildCFGChains(MachineFunction &F);
226  void AlignLoops(MachineFunction &F);
227
228public:
229  static char ID; // Pass identification, replacement for typeid
230  MachineBlockPlacement() : MachineFunctionPass(ID) {
231    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
232  }
233
234  bool runOnMachineFunction(MachineFunction &F);
235
236  void getAnalysisUsage(AnalysisUsage &AU) const {
237    AU.addRequired<MachineBranchProbabilityInfo>();
238    AU.addRequired<MachineBlockFrequencyInfo>();
239    AU.addRequired<MachineLoopInfo>();
240    MachineFunctionPass::getAnalysisUsage(AU);
241  }
242
243  const char *getPassName() const { return "Block Placement"; }
244};
245}
246
247char MachineBlockPlacement::ID = 0;
248INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
249                      "Branch Probability Basic Block Placement", false, false)
250INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
251INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
252INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
253INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
254                    "Branch Probability Basic Block Placement", false, false)
255
256FunctionPass *llvm::createMachineBlockPlacementPass() {
257  return new MachineBlockPlacement();
258}
259
260#ifndef NDEBUG
261/// \brief Helper to print the name of a MBB.
262///
263/// Only used by debug logging.
264static std::string getBlockName(MachineBasicBlock *BB) {
265  std::string Result;
266  raw_string_ostream OS(Result);
267  OS << "BB#" << BB->getNumber()
268     << " (derived from LLVM BB '" << BB->getName() << "')";
269  OS.flush();
270  return Result;
271}
272
273/// \brief Helper to print the number of a MBB.
274///
275/// Only used by debug logging.
276static std::string getBlockNum(MachineBasicBlock *BB) {
277  std::string Result;
278  raw_string_ostream OS(Result);
279  OS << "BB#" << BB->getNumber();
280  OS.flush();
281  return Result;
282}
283#endif
284
285/// \brief Mark a chain's successors as having one fewer preds.
286///
287/// When a chain is being merged into the "placed" chain, this routine will
288/// quickly walk the successors of each block in the chain and mark them as
289/// having one fewer active predecessor. It also adds any successors of this
290/// chain which reach the zero-predecessor state to the worklist passed in.
291void MachineBlockPlacement::markChainSuccessors(
292    BlockChain &Chain,
293    MachineBasicBlock *LoopHeaderBB,
294    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
295    const BlockFilterSet *BlockFilter) {
296  // Walk all the blocks in this chain, marking their successors as having
297  // a predecessor placed.
298  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
299       CBI != CBE; ++CBI) {
300    // Add any successors for which this is the only un-placed in-loop
301    // predecessor to the worklist as a viable candidate for CFG-neutral
302    // placement. No subsequent placement of this block will violate the CFG
303    // shape, so we get to use heuristics to choose a favorable placement.
304    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
305                                          SE = (*CBI)->succ_end();
306         SI != SE; ++SI) {
307      if (BlockFilter && !BlockFilter->count(*SI))
308        continue;
309      BlockChain &SuccChain = *BlockToChain[*SI];
310      // Disregard edges within a fixed chain, or edges to the loop header.
311      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
312        continue;
313
314      // This is a cross-chain edge that is within the loop, so decrement the
315      // loop predecessor count of the destination chain.
316      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
317        BlockWorkList.push_back(*SI);
318    }
319  }
320}
321
322/// \brief Select the best successor for a block.
323///
324/// This looks across all successors of a particular block and attempts to
325/// select the "best" one to be the layout successor. It only considers direct
326/// successors which also pass the block filter. It will attempt to avoid
327/// breaking CFG structure, but cave and break such structures in the case of
328/// very hot successor edges.
329///
330/// \returns The best successor block found, or null if none are viable.
331MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
332    MachineBasicBlock *BB, BlockChain &Chain,
333    const BlockFilterSet *BlockFilter) {
334  const BranchProbability HotProb(4, 5); // 80%
335
336  MachineBasicBlock *BestSucc = 0;
337  // FIXME: Due to the performance of the probability and weight routines in
338  // the MBPI analysis, we manually compute probabilities using the edge
339  // weights. This is suboptimal as it means that the somewhat subtle
340  // definition of edge weight semantics is encoded here as well. We should
341  // improve the MBPI interface to effeciently support query patterns such as
342  // this.
343  uint32_t BestWeight = 0;
344  uint32_t WeightScale = 0;
345  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
346  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
347  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
348                                        SE = BB->succ_end();
349       SI != SE; ++SI) {
350    if (BlockFilter && !BlockFilter->count(*SI))
351      continue;
352    BlockChain &SuccChain = *BlockToChain[*SI];
353    if (&SuccChain == &Chain) {
354      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
355      continue;
356    }
357
358    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
359    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
360
361    // Only consider successors which are either "hot", or wouldn't violate
362    // any CFG constraints.
363    if (SuccChain.LoopPredecessors != 0 && SuccProb < HotProb) {
364      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
365      continue;
366    }
367
368    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
369                 << " (prob)"
370                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
371                 << "\n");
372    if (BestSucc && BestWeight >= SuccWeight)
373      continue;
374    BestSucc = *SI;
375    BestWeight = SuccWeight;
376  }
377  return BestSucc;
378}
379
380namespace {
381/// \brief Predicate struct to detect blocks already placed.
382class IsBlockPlaced {
383  const BlockChain &PlacedChain;
384  const BlockToChainMapType &BlockToChain;
385
386public:
387  IsBlockPlaced(const BlockChain &PlacedChain,
388                const BlockToChainMapType &BlockToChain)
389      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
390
391  bool operator()(MachineBasicBlock *BB) const {
392    return BlockToChain.lookup(BB) == &PlacedChain;
393  }
394};
395}
396
397/// \brief Select the best block from a worklist.
398///
399/// This looks through the provided worklist as a list of candidate basic
400/// blocks and select the most profitable one to place. The definition of
401/// profitable only really makes sense in the context of a loop. This returns
402/// the most frequently visited block in the worklist, which in the case of
403/// a loop, is the one most desirable to be physically close to the rest of the
404/// loop body in order to improve icache behavior.
405///
406/// \returns The best block found, or null if none are viable.
407MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
408    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
409    const BlockFilterSet *BlockFilter) {
410  // Once we need to walk the worklist looking for a candidate, cleanup the
411  // worklist of already placed entries.
412  // FIXME: If this shows up on profiles, it could be folded (at the cost of
413  // some code complexity) into the loop below.
414  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
415                                IsBlockPlaced(Chain, BlockToChain)),
416                 WorkList.end());
417
418  MachineBasicBlock *BestBlock = 0;
419  BlockFrequency BestFreq;
420  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
421                                                      WBE = WorkList.end();
422       WBI != WBE; ++WBI) {
423    assert(!BlockFilter || BlockFilter->count(*WBI));
424    BlockChain &SuccChain = *BlockToChain[*WBI];
425    if (&SuccChain == &Chain) {
426      DEBUG(dbgs() << "    " << getBlockName(*WBI)
427                   << " -> Already merged!\n");
428      continue;
429    }
430    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
431
432    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
433    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
434                 << " (freq)\n");
435    if (BestBlock && BestFreq >= CandidateFreq)
436      continue;
437    BestBlock = *WBI;
438    BestFreq = CandidateFreq;
439  }
440  return BestBlock;
441}
442
443/// \brief Retrieve the first unplaced basic block.
444///
445/// This routine is called when we are unable to use the CFG to walk through
446/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
447/// We walk through the sequence of blocks, starting from the
448/// LastUnplacedBlockIdx. We update this index to avoid re-scanning the entire
449/// sequence on repeated calls to this routine.
450MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
451    const BlockChain &PlacedChain,
452    ArrayRef<MachineBasicBlock *> Blocks,
453    unsigned &PrevUnplacedBlockIdx) {
454  for (unsigned i = PrevUnplacedBlockIdx, e = Blocks.size(); i != e; ++i) {
455    MachineBasicBlock *BB = Blocks[i];
456    if (BlockToChain[BB] != &PlacedChain) {
457      PrevUnplacedBlockIdx = i;
458      return BB;
459    }
460  }
461  return 0;
462}
463
464void MachineBlockPlacement::buildChain(
465    MachineBasicBlock *BB,
466    BlockChain &Chain,
467    ArrayRef<MachineBasicBlock *> Blocks,
468    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
469    const BlockFilterSet *BlockFilter) {
470  assert(BB);
471  assert(BlockToChain[BB] == &Chain);
472  assert(*Chain.begin() == BB);
473  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
474  unsigned PrevUnplacedBlockIdx = 0;
475
476  MachineBasicBlock *LoopHeaderBB = BB;
477  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
478  BB = *llvm::prior(Chain.end());
479  for (;;) {
480    assert(BB);
481    assert(BlockToChain[BB] == &Chain);
482    assert(*llvm::prior(Chain.end()) == BB);
483    MachineBasicBlock *BestSucc = 0;
484
485    // Check for unreasonable branches, and forcibly merge the existing layout
486    // successor for them. We can handle cases that AnalyzeBranch can't: jump
487    // tables etc are fine. The case we want to handle specially is when there
488    // is potential fallthrough, but the branch cannot be analyzed. This
489    // includes blocks without terminators as well as other cases.
490    Cond.clear();
491    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
492    if (TII->AnalyzeBranch(*BB, TBB, FBB, Cond) && BB->canFallThrough()) {
493      MachineFunction::iterator I(BB), NextI(llvm::next(I));
494      // Ensure that the layout successor is a viable block, as we know that
495      // fallthrough is a possibility.
496      assert(NextI != BB->getParent()->end());
497      assert(!BlockFilter || BlockFilter->count(NextI));
498      BestSucc = NextI;
499    }
500
501    // Otherwise, look for the best viable successor if there is one to place
502    // immediately after this block.
503    if (!BestSucc)
504      BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
505
506    // If an immediate successor isn't available, look for the best viable
507    // block among those we've identified as not violating the loop's CFG at
508    // this point. This won't be a fallthrough, but it will increase locality.
509    if (!BestSucc)
510      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
511
512    if (!BestSucc) {
513      BestSucc = getFirstUnplacedBlock(Chain, Blocks, PrevUnplacedBlockIdx);
514      if (!BestSucc)
515        break;
516
517      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
518                      "layout successor until the CFG reduces\n");
519    }
520
521    // Place this block, updating the datastructures to reflect its placement.
522    BlockChain &SuccChain = *BlockToChain[BestSucc];
523    // Zero out LoopPredecessors for the successor we're about to merge in case
524    // we selected a successor that didn't fit naturally into the CFG.
525    SuccChain.LoopPredecessors = 0;
526    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
527                 << " to " << getBlockNum(BestSucc) << "\n");
528    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
529    Chain.merge(BestSucc, &SuccChain);
530    BB = *llvm::prior(Chain.end());
531  };
532
533  DEBUG(dbgs() << "Finished forming chain for header block "
534               << getBlockNum(*Chain.begin()) << "\n");
535}
536
537/// \brief Forms basic block chains from the natural loop structures.
538///
539/// These chains are designed to preserve the existing *structure* of the code
540/// as much as possible. We can then stitch the chains together in a way which
541/// both preserves the topological structure and minimizes taken conditional
542/// branches.
543void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
544                                            MachineLoop &L) {
545  // First recurse through any nested loops, building chains for those inner
546  // loops.
547  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
548    buildLoopChains(F, **LI);
549
550  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
551  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
552  BlockChain &LoopChain = *BlockToChain[L.getHeader()];
553
554  // FIXME: This is a really lame way of walking the chains in the loop: we
555  // walk the blocks, and use a set to prevent visiting a particular chain
556  // twice.
557  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
558  for (MachineLoop::block_iterator BI = L.block_begin(),
559                                   BE = L.block_end();
560       BI != BE; ++BI) {
561    BlockChain &Chain = *BlockToChain[*BI];
562    if (!UpdatedPreds.insert(&Chain) || BI == L.block_begin())
563      continue;
564
565    assert(Chain.LoopPredecessors == 0);
566    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
567         BCI != BCE; ++BCI) {
568      assert(BlockToChain[*BCI] == &Chain);
569      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
570                                            PE = (*BCI)->pred_end();
571           PI != PE; ++PI) {
572        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
573          continue;
574        ++Chain.LoopPredecessors;
575      }
576    }
577
578    if (Chain.LoopPredecessors == 0)
579      BlockWorkList.push_back(*BI);
580  }
581
582  buildChain(*L.block_begin(), LoopChain, L.getBlocks(), BlockWorkList,
583             &LoopBlockSet);
584
585  DEBUG({
586    // Crash at the end so we get all of the debugging output first.
587    bool BadLoop = false;
588    if (LoopChain.LoopPredecessors) {
589      BadLoop = true;
590      dbgs() << "Loop chain contains a block without its preds placed!\n"
591             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
592             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
593    }
594    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
595         BCI != BCE; ++BCI)
596      if (!LoopBlockSet.erase(*BCI)) {
597        BadLoop = true;
598        dbgs() << "Loop chain contains a block not contained by the loop!\n"
599               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
600               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
601               << "  Bad block:    " << getBlockName(*BCI) << "\n";
602      }
603
604    if (!LoopBlockSet.empty()) {
605      BadLoop = true;
606      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
607                                    LBE = LoopBlockSet.end();
608           LBI != LBE; ++LBI)
609        dbgs() << "Loop contains blocks never placed into a chain!\n"
610               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
611               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
612               << "  Bad block:    " << getBlockName(*LBI) << "\n";
613    }
614    assert(!BadLoop && "Detected problems with the placement of this loop.");
615  });
616}
617
618void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
619  // Ensure that every BB in the function has an associated chain to simplify
620  // the assumptions of the remaining algorithm.
621  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
622    BlockToChain[&*FI] =
623      new (ChainAllocator.Allocate()) BlockChain(BlockToChain, &*FI);
624
625  // Build any loop-based chains.
626  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
627       ++LI)
628    buildLoopChains(F, **LI);
629
630  // We need a vector of blocks so that buildChain can handle unnatural CFG
631  // constructs by searching for unplaced blocks and just concatenating them.
632  SmallVector<MachineBasicBlock *, 16> Blocks;
633  Blocks.reserve(F.size());
634
635  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
636
637  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
638  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
639    MachineBasicBlock *BB = &*FI;
640    Blocks.push_back(BB);
641    BlockChain &Chain = *BlockToChain[BB];
642    if (!UpdatedPreds.insert(&Chain))
643      continue;
644
645    assert(Chain.LoopPredecessors == 0);
646    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
647         BCI != BCE; ++BCI) {
648      assert(BlockToChain[*BCI] == &Chain);
649      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
650                                            PE = (*BCI)->pred_end();
651           PI != PE; ++PI) {
652        if (BlockToChain[*PI] == &Chain)
653          continue;
654        ++Chain.LoopPredecessors;
655      }
656    }
657
658    if (Chain.LoopPredecessors == 0)
659      BlockWorkList.push_back(BB);
660  }
661
662  BlockChain &FunctionChain = *BlockToChain[&F.front()];
663  buildChain(&F.front(), FunctionChain, Blocks, BlockWorkList);
664
665  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
666  DEBUG({
667    // Crash at the end so we get all of the debugging output first.
668    bool BadFunc = false;
669    FunctionBlockSetType FunctionBlockSet;
670    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
671      FunctionBlockSet.insert(FI);
672
673    for (BlockChain::iterator BCI = FunctionChain.begin(),
674                              BCE = FunctionChain.end();
675         BCI != BCE; ++BCI)
676      if (!FunctionBlockSet.erase(*BCI)) {
677        BadFunc = true;
678        dbgs() << "Function chain contains a block not in the function!\n"
679               << "  Bad block:    " << getBlockName(*BCI) << "\n";
680      }
681
682    if (!FunctionBlockSet.empty()) {
683      BadFunc = true;
684      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
685                                          FBE = FunctionBlockSet.end();
686           FBI != FBE; ++FBI)
687        dbgs() << "Function contains blocks never placed into a chain!\n"
688               << "  Bad block:    " << getBlockName(*FBI) << "\n";
689    }
690    assert(!BadFunc && "Detected problems with the block placement.");
691  });
692
693  // Splice the blocks into place.
694  MachineFunction::iterator InsertPos = F.begin();
695  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
696  for (BlockChain::iterator BI = FunctionChain.begin(),
697                            BE = FunctionChain.end();
698       BI != BE; ++BI) {
699    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
700                                                  : "          ... ")
701          << getBlockName(*BI) << "\n");
702    if (InsertPos != MachineFunction::iterator(*BI))
703      F.splice(InsertPos, *BI);
704    else
705      ++InsertPos;
706
707    // Update the terminator of the previous block.
708    if (BI == FunctionChain.begin())
709      continue;
710    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
711
712    // FIXME: It would be awesome of updateTerminator would just return rather
713    // than assert when the branch cannot be analyzed in order to remove this
714    // boiler plate.
715    Cond.clear();
716    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
717    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
718      PrevBB->updateTerminator();
719  }
720
721  // Fixup the last block.
722  Cond.clear();
723  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
724  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
725    F.back().updateTerminator();
726}
727
728/// \brief Recursive helper to align a loop and any nested loops.
729static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) {
730  // Recurse through nested loops.
731  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
732    AlignLoop(F, *I, Align);
733
734  L->getTopBlock()->setAlignment(Align);
735}
736
737/// \brief Align loop headers to target preferred alignments.
738void MachineBlockPlacement::AlignLoops(MachineFunction &F) {
739  if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
740    return;
741
742  unsigned Align = TLI->getPrefLoopAlignment();
743  if (!Align)
744    return;  // Don't care about loop alignment.
745
746  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
747    AlignLoop(F, *I, Align);
748}
749
750bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
751  // Check for single-block functions and skip them.
752  if (llvm::next(F.begin()) == F.end())
753    return false;
754
755  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
756  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
757  MLI = &getAnalysis<MachineLoopInfo>();
758  TII = F.getTarget().getInstrInfo();
759  TLI = F.getTarget().getTargetLowering();
760  assert(BlockToChain.empty());
761
762  buildCFGChains(F);
763  AlignLoops(F);
764
765  BlockToChain.clear();
766
767  // We always return true as we have no way to track whether the final order
768  // differs from the original order.
769  return true;
770}
771
772namespace {
773/// \brief A pass to compute block placement statistics.
774///
775/// A separate pass to compute interesting statistics for evaluating block
776/// placement. This is separate from the actual placement pass so that they can
777/// be computed in the absense of any placement transformations or when using
778/// alternative placement strategies.
779class MachineBlockPlacementStats : public MachineFunctionPass {
780  /// \brief A handle to the branch probability pass.
781  const MachineBranchProbabilityInfo *MBPI;
782
783  /// \brief A handle to the function-wide block frequency pass.
784  const MachineBlockFrequencyInfo *MBFI;
785
786public:
787  static char ID; // Pass identification, replacement for typeid
788  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
789    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
790  }
791
792  bool runOnMachineFunction(MachineFunction &F);
793
794  void getAnalysisUsage(AnalysisUsage &AU) const {
795    AU.addRequired<MachineBranchProbabilityInfo>();
796    AU.addRequired<MachineBlockFrequencyInfo>();
797    AU.setPreservesAll();
798    MachineFunctionPass::getAnalysisUsage(AU);
799  }
800
801  const char *getPassName() const { return "Block Placement Stats"; }
802};
803}
804
805char MachineBlockPlacementStats::ID = 0;
806INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
807                      "Basic Block Placement Stats", false, false)
808INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
809INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
810INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
811                    "Basic Block Placement Stats", false, false)
812
813FunctionPass *llvm::createMachineBlockPlacementStatsPass() {
814  return new MachineBlockPlacementStats();
815}
816
817bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
818  // Check for single-block functions and skip them.
819  if (llvm::next(F.begin()) == F.end())
820    return false;
821
822  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
823  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
824
825  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
826    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
827    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
828                                                  : NumUncondBranches;
829    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
830                                                      : UncondBranchTakenFreq;
831    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
832                                          SE = I->succ_end();
833         SI != SE; ++SI) {
834      // Skip if this successor is a fallthrough.
835      if (I->isLayoutSuccessor(*SI))
836        continue;
837
838      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
839      ++NumBranches;
840      BranchTakenFreq += EdgeFreq.getFrequency();
841    }
842  }
843
844  return false;
845}
846
847