MachineCSE.cpp revision 0e63653ab0d25d579ad99948db606d8723d271dd
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopedHashTable.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28
29using namespace llvm;
30
31STATISTIC(NumCoalesces, "Number of copies coalesced");
32STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33STATISTIC(NumPhysCSEs,  "Number of phyreg defining common subexpr eliminated");
34
35namespace {
36  class MachineCSE : public MachineFunctionPass {
37    const TargetInstrInfo *TII;
38    const TargetRegisterInfo *TRI;
39    AliasAnalysis *AA;
40    MachineDominatorTree *DT;
41    MachineRegisterInfo *MRI;
42  public:
43    static char ID; // Pass identification
44    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {}
45
46    virtual bool runOnMachineFunction(MachineFunction &MF);
47
48    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
49      AU.setPreservesCFG();
50      MachineFunctionPass::getAnalysisUsage(AU);
51      AU.addRequired<AliasAnalysis>();
52      AU.addRequired<MachineDominatorTree>();
53      AU.addPreserved<MachineDominatorTree>();
54    }
55
56  private:
57    const unsigned LookAheadLimit;
58    typedef ScopedHashTableScope<MachineInstr*, unsigned,
59                                 MachineInstrExpressionTrait> ScopeType;
60    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
61    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
62    SmallVector<MachineInstr*, 64> Exps;
63    unsigned CurrVN;
64
65    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
66    bool isPhysDefTriviallyDead(unsigned Reg,
67                                MachineBasicBlock::const_iterator I,
68                                MachineBasicBlock::const_iterator E) const ;
69    bool hasLivePhysRegDefUse(const MachineInstr *MI,
70                              const MachineBasicBlock *MBB,
71                              unsigned &PhysDef) const;
72    bool PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
73                           unsigned PhysDef) const;
74    bool isCSECandidate(MachineInstr *MI);
75    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
76                           MachineInstr *CSMI, MachineInstr *MI);
77    void EnterScope(MachineBasicBlock *MBB);
78    void ExitScope(MachineBasicBlock *MBB);
79    bool ProcessBlock(MachineBasicBlock *MBB);
80    void ExitScopeIfDone(MachineDomTreeNode *Node,
81                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
82                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
83    bool PerformCSE(MachineDomTreeNode *Node);
84  };
85} // end anonymous namespace
86
87char MachineCSE::ID = 0;
88INITIALIZE_PASS(MachineCSE, "machine-cse",
89                "Machine Common Subexpression Elimination", false, false);
90
91FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
92
93bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
94                                          MachineBasicBlock *MBB) {
95  bool Changed = false;
96  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
97    MachineOperand &MO = MI->getOperand(i);
98    if (!MO.isReg() || !MO.isUse())
99      continue;
100    unsigned Reg = MO.getReg();
101    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
102      continue;
103    if (!MRI->hasOneUse(Reg))
104      // Only coalesce single use copies. This ensure the copy will be
105      // deleted.
106      continue;
107    MachineInstr *DefMI = MRI->getVRegDef(Reg);
108    if (DefMI->getParent() != MBB)
109      continue;
110    if (!DefMI->isCopy())
111      continue;
112    unsigned SrcReg = DefMI->getOperand(1).getReg();
113    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
114      continue;
115    if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
116      continue;
117    const TargetRegisterClass *SRC   = MRI->getRegClass(SrcReg);
118    const TargetRegisterClass *RC    = MRI->getRegClass(Reg);
119    const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
120    if (!NewRC)
121      continue;
122    DEBUG(dbgs() << "Coalescing: " << *DefMI);
123    DEBUG(dbgs() << "*** to: " << *MI);
124    MO.setReg(SrcReg);
125    MRI->clearKillFlags(SrcReg);
126    if (NewRC != SRC)
127      MRI->setRegClass(SrcReg, NewRC);
128    DefMI->eraseFromParent();
129    ++NumCoalesces;
130    Changed = true;
131  }
132
133  return Changed;
134}
135
136bool
137MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
138                                   MachineBasicBlock::const_iterator I,
139                                   MachineBasicBlock::const_iterator E) const {
140  unsigned LookAheadLeft = LookAheadLimit;
141  while (LookAheadLeft) {
142    // Skip over dbg_value's.
143    while (I != E && I->isDebugValue())
144      ++I;
145
146    if (I == E)
147      // Reached end of block, register is obviously dead.
148      return true;
149
150    bool SeenDef = false;
151    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
152      const MachineOperand &MO = I->getOperand(i);
153      if (!MO.isReg() || !MO.getReg())
154        continue;
155      if (!TRI->regsOverlap(MO.getReg(), Reg))
156        continue;
157      if (MO.isUse())
158        // Found a use!
159        return false;
160      SeenDef = true;
161    }
162    if (SeenDef)
163      // See a def of Reg (or an alias) before encountering any use, it's
164      // trivially dead.
165      return true;
166
167    --LookAheadLeft;
168    ++I;
169  }
170  return false;
171}
172
173/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
174/// physical registers (except for dead defs of physical registers). It also
175/// returns the physical register def by reference if it's the only one and the
176/// instruction does not uses a physical register.
177bool MachineCSE::hasLivePhysRegDefUse(const MachineInstr *MI,
178                                      const MachineBasicBlock *MBB,
179                                      unsigned &PhysDef) const {
180  PhysDef = 0;
181  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
182    const MachineOperand &MO = MI->getOperand(i);
183    if (!MO.isReg())
184      continue;
185    unsigned Reg = MO.getReg();
186    if (!Reg)
187      continue;
188    if (TargetRegisterInfo::isVirtualRegister(Reg))
189      continue;
190    if (MO.isUse()) {
191      // Can't touch anything to read a physical register.
192      PhysDef = 0;
193      return true;
194    }
195    if (MO.isDead())
196      // If the def is dead, it's ok.
197      continue;
198    // Ok, this is a physical register def that's not marked "dead". That's
199    // common since this pass is run before livevariables. We can scan
200    // forward a few instructions and check if it is obviously dead.
201    if (PhysDef) {
202      // Multiple physical register defs. These are rare, forget about it.
203      PhysDef = 0;
204      return true;
205    }
206    PhysDef = Reg;
207  }
208
209  if (PhysDef) {
210    MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
211    if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
212      return true;
213  }
214  return false;
215}
216
217bool MachineCSE::PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
218                                  unsigned PhysDef) const {
219  // For now conservatively returns false if the common subexpression is
220  // not in the same basic block as the given instruction.
221  MachineBasicBlock *MBB = MI->getParent();
222  if (CSMI->getParent() != MBB)
223    return false;
224  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
225  MachineBasicBlock::const_iterator E = MI;
226  unsigned LookAheadLeft = LookAheadLimit;
227  while (LookAheadLeft) {
228    // Skip over dbg_value's.
229    while (I != E && I->isDebugValue())
230      ++I;
231
232    if (I == E)
233      return true;
234    if (I->modifiesRegister(PhysDef, TRI))
235      return false;
236
237    --LookAheadLeft;
238    ++I;
239  }
240
241  return false;
242}
243
244bool MachineCSE::isCSECandidate(MachineInstr *MI) {
245  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
246      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
247    return false;
248
249  // Ignore copies.
250  if (MI->isCopyLike())
251    return false;
252
253  // Ignore stuff that we obviously can't move.
254  const TargetInstrDesc &TID = MI->getDesc();
255  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
256      TID.hasUnmodeledSideEffects())
257    return false;
258
259  if (TID.mayLoad()) {
260    // Okay, this instruction does a load. As a refinement, we allow the target
261    // to decide whether the loaded value is actually a constant. If so, we can
262    // actually use it as a load.
263    if (!MI->isInvariantLoad(AA))
264      // FIXME: we should be able to hoist loads with no other side effects if
265      // there are no other instructions which can change memory in this loop.
266      // This is a trivial form of alias analysis.
267      return false;
268  }
269  return true;
270}
271
272/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
273/// common expression that defines Reg.
274bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
275                                   MachineInstr *CSMI, MachineInstr *MI) {
276  // FIXME: Heuristics that works around the lack the live range splitting.
277
278  // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
279  // immediate predecessor. We don't want to increase register pressure and end up
280  // causing other computation to be spilled.
281  if (MI->getDesc().isAsCheapAsAMove()) {
282    MachineBasicBlock *CSBB = CSMI->getParent();
283    MachineBasicBlock *BB = MI->getParent();
284    if (CSBB != BB &&
285        find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
286      return false;
287  }
288
289  // Heuristics #2: If the expression doesn't not use a vr and the only use
290  // of the redundant computation are copies, do not cse.
291  bool HasVRegUse = false;
292  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
293    const MachineOperand &MO = MI->getOperand(i);
294    if (MO.isReg() && MO.isUse() && MO.getReg() &&
295        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
296      HasVRegUse = true;
297      break;
298    }
299  }
300  if (!HasVRegUse) {
301    bool HasNonCopyUse = false;
302    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
303           E = MRI->use_nodbg_end(); I != E; ++I) {
304      MachineInstr *Use = &*I;
305      // Ignore copies.
306      if (!Use->isCopyLike()) {
307        HasNonCopyUse = true;
308        break;
309      }
310    }
311    if (!HasNonCopyUse)
312      return false;
313  }
314
315  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
316  // it unless the defined value is already used in the BB of the new use.
317  bool HasPHI = false;
318  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
319  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
320       E = MRI->use_nodbg_end(); I != E; ++I) {
321    MachineInstr *Use = &*I;
322    HasPHI |= Use->isPHI();
323    CSBBs.insert(Use->getParent());
324  }
325
326  if (!HasPHI)
327    return true;
328  return CSBBs.count(MI->getParent());
329}
330
331void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
332  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
333  ScopeType *Scope = new ScopeType(VNT);
334  ScopeMap[MBB] = Scope;
335}
336
337void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
338  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
339  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
340  assert(SI != ScopeMap.end());
341  ScopeMap.erase(SI);
342  delete SI->second;
343}
344
345bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
346  bool Changed = false;
347
348  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
349  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
350    MachineInstr *MI = &*I;
351    ++I;
352
353    if (!isCSECandidate(MI))
354      continue;
355
356    bool DefPhys = false;
357    bool FoundCSE = VNT.count(MI);
358    if (!FoundCSE) {
359      // Look for trivial copy coalescing opportunities.
360      if (PerformTrivialCoalescing(MI, MBB)) {
361        // After coalescing MI itself may become a copy.
362        if (MI->isCopyLike())
363          continue;
364        FoundCSE = VNT.count(MI);
365      }
366    }
367    // FIXME: commute commutable instructions?
368
369    // If the instruction defines a physical register and the value *may* be
370    // used, then it's not safe to replace it with a common subexpression.
371    unsigned PhysDef = 0;
372    if (FoundCSE && hasLivePhysRegDefUse(MI, MBB, PhysDef)) {
373      FoundCSE = false;
374
375      // ... Unless the CS is local and it also defines the physical register
376      // which is not clobbered in between.
377      if (PhysDef) {
378        unsigned CSVN = VNT.lookup(MI);
379        MachineInstr *CSMI = Exps[CSVN];
380        if (PhysRegDefReaches(CSMI, MI, PhysDef)) {
381          FoundCSE = true;
382          DefPhys = true;
383        }
384      }
385    }
386
387    if (!FoundCSE) {
388      VNT.insert(MI, CurrVN++);
389      Exps.push_back(MI);
390      continue;
391    }
392
393    // Found a common subexpression, eliminate it.
394    unsigned CSVN = VNT.lookup(MI);
395    MachineInstr *CSMI = Exps[CSVN];
396    DEBUG(dbgs() << "Examining: " << *MI);
397    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
398
399    // Check if it's profitable to perform this CSE.
400    bool DoCSE = true;
401    unsigned NumDefs = MI->getDesc().getNumDefs();
402    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
403      MachineOperand &MO = MI->getOperand(i);
404      if (!MO.isReg() || !MO.isDef())
405        continue;
406      unsigned OldReg = MO.getReg();
407      unsigned NewReg = CSMI->getOperand(i).getReg();
408      if (OldReg == NewReg)
409        continue;
410      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
411             TargetRegisterInfo::isVirtualRegister(NewReg) &&
412             "Do not CSE physical register defs!");
413      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
414        DoCSE = false;
415        break;
416      }
417      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
418      --NumDefs;
419    }
420
421    // Actually perform the elimination.
422    if (DoCSE) {
423      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
424        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
425        MRI->clearKillFlags(CSEPairs[i].second);
426      }
427      MI->eraseFromParent();
428      ++NumCSEs;
429      if (DefPhys)
430        ++NumPhysCSEs;
431    } else {
432      DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
433      VNT.insert(MI, CurrVN++);
434      Exps.push_back(MI);
435    }
436    CSEPairs.clear();
437  }
438
439  return Changed;
440}
441
442/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
443/// dominator tree node if its a leaf or all of its children are done. Walk
444/// up the dominator tree to destroy ancestors which are now done.
445void
446MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
447                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
448                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
449  if (OpenChildren[Node])
450    return;
451
452  // Pop scope.
453  ExitScope(Node->getBlock());
454
455  // Now traverse upwards to pop ancestors whose offsprings are all done.
456  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
457    unsigned Left = --OpenChildren[Parent];
458    if (Left != 0)
459      break;
460    ExitScope(Parent->getBlock());
461    Node = Parent;
462  }
463}
464
465bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
466  SmallVector<MachineDomTreeNode*, 32> Scopes;
467  SmallVector<MachineDomTreeNode*, 8> WorkList;
468  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
469  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
470
471  // Perform a DFS walk to determine the order of visit.
472  WorkList.push_back(Node);
473  do {
474    Node = WorkList.pop_back_val();
475    Scopes.push_back(Node);
476    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
477    unsigned NumChildren = Children.size();
478    OpenChildren[Node] = NumChildren;
479    for (unsigned i = 0; i != NumChildren; ++i) {
480      MachineDomTreeNode *Child = Children[i];
481      ParentMap[Child] = Node;
482      WorkList.push_back(Child);
483    }
484  } while (!WorkList.empty());
485
486  // Now perform CSE.
487  bool Changed = false;
488  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
489    MachineDomTreeNode *Node = Scopes[i];
490    MachineBasicBlock *MBB = Node->getBlock();
491    EnterScope(MBB);
492    Changed |= ProcessBlock(MBB);
493    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
494    ExitScopeIfDone(Node, OpenChildren, ParentMap);
495  }
496
497  return Changed;
498}
499
500bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
501  TII = MF.getTarget().getInstrInfo();
502  TRI = MF.getTarget().getRegisterInfo();
503  MRI = &MF.getRegInfo();
504  AA = &getAnalysis<AliasAnalysis>();
505  DT = &getAnalysis<MachineDominatorTree>();
506  return PerformCSE(DT->getRootNode());
507}
508