MachineCSE.cpp revision 112e5e7eff408cb106386a0641db258048bcc836
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/ScopedHashTable.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Support/Debug.h"
26
27using namespace llvm;
28
29STATISTIC(NumCoalesces, "Number of copies coalesced");
30STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
31
32namespace {
33  class MachineCSE : public MachineFunctionPass {
34    const TargetInstrInfo *TII;
35    const TargetRegisterInfo *TRI;
36    AliasAnalysis *AA;
37    MachineDominatorTree *DT;
38    MachineRegisterInfo *MRI;
39  public:
40    static char ID; // Pass identification
41    MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}
42
43    virtual bool runOnMachineFunction(MachineFunction &MF);
44
45    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
46      AU.setPreservesCFG();
47      MachineFunctionPass::getAnalysisUsage(AU);
48      AU.addRequired<AliasAnalysis>();
49      AU.addRequired<MachineDominatorTree>();
50      AU.addPreserved<MachineDominatorTree>();
51    }
52
53  private:
54    unsigned CurrVN;
55    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
56    SmallVector<MachineInstr*, 64> Exps;
57
58    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
59    bool isPhysDefTriviallyDead(unsigned Reg,
60                                MachineBasicBlock::const_iterator I,
61                                MachineBasicBlock::const_iterator E);
62    bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB);
63    bool isCSECandidate(MachineInstr *MI);
64    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
65                           MachineInstr *CSMI, MachineInstr *MI);
66    bool ProcessBlock(MachineDomTreeNode *Node);
67  };
68} // end anonymous namespace
69
70char MachineCSE::ID = 0;
71static RegisterPass<MachineCSE>
72X("machine-cse", "Machine Common Subexpression Elimination");
73
74FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
75
76bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
77                                          MachineBasicBlock *MBB) {
78  bool Changed = false;
79  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
80    MachineOperand &MO = MI->getOperand(i);
81    if (!MO.isReg() || !MO.isUse())
82      continue;
83    unsigned Reg = MO.getReg();
84    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
85      continue;
86    if (!MRI->hasOneUse(Reg))
87      // Only coalesce single use copies. This ensure the copy will be
88      // deleted.
89      continue;
90    MachineInstr *DefMI = MRI->getVRegDef(Reg);
91    if (DefMI->getParent() != MBB)
92      continue;
93    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
94    if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
95        TargetRegisterInfo::isVirtualRegister(SrcReg) &&
96        !SrcSubIdx && !DstSubIdx) {
97      const TargetRegisterClass *SRC   = MRI->getRegClass(SrcReg);
98      const TargetRegisterClass *RC    = MRI->getRegClass(Reg);
99      const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
100      if (!NewRC)
101        continue;
102      DEBUG(dbgs() << "Coalescing: " << *DefMI);
103      DEBUG(dbgs() << "*** to: " << *MI);
104      MO.setReg(SrcReg);
105      if (NewRC != SRC)
106        MRI->setRegClass(SrcReg, NewRC);
107      DefMI->eraseFromParent();
108      ++NumCoalesces;
109      Changed = true;
110    }
111  }
112
113  return Changed;
114}
115
116bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
117                                        MachineBasicBlock::const_iterator I,
118                                        MachineBasicBlock::const_iterator E) {
119  unsigned LookAheadLeft = 5;
120  while (LookAheadLeft) {
121    if (I == E)
122      // Reached end of block, register is obviously dead.
123      return true;
124
125    // Skip over dbg_value's.
126    while (I->isDebugValue())
127      ++I;
128
129    bool SeenDef = false;
130    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
131      const MachineOperand &MO = I->getOperand(i);
132      if (!MO.isReg() || !MO.getReg())
133        continue;
134      if (!TRI->regsOverlap(MO.getReg(), Reg))
135        continue;
136      if (MO.isUse())
137        return false;
138      SeenDef = true;
139    }
140    if (SeenDef)
141      // See a def of Reg (or an alias) before encountering any use, it's
142      // trivially dead.
143      return true;
144
145    --LookAheadLeft;
146    ++I;
147  }
148  return false;
149}
150
151/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
152/// physical registers (except for dead defs of physical registers).
153bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){
154  unsigned PhysDef = 0;
155  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
156    MachineOperand &MO = MI->getOperand(i);
157    if (!MO.isReg())
158      continue;
159    unsigned Reg = MO.getReg();
160    if (!Reg)
161      continue;
162    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
163      if (MO.isUse())
164        // Can't touch anything to read a physical register.
165        return true;
166      if (MO.isDead())
167        // If the def is dead, it's ok.
168        continue;
169      // Ok, this is a physical register def that's not marked "dead". That's
170      // common since this pass is run before livevariables. We can scan
171      // forward a few instructions and check if it is obviously dead.
172      if (PhysDef)
173        // Multiple physical register defs. These are rare, forget about it.
174        return true;
175      PhysDef = Reg;
176    }
177  }
178
179  if (PhysDef) {
180    MachineBasicBlock::iterator I = MI; I = llvm::next(I);
181    if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
182      return true;
183  }
184  return false;
185}
186
187static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) {
188  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
189  return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
190    MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg();
191}
192
193bool MachineCSE::isCSECandidate(MachineInstr *MI) {
194  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
195      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
196    return false;
197
198  // Ignore copies.
199  if (isCopy(MI, TII))
200    return false;
201
202  // Ignore stuff that we obviously can't move.
203  const TargetInstrDesc &TID = MI->getDesc();
204  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
205      TID.hasUnmodeledSideEffects())
206    return false;
207
208  if (TID.mayLoad()) {
209    // Okay, this instruction does a load. As a refinement, we allow the target
210    // to decide whether the loaded value is actually a constant. If so, we can
211    // actually use it as a load.
212    if (!MI->isInvariantLoad(AA))
213      // FIXME: we should be able to hoist loads with no other side effects if
214      // there are no other instructions which can change memory in this loop.
215      // This is a trivial form of alias analysis.
216      return false;
217  }
218  return true;
219}
220
221/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
222/// common expression that defines Reg.
223bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
224                                   MachineInstr *CSMI, MachineInstr *MI) {
225  // FIXME: Heuristics that works around the lack the live range splitting.
226
227  // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
228  // immediate predecessor. We don't want to increase register pressure and end up
229  // causing other computation to be spilled.
230  if (MI->getDesc().isAsCheapAsAMove()) {
231    MachineBasicBlock *CSBB = CSMI->getParent();
232    MachineBasicBlock *BB = MI->getParent();
233    if (CSBB != BB &&
234        find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
235      return false;
236  }
237
238  // Heuristics #2: If the expression doesn't not use a vr and the only use
239  // of the redundant computation are copies, do not cse.
240  bool HasVRegUse = false;
241  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
242    const MachineOperand &MO = MI->getOperand(i);
243    if (MO.isReg() && MO.isUse() && MO.getReg() &&
244        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
245      HasVRegUse = true;
246      break;
247    }
248  }
249  if (!HasVRegUse) {
250    bool HasNonCopyUse = false;
251    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
252           E = MRI->use_nodbg_end(); I != E; ++I) {
253      MachineInstr *Use = &*I;
254      // Ignore copies.
255      if (!isCopy(Use, TII)) {
256        HasNonCopyUse = true;
257        break;
258      }
259    }
260    if (!HasNonCopyUse)
261      return false;
262  }
263
264  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
265  // it unless the defined value is already used in the BB of the new use.
266  bool HasPHI = false;
267  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
268  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
269       E = MRI->use_nodbg_end(); I != E; ++I) {
270    MachineInstr *Use = &*I;
271    HasPHI |= Use->isPHI();
272    CSBBs.insert(Use->getParent());
273  }
274
275  if (!HasPHI)
276    return true;
277  return CSBBs.count(MI->getParent());
278}
279
280bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
281  bool Changed = false;
282
283  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
284  ScopedHashTableScope<MachineInstr*, unsigned,
285    MachineInstrExpressionTrait> VNTS(VNT);
286  MachineBasicBlock *MBB = Node->getBlock();
287  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
288    MachineInstr *MI = &*I;
289    ++I;
290
291    if (!isCSECandidate(MI))
292      continue;
293
294    bool FoundCSE = VNT.count(MI);
295    if (!FoundCSE) {
296      // Look for trivial copy coalescing opportunities.
297      if (PerformTrivialCoalescing(MI, MBB))
298        FoundCSE = VNT.count(MI);
299    }
300    // FIXME: commute commutable instructions?
301
302    // If the instruction defines a physical register and the value *may* be
303    // used, then it's not safe to replace it with a common subexpression.
304    if (FoundCSE && hasLivePhysRegDefUse(MI, MBB))
305      FoundCSE = false;
306
307    if (!FoundCSE) {
308      VNT.insert(MI, CurrVN++);
309      Exps.push_back(MI);
310      continue;
311    }
312
313    // Found a common subexpression, eliminate it.
314    unsigned CSVN = VNT.lookup(MI);
315    MachineInstr *CSMI = Exps[CSVN];
316    DEBUG(dbgs() << "Examining: " << *MI);
317    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
318
319    // Check if it's profitable to perform this CSE.
320    bool DoCSE = true;
321    unsigned NumDefs = MI->getDesc().getNumDefs();
322    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
323      MachineOperand &MO = MI->getOperand(i);
324      if (!MO.isReg() || !MO.isDef())
325        continue;
326      unsigned OldReg = MO.getReg();
327      unsigned NewReg = CSMI->getOperand(i).getReg();
328      if (OldReg == NewReg)
329        continue;
330      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
331             TargetRegisterInfo::isVirtualRegister(NewReg) &&
332             "Do not CSE physical register defs!");
333      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
334        DoCSE = false;
335        break;
336      }
337      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
338      --NumDefs;
339    }
340
341    // Actually perform the elimination.
342    if (DoCSE) {
343      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i)
344        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
345      MI->eraseFromParent();
346      ++NumCSEs;
347    } else {
348      DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
349      VNT.insert(MI, CurrVN++);
350      Exps.push_back(MI);
351    }
352    CSEPairs.clear();
353  }
354
355  // Recursively call ProcessBlock with childred.
356  const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
357  for (unsigned i = 0, e = Children.size(); i != e; ++i)
358    Changed |= ProcessBlock(Children[i]);
359
360  return Changed;
361}
362
363bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
364  TII = MF.getTarget().getInstrInfo();
365  TRI = MF.getTarget().getRegisterInfo();
366  MRI = &MF.getRegInfo();
367  AA = &getAnalysis<AliasAnalysis>();
368  DT = &getAnalysis<MachineDominatorTree>();
369  return ProcessBlock(DT->getRootNode());
370}
371