MachineCSE.cpp revision 189c1ec4c162ca3d36d9bca803b032eb19de434a
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopedHashTable.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29
30using namespace llvm;
31
32STATISTIC(NumCoalesces, "Number of copies coalesced");
33STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
34STATISTIC(NumPhysCSEs,
35          "Number of physreg referencing common subexpr eliminated");
36
37namespace {
38  class MachineCSE : public MachineFunctionPass {
39    const TargetInstrInfo *TII;
40    const TargetRegisterInfo *TRI;
41    AliasAnalysis *AA;
42    MachineDominatorTree *DT;
43    MachineRegisterInfo *MRI;
44  public:
45    static char ID; // Pass identification
46    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
47      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
48    }
49
50    virtual bool runOnMachineFunction(MachineFunction &MF);
51
52    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53      AU.setPreservesCFG();
54      MachineFunctionPass::getAnalysisUsage(AU);
55      AU.addRequired<AliasAnalysis>();
56      AU.addPreservedID(MachineLoopInfoID);
57      AU.addRequired<MachineDominatorTree>();
58      AU.addPreserved<MachineDominatorTree>();
59    }
60
61    virtual void releaseMemory() {
62      ScopeMap.clear();
63      Exps.clear();
64    }
65
66  private:
67    const unsigned LookAheadLimit;
68    typedef ScopedHashTableScope<MachineInstr*, unsigned,
69                                 MachineInstrExpressionTrait> ScopeType;
70    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
71    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
72    SmallVector<MachineInstr*, 64> Exps;
73    unsigned CurrVN;
74
75    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
76    bool isPhysDefTriviallyDead(unsigned Reg,
77                                MachineBasicBlock::const_iterator I,
78                                MachineBasicBlock::const_iterator E) const ;
79    bool hasLivePhysRegDefUses(const MachineInstr *MI,
80                               const MachineBasicBlock *MBB,
81                               SmallSet<unsigned,8> &PhysRefs) const;
82    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
83                          SmallSet<unsigned,8> &PhysRefs) const;
84    bool isCSECandidate(MachineInstr *MI);
85    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
86                           MachineInstr *CSMI, MachineInstr *MI);
87    void EnterScope(MachineBasicBlock *MBB);
88    void ExitScope(MachineBasicBlock *MBB);
89    bool ProcessBlock(MachineBasicBlock *MBB);
90    void ExitScopeIfDone(MachineDomTreeNode *Node,
91                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
92                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
93    bool PerformCSE(MachineDomTreeNode *Node);
94  };
95} // end anonymous namespace
96
97char MachineCSE::ID = 0;
98INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
99                "Machine Common Subexpression Elimination", false, false)
100INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
101INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
102INITIALIZE_PASS_END(MachineCSE, "machine-cse",
103                "Machine Common Subexpression Elimination", false, false)
104
105FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
106
107bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
108                                          MachineBasicBlock *MBB) {
109  bool Changed = false;
110  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
111    MachineOperand &MO = MI->getOperand(i);
112    if (!MO.isReg() || !MO.isUse())
113      continue;
114    unsigned Reg = MO.getReg();
115    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
116      continue;
117    if (!MRI->hasOneNonDBGUse(Reg))
118      // Only coalesce single use copies. This ensure the copy will be
119      // deleted.
120      continue;
121    MachineInstr *DefMI = MRI->getVRegDef(Reg);
122    if (DefMI->getParent() != MBB)
123      continue;
124    if (!DefMI->isCopy())
125      continue;
126    unsigned SrcReg = DefMI->getOperand(1).getReg();
127    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
128      continue;
129    if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
130      continue;
131    if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
132      continue;
133    DEBUG(dbgs() << "Coalescing: " << *DefMI);
134    DEBUG(dbgs() << "***     to: " << *MI);
135    MO.setReg(SrcReg);
136    MRI->clearKillFlags(SrcReg);
137    DefMI->eraseFromParent();
138    ++NumCoalesces;
139    Changed = true;
140  }
141
142  return Changed;
143}
144
145bool
146MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
147                                   MachineBasicBlock::const_iterator I,
148                                   MachineBasicBlock::const_iterator E) const {
149  unsigned LookAheadLeft = LookAheadLimit;
150  while (LookAheadLeft) {
151    // Skip over dbg_value's.
152    while (I != E && I->isDebugValue())
153      ++I;
154
155    if (I == E)
156      // Reached end of block, register is obviously dead.
157      return true;
158
159    bool SeenDef = false;
160    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
161      const MachineOperand &MO = I->getOperand(i);
162      if (!MO.isReg() || !MO.getReg())
163        continue;
164      if (!TRI->regsOverlap(MO.getReg(), Reg))
165        continue;
166      if (MO.isUse())
167        // Found a use!
168        return false;
169      SeenDef = true;
170    }
171    if (SeenDef)
172      // See a def of Reg (or an alias) before encountering any use, it's
173      // trivially dead.
174      return true;
175
176    --LookAheadLeft;
177    ++I;
178  }
179  return false;
180}
181
182/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
183/// physical registers (except for dead defs of physical registers). It also
184/// returns the physical register def by reference if it's the only one and the
185/// instruction does not uses a physical register.
186bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
187                                       const MachineBasicBlock *MBB,
188                                       SmallSet<unsigned,8> &PhysRefs) const {
189  MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
190  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
191    const MachineOperand &MO = MI->getOperand(i);
192    if (!MO.isReg())
193      continue;
194    unsigned Reg = MO.getReg();
195    if (!Reg)
196      continue;
197    if (TargetRegisterInfo::isVirtualRegister(Reg))
198      continue;
199    // If the def is dead, it's ok. But the def may not marked "dead". That's
200    // common since this pass is run before livevariables. We can scan
201    // forward a few instructions and check if it is obviously dead.
202    if (MO.isDef() &&
203        (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
204      continue;
205    PhysRefs.insert(Reg);
206    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
207      PhysRefs.insert(*Alias);
208  }
209
210  return !PhysRefs.empty();
211}
212
213bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
214                                  SmallSet<unsigned,8> &PhysRefs) const {
215  // For now conservatively returns false if the common subexpression is
216  // not in the same basic block as the given instruction.
217  MachineBasicBlock *MBB = MI->getParent();
218  if (CSMI->getParent() != MBB)
219    return false;
220  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
221  MachineBasicBlock::const_iterator E = MI;
222  unsigned LookAheadLeft = LookAheadLimit;
223  while (LookAheadLeft) {
224    // Skip over dbg_value's.
225    while (I != E && I->isDebugValue())
226      ++I;
227
228    if (I == E)
229      return true;
230
231    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
232      const MachineOperand &MO = I->getOperand(i);
233      if (!MO.isReg() || !MO.isDef())
234        continue;
235      unsigned MOReg = MO.getReg();
236      if (TargetRegisterInfo::isVirtualRegister(MOReg))
237        continue;
238      if (PhysRefs.count(MOReg))
239        return false;
240    }
241
242    --LookAheadLeft;
243    ++I;
244  }
245
246  return false;
247}
248
249bool MachineCSE::isCSECandidate(MachineInstr *MI) {
250  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
251      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
252    return false;
253
254  // Ignore copies.
255  if (MI->isCopyLike())
256    return false;
257
258  // Ignore stuff that we obviously can't move.
259  const TargetInstrDesc &TID = MI->getDesc();
260  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
261      TID.hasUnmodeledSideEffects())
262    return false;
263
264  if (TID.mayLoad()) {
265    // Okay, this instruction does a load. As a refinement, we allow the target
266    // to decide whether the loaded value is actually a constant. If so, we can
267    // actually use it as a load.
268    if (!MI->isInvariantLoad(AA))
269      // FIXME: we should be able to hoist loads with no other side effects if
270      // there are no other instructions which can change memory in this loop.
271      // This is a trivial form of alias analysis.
272      return false;
273  }
274  return true;
275}
276
277/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
278/// common expression that defines Reg.
279bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
280                                   MachineInstr *CSMI, MachineInstr *MI) {
281  // FIXME: Heuristics that works around the lack the live range splitting.
282
283  // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
284  // immediate predecessor. We don't want to increase register pressure and end up
285  // causing other computation to be spilled.
286  if (MI->getDesc().isAsCheapAsAMove()) {
287    MachineBasicBlock *CSBB = CSMI->getParent();
288    MachineBasicBlock *BB = MI->getParent();
289    if (CSBB != BB &&
290        find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
291      return false;
292  }
293
294  // Heuristics #2: If the expression doesn't not use a vr and the only use
295  // of the redundant computation are copies, do not cse.
296  bool HasVRegUse = false;
297  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
298    const MachineOperand &MO = MI->getOperand(i);
299    if (MO.isReg() && MO.isUse() && MO.getReg() &&
300        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
301      HasVRegUse = true;
302      break;
303    }
304  }
305  if (!HasVRegUse) {
306    bool HasNonCopyUse = false;
307    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
308           E = MRI->use_nodbg_end(); I != E; ++I) {
309      MachineInstr *Use = &*I;
310      // Ignore copies.
311      if (!Use->isCopyLike()) {
312        HasNonCopyUse = true;
313        break;
314      }
315    }
316    if (!HasNonCopyUse)
317      return false;
318  }
319
320  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
321  // it unless the defined value is already used in the BB of the new use.
322  bool HasPHI = false;
323  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
324  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
325       E = MRI->use_nodbg_end(); I != E; ++I) {
326    MachineInstr *Use = &*I;
327    HasPHI |= Use->isPHI();
328    CSBBs.insert(Use->getParent());
329  }
330
331  if (!HasPHI)
332    return true;
333  return CSBBs.count(MI->getParent());
334}
335
336void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
337  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
338  ScopeType *Scope = new ScopeType(VNT);
339  ScopeMap[MBB] = Scope;
340}
341
342void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
343  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
344  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
345  assert(SI != ScopeMap.end());
346  ScopeMap.erase(SI);
347  delete SI->second;
348}
349
350bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
351  bool Changed = false;
352
353  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
354  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
355    MachineInstr *MI = &*I;
356    ++I;
357
358    if (!isCSECandidate(MI))
359      continue;
360
361    bool FoundCSE = VNT.count(MI);
362    if (!FoundCSE) {
363      // Look for trivial copy coalescing opportunities.
364      if (PerformTrivialCoalescing(MI, MBB)) {
365        // After coalescing MI itself may become a copy.
366        if (MI->isCopyLike())
367          continue;
368        FoundCSE = VNT.count(MI);
369      }
370    }
371    // FIXME: commute commutable instructions?
372
373    // If the instruction defines physical registers and the values *may* be
374    // used, then it's not safe to replace it with a common subexpression.
375    // It's also not safe if the instruction uses physical registers.
376    SmallSet<unsigned,8> PhysRefs;
377    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs)) {
378      FoundCSE = false;
379
380      // ... Unless the CS is local and it also defines the physical register
381      // which is not clobbered in between and the physical register uses
382      // were not clobbered.
383      unsigned CSVN = VNT.lookup(MI);
384      MachineInstr *CSMI = Exps[CSVN];
385      if (PhysRegDefsReach(CSMI, MI, PhysRefs))
386        FoundCSE = true;
387    }
388
389    if (!FoundCSE) {
390      VNT.insert(MI, CurrVN++);
391      Exps.push_back(MI);
392      continue;
393    }
394
395    // Found a common subexpression, eliminate it.
396    unsigned CSVN = VNT.lookup(MI);
397    MachineInstr *CSMI = Exps[CSVN];
398    DEBUG(dbgs() << "Examining: " << *MI);
399    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
400
401    // Check if it's profitable to perform this CSE.
402    bool DoCSE = true;
403    unsigned NumDefs = MI->getDesc().getNumDefs();
404    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
405      MachineOperand &MO = MI->getOperand(i);
406      if (!MO.isReg() || !MO.isDef())
407        continue;
408      unsigned OldReg = MO.getReg();
409      unsigned NewReg = CSMI->getOperand(i).getReg();
410      if (OldReg == NewReg)
411        continue;
412      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
413             TargetRegisterInfo::isVirtualRegister(NewReg) &&
414             "Do not CSE physical register defs!");
415      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
416        DoCSE = false;
417        break;
418      }
419      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
420      --NumDefs;
421    }
422
423    // Actually perform the elimination.
424    if (DoCSE) {
425      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
426        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
427        MRI->clearKillFlags(CSEPairs[i].second);
428      }
429      MI->eraseFromParent();
430      ++NumCSEs;
431      if (!PhysRefs.empty())
432        ++NumPhysCSEs;
433    } else {
434      DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
435      VNT.insert(MI, CurrVN++);
436      Exps.push_back(MI);
437    }
438    CSEPairs.clear();
439  }
440
441  return Changed;
442}
443
444/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
445/// dominator tree node if its a leaf or all of its children are done. Walk
446/// up the dominator tree to destroy ancestors which are now done.
447void
448MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
449                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
450                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
451  if (OpenChildren[Node])
452    return;
453
454  // Pop scope.
455  ExitScope(Node->getBlock());
456
457  // Now traverse upwards to pop ancestors whose offsprings are all done.
458  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
459    unsigned Left = --OpenChildren[Parent];
460    if (Left != 0)
461      break;
462    ExitScope(Parent->getBlock());
463    Node = Parent;
464  }
465}
466
467bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
468  SmallVector<MachineDomTreeNode*, 32> Scopes;
469  SmallVector<MachineDomTreeNode*, 8> WorkList;
470  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
471  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
472
473  CurrVN = 0;
474
475  // Perform a DFS walk to determine the order of visit.
476  WorkList.push_back(Node);
477  do {
478    Node = WorkList.pop_back_val();
479    Scopes.push_back(Node);
480    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
481    unsigned NumChildren = Children.size();
482    OpenChildren[Node] = NumChildren;
483    for (unsigned i = 0; i != NumChildren; ++i) {
484      MachineDomTreeNode *Child = Children[i];
485      ParentMap[Child] = Node;
486      WorkList.push_back(Child);
487    }
488  } while (!WorkList.empty());
489
490  // Now perform CSE.
491  bool Changed = false;
492  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
493    MachineDomTreeNode *Node = Scopes[i];
494    MachineBasicBlock *MBB = Node->getBlock();
495    EnterScope(MBB);
496    Changed |= ProcessBlock(MBB);
497    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
498    ExitScopeIfDone(Node, OpenChildren, ParentMap);
499  }
500
501  return Changed;
502}
503
504bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
505  TII = MF.getTarget().getInstrInfo();
506  TRI = MF.getTarget().getRegisterInfo();
507  MRI = &MF.getRegInfo();
508  AA = &getAnalysis<AliasAnalysis>();
509  DT = &getAnalysis<MachineDominatorTree>();
510  return PerformCSE(DT->getRootNode());
511}
512