MachineCSE.cpp revision a0ec3f9b7b826b9b40b80199923b664bad808cce
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/ScopedHashTable.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/RecyclingAllocator.h"
28#include "llvm/Target/TargetInstrInfo.h"
29using namespace llvm;
30
31STATISTIC(NumCoalesces, "Number of copies coalesced");
32STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33STATISTIC(NumPhysCSEs,
34          "Number of physreg referencing common subexpr eliminated");
35STATISTIC(NumCrossBBCSEs,
36          "Number of cross-MBB physreg referencing CS eliminated");
37STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
38
39namespace {
40  class MachineCSE : public MachineFunctionPass {
41    const TargetInstrInfo *TII;
42    const TargetRegisterInfo *TRI;
43    AliasAnalysis *AA;
44    MachineDominatorTree *DT;
45    MachineRegisterInfo *MRI;
46  public:
47    static char ID; // Pass identification
48    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
49      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
50    }
51
52    virtual bool runOnMachineFunction(MachineFunction &MF);
53
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.setPreservesCFG();
56      MachineFunctionPass::getAnalysisUsage(AU);
57      AU.addRequired<AliasAnalysis>();
58      AU.addPreservedID(MachineLoopInfoID);
59      AU.addRequired<MachineDominatorTree>();
60      AU.addPreserved<MachineDominatorTree>();
61    }
62
63    virtual void releaseMemory() {
64      ScopeMap.clear();
65      Exps.clear();
66    }
67
68  private:
69    const unsigned LookAheadLimit;
70    typedef RecyclingAllocator<BumpPtrAllocator,
71        ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
72    typedef ScopedHashTable<MachineInstr*, unsigned,
73        MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
74    typedef ScopedHTType::ScopeTy ScopeType;
75    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
76    ScopedHTType VNT;
77    SmallVector<MachineInstr*, 64> Exps;
78    unsigned CurrVN;
79
80    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
81    bool isPhysDefTriviallyDead(unsigned Reg,
82                                MachineBasicBlock::const_iterator I,
83                                MachineBasicBlock::const_iterator E) const;
84    bool hasLivePhysRegDefUses(const MachineInstr *MI,
85                               const MachineBasicBlock *MBB,
86                               SmallSet<unsigned,8> &PhysRefs,
87                               SmallVectorImpl<unsigned> &PhysDefs,
88                               bool &PhysUseDef) const;
89    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
90                          SmallSet<unsigned,8> &PhysRefs,
91                          SmallVectorImpl<unsigned> &PhysDefs,
92                          bool &NonLocal) const;
93    bool isCSECandidate(MachineInstr *MI);
94    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
95                           MachineInstr *CSMI, MachineInstr *MI);
96    void EnterScope(MachineBasicBlock *MBB);
97    void ExitScope(MachineBasicBlock *MBB);
98    bool ProcessBlock(MachineBasicBlock *MBB);
99    void ExitScopeIfDone(MachineDomTreeNode *Node,
100                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
101    bool PerformCSE(MachineDomTreeNode *Node);
102  };
103} // end anonymous namespace
104
105char MachineCSE::ID = 0;
106char &llvm::MachineCSEID = MachineCSE::ID;
107INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
108                "Machine Common Subexpression Elimination", false, false)
109INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
110INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
111INITIALIZE_PASS_END(MachineCSE, "machine-cse",
112                "Machine Common Subexpression Elimination", false, false)
113
114bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
115                                          MachineBasicBlock *MBB) {
116  bool Changed = false;
117  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
118    MachineOperand &MO = MI->getOperand(i);
119    if (!MO.isReg() || !MO.isUse())
120      continue;
121    unsigned Reg = MO.getReg();
122    if (!TargetRegisterInfo::isVirtualRegister(Reg))
123      continue;
124    if (!MRI->hasOneNonDBGUse(Reg))
125      // Only coalesce single use copies. This ensure the copy will be
126      // deleted.
127      continue;
128    MachineInstr *DefMI = MRI->getVRegDef(Reg);
129    if (!DefMI->isCopy())
130      continue;
131    unsigned SrcReg = DefMI->getOperand(1).getReg();
132    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
133      continue;
134    if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
135      continue;
136    if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
137      continue;
138    DEBUG(dbgs() << "Coalescing: " << *DefMI);
139    DEBUG(dbgs() << "***     to: " << *MI);
140    MO.setReg(SrcReg);
141    MRI->clearKillFlags(SrcReg);
142    DefMI->eraseFromParent();
143    ++NumCoalesces;
144    Changed = true;
145  }
146
147  return Changed;
148}
149
150bool
151MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
152                                   MachineBasicBlock::const_iterator I,
153                                   MachineBasicBlock::const_iterator E) const {
154  unsigned LookAheadLeft = LookAheadLimit;
155  while (LookAheadLeft) {
156    // Skip over dbg_value's.
157    while (I != E && I->isDebugValue())
158      ++I;
159
160    if (I == E)
161      // Reached end of block, register is obviously dead.
162      return true;
163
164    bool SeenDef = false;
165    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
166      const MachineOperand &MO = I->getOperand(i);
167      if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
168        SeenDef = true;
169      if (!MO.isReg() || !MO.getReg())
170        continue;
171      if (!TRI->regsOverlap(MO.getReg(), Reg))
172        continue;
173      if (MO.isUse())
174        // Found a use!
175        return false;
176      SeenDef = true;
177    }
178    if (SeenDef)
179      // See a def of Reg (or an alias) before encountering any use, it's
180      // trivially dead.
181      return true;
182
183    --LookAheadLeft;
184    ++I;
185  }
186  return false;
187}
188
189/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
190/// physical registers (except for dead defs of physical registers). It also
191/// returns the physical register def by reference if it's the only one and the
192/// instruction does not uses a physical register.
193bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
194                                       const MachineBasicBlock *MBB,
195                                       SmallSet<unsigned,8> &PhysRefs,
196                                       SmallVectorImpl<unsigned> &PhysDefs,
197                                       bool &PhysUseDef) const{
198  // First, add all uses to PhysRefs.
199  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
200    const MachineOperand &MO = MI->getOperand(i);
201    if (!MO.isReg() || MO.isDef())
202      continue;
203    unsigned Reg = MO.getReg();
204    if (!Reg)
205      continue;
206    if (TargetRegisterInfo::isVirtualRegister(Reg))
207      continue;
208    // Reading constant physregs is ok.
209    if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
210      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
211        PhysRefs.insert(*AI);
212  }
213
214  // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
215  // (which currently contains only uses), set the PhysUseDef flag.
216  PhysUseDef = false;
217  MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
218  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
219    const MachineOperand &MO = MI->getOperand(i);
220    if (!MO.isReg() || !MO.isDef())
221      continue;
222    unsigned Reg = MO.getReg();
223    if (!Reg)
224      continue;
225    if (TargetRegisterInfo::isVirtualRegister(Reg))
226      continue;
227    // Check against PhysRefs even if the def is "dead".
228    if (PhysRefs.count(Reg))
229      PhysUseDef = true;
230    // If the def is dead, it's ok. But the def may not marked "dead". That's
231    // common since this pass is run before livevariables. We can scan
232    // forward a few instructions and check if it is obviously dead.
233    if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
234      PhysDefs.push_back(Reg);
235  }
236
237  // Finally, add all defs to PhysRefs as well.
238  for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
239    for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
240      PhysRefs.insert(*AI);
241
242  return !PhysRefs.empty();
243}
244
245bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
246                                  SmallSet<unsigned,8> &PhysRefs,
247                                  SmallVectorImpl<unsigned> &PhysDefs,
248                                  bool &NonLocal) const {
249  // For now conservatively returns false if the common subexpression is
250  // not in the same basic block as the given instruction. The only exception
251  // is if the common subexpression is in the sole predecessor block.
252  const MachineBasicBlock *MBB = MI->getParent();
253  const MachineBasicBlock *CSMBB = CSMI->getParent();
254
255  bool CrossMBB = false;
256  if (CSMBB != MBB) {
257    if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
258      return false;
259
260    for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
261      if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
262        // Avoid extending live range of physical registers if they are
263        //allocatable or reserved.
264        return false;
265    }
266    CrossMBB = true;
267  }
268  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
269  MachineBasicBlock::const_iterator E = MI;
270  MachineBasicBlock::const_iterator EE = CSMBB->end();
271  unsigned LookAheadLeft = LookAheadLimit;
272  while (LookAheadLeft) {
273    // Skip over dbg_value's.
274    while (I != E && I != EE && I->isDebugValue())
275      ++I;
276
277    if (I == EE) {
278      assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
279      (void)CrossMBB;
280      CrossMBB = false;
281      NonLocal = true;
282      I = MBB->begin();
283      EE = MBB->end();
284      continue;
285    }
286
287    if (I == E)
288      return true;
289
290    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
291      const MachineOperand &MO = I->getOperand(i);
292      // RegMasks go on instructions like calls that clobber lots of physregs.
293      // Don't attempt to CSE across such an instruction.
294      if (MO.isRegMask())
295        return false;
296      if (!MO.isReg() || !MO.isDef())
297        continue;
298      unsigned MOReg = MO.getReg();
299      if (TargetRegisterInfo::isVirtualRegister(MOReg))
300        continue;
301      if (PhysRefs.count(MOReg))
302        return false;
303    }
304
305    --LookAheadLeft;
306    ++I;
307  }
308
309  return false;
310}
311
312bool MachineCSE::isCSECandidate(MachineInstr *MI) {
313  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
314      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
315    return false;
316
317  // Ignore copies.
318  if (MI->isCopyLike())
319    return false;
320
321  // Ignore stuff that we obviously can't move.
322  if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
323      MI->hasUnmodeledSideEffects())
324    return false;
325
326  if (MI->mayLoad()) {
327    // Okay, this instruction does a load. As a refinement, we allow the target
328    // to decide whether the loaded value is actually a constant. If so, we can
329    // actually use it as a load.
330    if (!MI->isInvariantLoad(AA))
331      // FIXME: we should be able to hoist loads with no other side effects if
332      // there are no other instructions which can change memory in this loop.
333      // This is a trivial form of alias analysis.
334      return false;
335  }
336  return true;
337}
338
339/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
340/// common expression that defines Reg.
341bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
342                                   MachineInstr *CSMI, MachineInstr *MI) {
343  // FIXME: Heuristics that works around the lack the live range splitting.
344
345  // If CSReg is used at all uses of Reg, CSE should not increase register
346  // pressure of CSReg.
347  bool MayIncreasePressure = true;
348  if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
349      TargetRegisterInfo::isVirtualRegister(Reg)) {
350    MayIncreasePressure = false;
351    SmallPtrSet<MachineInstr*, 8> CSUses;
352    for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg),
353         E = MRI->use_nodbg_end(); I != E; ++I) {
354      MachineInstr *Use = &*I;
355      CSUses.insert(Use);
356    }
357    for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
358         E = MRI->use_nodbg_end(); I != E; ++I) {
359      MachineInstr *Use = &*I;
360      if (!CSUses.count(Use)) {
361        MayIncreasePressure = true;
362        break;
363      }
364    }
365  }
366  if (!MayIncreasePressure) return true;
367
368  // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
369  // an immediate predecessor. We don't want to increase register pressure and
370  // end up causing other computation to be spilled.
371  if (MI->isAsCheapAsAMove()) {
372    MachineBasicBlock *CSBB = CSMI->getParent();
373    MachineBasicBlock *BB = MI->getParent();
374    if (CSBB != BB && !CSBB->isSuccessor(BB))
375      return false;
376  }
377
378  // Heuristics #2: If the expression doesn't not use a vr and the only use
379  // of the redundant computation are copies, do not cse.
380  bool HasVRegUse = false;
381  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
382    const MachineOperand &MO = MI->getOperand(i);
383    if (MO.isReg() && MO.isUse() &&
384        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
385      HasVRegUse = true;
386      break;
387    }
388  }
389  if (!HasVRegUse) {
390    bool HasNonCopyUse = false;
391    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
392           E = MRI->use_nodbg_end(); I != E; ++I) {
393      MachineInstr *Use = &*I;
394      // Ignore copies.
395      if (!Use->isCopyLike()) {
396        HasNonCopyUse = true;
397        break;
398      }
399    }
400    if (!HasNonCopyUse)
401      return false;
402  }
403
404  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
405  // it unless the defined value is already used in the BB of the new use.
406  bool HasPHI = false;
407  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
408  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
409       E = MRI->use_nodbg_end(); I != E; ++I) {
410    MachineInstr *Use = &*I;
411    HasPHI |= Use->isPHI();
412    CSBBs.insert(Use->getParent());
413  }
414
415  if (!HasPHI)
416    return true;
417  return CSBBs.count(MI->getParent());
418}
419
420void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
421  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
422  ScopeType *Scope = new ScopeType(VNT);
423  ScopeMap[MBB] = Scope;
424}
425
426void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
427  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
428  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
429  assert(SI != ScopeMap.end());
430  delete SI->second;
431  ScopeMap.erase(SI);
432}
433
434bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
435  bool Changed = false;
436
437  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
438  SmallVector<unsigned, 2> ImplicitDefsToUpdate;
439  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
440    MachineInstr *MI = &*I;
441    ++I;
442
443    if (!isCSECandidate(MI))
444      continue;
445
446    bool FoundCSE = VNT.count(MI);
447    if (!FoundCSE) {
448      // Look for trivial copy coalescing opportunities.
449      if (PerformTrivialCoalescing(MI, MBB)) {
450        Changed = true;
451
452        // After coalescing MI itself may become a copy.
453        if (MI->isCopyLike())
454          continue;
455        FoundCSE = VNT.count(MI);
456      }
457    }
458
459    // Commute commutable instructions.
460    bool Commuted = false;
461    if (!FoundCSE && MI->isCommutable()) {
462      MachineInstr *NewMI = TII->commuteInstruction(MI);
463      if (NewMI) {
464        Commuted = true;
465        FoundCSE = VNT.count(NewMI);
466        if (NewMI != MI) {
467          // New instruction. It doesn't need to be kept.
468          NewMI->eraseFromParent();
469          Changed = true;
470        } else if (!FoundCSE)
471          // MI was changed but it didn't help, commute it back!
472          (void)TII->commuteInstruction(MI);
473      }
474    }
475
476    // If the instruction defines physical registers and the values *may* be
477    // used, then it's not safe to replace it with a common subexpression.
478    // It's also not safe if the instruction uses physical registers.
479    bool CrossMBBPhysDef = false;
480    SmallSet<unsigned, 8> PhysRefs;
481    SmallVector<unsigned, 2> PhysDefs;
482    bool PhysUseDef = false;
483    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
484                                          PhysDefs, PhysUseDef)) {
485      FoundCSE = false;
486
487      // ... Unless the CS is local or is in the sole predecessor block
488      // and it also defines the physical register which is not clobbered
489      // in between and the physical register uses were not clobbered.
490      // This can never be the case if the instruction both uses and
491      // defines the same physical register, which was detected above.
492      if (!PhysUseDef) {
493        unsigned CSVN = VNT.lookup(MI);
494        MachineInstr *CSMI = Exps[CSVN];
495        if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
496          FoundCSE = true;
497      }
498    }
499
500    if (!FoundCSE) {
501      VNT.insert(MI, CurrVN++);
502      Exps.push_back(MI);
503      continue;
504    }
505
506    // Found a common subexpression, eliminate it.
507    unsigned CSVN = VNT.lookup(MI);
508    MachineInstr *CSMI = Exps[CSVN];
509    DEBUG(dbgs() << "Examining: " << *MI);
510    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
511
512    // Check if it's profitable to perform this CSE.
513    bool DoCSE = true;
514    unsigned NumDefs = MI->getDesc().getNumDefs() +
515                       MI->getDesc().getNumImplicitDefs();
516
517    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
518      MachineOperand &MO = MI->getOperand(i);
519      if (!MO.isReg() || !MO.isDef())
520        continue;
521      unsigned OldReg = MO.getReg();
522      unsigned NewReg = CSMI->getOperand(i).getReg();
523
524      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
525      // we should make sure it is not dead at CSMI.
526      if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
527        ImplicitDefsToUpdate.push_back(i);
528      if (OldReg == NewReg) {
529        --NumDefs;
530        continue;
531      }
532
533      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
534             TargetRegisterInfo::isVirtualRegister(NewReg) &&
535             "Do not CSE physical register defs!");
536
537      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
538        DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
539        DoCSE = false;
540        break;
541      }
542
543      // Don't perform CSE if the result of the old instruction cannot exist
544      // within the register class of the new instruction.
545      const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
546      if (!MRI->constrainRegClass(NewReg, OldRC)) {
547        DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
548        DoCSE = false;
549        break;
550      }
551
552      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
553      --NumDefs;
554    }
555
556    // Actually perform the elimination.
557    if (DoCSE) {
558      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
559        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
560        MRI->clearKillFlags(CSEPairs[i].second);
561      }
562
563      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
564      // we should make sure it is not dead at CSMI.
565      for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
566        CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
567
568      if (CrossMBBPhysDef) {
569        // Add physical register defs now coming in from a predecessor to MBB
570        // livein list.
571        while (!PhysDefs.empty()) {
572          unsigned LiveIn = PhysDefs.pop_back_val();
573          if (!MBB->isLiveIn(LiveIn))
574            MBB->addLiveIn(LiveIn);
575        }
576        ++NumCrossBBCSEs;
577      }
578
579      MI->eraseFromParent();
580      ++NumCSEs;
581      if (!PhysRefs.empty())
582        ++NumPhysCSEs;
583      if (Commuted)
584        ++NumCommutes;
585      Changed = true;
586    } else {
587      VNT.insert(MI, CurrVN++);
588      Exps.push_back(MI);
589    }
590    CSEPairs.clear();
591    ImplicitDefsToUpdate.clear();
592  }
593
594  return Changed;
595}
596
597/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
598/// dominator tree node if its a leaf or all of its children are done. Walk
599/// up the dominator tree to destroy ancestors which are now done.
600void
601MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
602                        DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
603  if (OpenChildren[Node])
604    return;
605
606  // Pop scope.
607  ExitScope(Node->getBlock());
608
609  // Now traverse upwards to pop ancestors whose offsprings are all done.
610  while (MachineDomTreeNode *Parent = Node->getIDom()) {
611    unsigned Left = --OpenChildren[Parent];
612    if (Left != 0)
613      break;
614    ExitScope(Parent->getBlock());
615    Node = Parent;
616  }
617}
618
619bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
620  SmallVector<MachineDomTreeNode*, 32> Scopes;
621  SmallVector<MachineDomTreeNode*, 8> WorkList;
622  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
623
624  CurrVN = 0;
625
626  // Perform a DFS walk to determine the order of visit.
627  WorkList.push_back(Node);
628  do {
629    Node = WorkList.pop_back_val();
630    Scopes.push_back(Node);
631    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
632    unsigned NumChildren = Children.size();
633    OpenChildren[Node] = NumChildren;
634    for (unsigned i = 0; i != NumChildren; ++i) {
635      MachineDomTreeNode *Child = Children[i];
636      WorkList.push_back(Child);
637    }
638  } while (!WorkList.empty());
639
640  // Now perform CSE.
641  bool Changed = false;
642  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
643    MachineDomTreeNode *Node = Scopes[i];
644    MachineBasicBlock *MBB = Node->getBlock();
645    EnterScope(MBB);
646    Changed |= ProcessBlock(MBB);
647    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
648    ExitScopeIfDone(Node, OpenChildren);
649  }
650
651  return Changed;
652}
653
654bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
655  TII = MF.getTarget().getInstrInfo();
656  TRI = MF.getTarget().getRegisterInfo();
657  MRI = &MF.getRegInfo();
658  AA = &getAnalysis<AliasAnalysis>();
659  DT = &getAnalysis<MachineDominatorTree>();
660  return PerformCSE(DT->getRootNode());
661}
662