MachineCSE.cpp revision a65d6a686e6ad865c61aec70c5bdfb30bf6f5b22
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopedHashTable.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28
29using namespace llvm;
30
31STATISTIC(NumCoalesces, "Number of copies coalesced");
32STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33STATISTIC(NumPhysCSEs,  "Number of phyreg defining common subexpr eliminated");
34
35namespace {
36  class MachineCSE : public MachineFunctionPass {
37    const TargetInstrInfo *TII;
38    const TargetRegisterInfo *TRI;
39    AliasAnalysis *AA;
40    MachineDominatorTree *DT;
41    MachineRegisterInfo *MRI;
42  public:
43    static char ID; // Pass identification
44    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
45      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
46    }
47
48    virtual bool runOnMachineFunction(MachineFunction &MF);
49
50    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
51      AU.setPreservesCFG();
52      MachineFunctionPass::getAnalysisUsage(AU);
53      AU.addRequired<AliasAnalysis>();
54      AU.addPreservedID(MachineLoopInfoID);
55      AU.addRequired<MachineDominatorTree>();
56      AU.addPreserved<MachineDominatorTree>();
57    }
58
59    virtual void releaseMemory() {
60      ScopeMap.clear();
61      Exps.clear();
62    }
63
64  private:
65    const unsigned LookAheadLimit;
66    typedef ScopedHashTableScope<MachineInstr*, unsigned,
67                                 MachineInstrExpressionTrait> ScopeType;
68    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
69    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
70    SmallVector<MachineInstr*, 64> Exps;
71    unsigned CurrVN;
72
73    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
74    bool isPhysDefTriviallyDead(unsigned Reg,
75                                MachineBasicBlock::const_iterator I,
76                                MachineBasicBlock::const_iterator E) const ;
77    bool hasLivePhysRegDefUse(const MachineInstr *MI,
78                              const MachineBasicBlock *MBB,
79                              unsigned &PhysDef) const;
80    bool PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
81                           unsigned PhysDef) const;
82    bool isCSECandidate(MachineInstr *MI);
83    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
84                           MachineInstr *CSMI, MachineInstr *MI);
85    void EnterScope(MachineBasicBlock *MBB);
86    void ExitScope(MachineBasicBlock *MBB);
87    bool ProcessBlock(MachineBasicBlock *MBB);
88    void ExitScopeIfDone(MachineDomTreeNode *Node,
89                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
90                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
91    bool PerformCSE(MachineDomTreeNode *Node);
92  };
93} // end anonymous namespace
94
95char MachineCSE::ID = 0;
96INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
97                "Machine Common Subexpression Elimination", false, false)
98INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
99INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
100INITIALIZE_PASS_END(MachineCSE, "machine-cse",
101                "Machine Common Subexpression Elimination", false, false)
102
103FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
104
105bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
106                                          MachineBasicBlock *MBB) {
107  bool Changed = false;
108  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
109    MachineOperand &MO = MI->getOperand(i);
110    if (!MO.isReg() || !MO.isUse())
111      continue;
112    unsigned Reg = MO.getReg();
113    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
114      continue;
115    if (!MRI->hasOneNonDBGUse(Reg))
116      // Only coalesce single use copies. This ensure the copy will be
117      // deleted.
118      continue;
119    MachineInstr *DefMI = MRI->getVRegDef(Reg);
120    if (DefMI->getParent() != MBB)
121      continue;
122    if (!DefMI->isCopy())
123      continue;
124    unsigned SrcReg = DefMI->getOperand(1).getReg();
125    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
126      continue;
127    if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
128      continue;
129    if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
130      continue;
131    DEBUG(dbgs() << "Coalescing: " << *DefMI);
132    DEBUG(dbgs() << "***     to: " << *MI);
133    MO.setReg(SrcReg);
134    MRI->clearKillFlags(SrcReg);
135    DefMI->eraseFromParent();
136    ++NumCoalesces;
137    Changed = true;
138  }
139
140  return Changed;
141}
142
143bool
144MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
145                                   MachineBasicBlock::const_iterator I,
146                                   MachineBasicBlock::const_iterator E) const {
147  unsigned LookAheadLeft = LookAheadLimit;
148  while (LookAheadLeft) {
149    // Skip over dbg_value's.
150    while (I != E && I->isDebugValue())
151      ++I;
152
153    if (I == E)
154      // Reached end of block, register is obviously dead.
155      return true;
156
157    bool SeenDef = false;
158    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
159      const MachineOperand &MO = I->getOperand(i);
160      if (!MO.isReg() || !MO.getReg())
161        continue;
162      if (!TRI->regsOverlap(MO.getReg(), Reg))
163        continue;
164      if (MO.isUse())
165        // Found a use!
166        return false;
167      SeenDef = true;
168    }
169    if (SeenDef)
170      // See a def of Reg (or an alias) before encountering any use, it's
171      // trivially dead.
172      return true;
173
174    --LookAheadLeft;
175    ++I;
176  }
177  return false;
178}
179
180/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
181/// physical registers (except for dead defs of physical registers). It also
182/// returns the physical register def by reference if it's the only one and the
183/// instruction does not uses a physical register.
184bool MachineCSE::hasLivePhysRegDefUse(const MachineInstr *MI,
185                                      const MachineBasicBlock *MBB,
186                                      unsigned &PhysDef) const {
187  PhysDef = 0;
188  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
189    const MachineOperand &MO = MI->getOperand(i);
190    if (!MO.isReg())
191      continue;
192    unsigned Reg = MO.getReg();
193    if (!Reg)
194      continue;
195    if (TargetRegisterInfo::isVirtualRegister(Reg))
196      continue;
197    if (MO.isUse()) {
198      // Can't touch anything to read a physical register.
199      PhysDef = 0;
200      return true;
201    }
202    if (MO.isDead())
203      // If the def is dead, it's ok.
204      continue;
205    // Ok, this is a physical register def that's not marked "dead". That's
206    // common since this pass is run before livevariables. We can scan
207    // forward a few instructions and check if it is obviously dead.
208    if (PhysDef) {
209      // Multiple physical register defs. These are rare, forget about it.
210      PhysDef = 0;
211      return true;
212    }
213    PhysDef = Reg;
214  }
215
216  if (PhysDef) {
217    MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
218    if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
219      return true;
220  }
221  return false;
222}
223
224bool MachineCSE::PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
225                                  unsigned PhysDef) const {
226  // For now conservatively returns false if the common subexpression is
227  // not in the same basic block as the given instruction.
228  MachineBasicBlock *MBB = MI->getParent();
229  if (CSMI->getParent() != MBB)
230    return false;
231  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
232  MachineBasicBlock::const_iterator E = MI;
233  unsigned LookAheadLeft = LookAheadLimit;
234  while (LookAheadLeft) {
235    // Skip over dbg_value's.
236    while (I != E && I->isDebugValue())
237      ++I;
238
239    if (I == E)
240      return true;
241    if (I->modifiesRegister(PhysDef, TRI))
242      return false;
243
244    --LookAheadLeft;
245    ++I;
246  }
247
248  return false;
249}
250
251bool MachineCSE::isCSECandidate(MachineInstr *MI) {
252  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
253      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
254    return false;
255
256  // Ignore copies.
257  if (MI->isCopyLike())
258    return false;
259
260  // Ignore stuff that we obviously can't move.
261  const TargetInstrDesc &TID = MI->getDesc();
262  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
263      TID.hasUnmodeledSideEffects())
264    return false;
265
266  if (TID.mayLoad()) {
267    // Okay, this instruction does a load. As a refinement, we allow the target
268    // to decide whether the loaded value is actually a constant. If so, we can
269    // actually use it as a load.
270    if (!MI->isInvariantLoad(AA))
271      // FIXME: we should be able to hoist loads with no other side effects if
272      // there are no other instructions which can change memory in this loop.
273      // This is a trivial form of alias analysis.
274      return false;
275  }
276  return true;
277}
278
279/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
280/// common expression that defines Reg.
281bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
282                                   MachineInstr *CSMI, MachineInstr *MI) {
283  // FIXME: Heuristics that works around the lack the live range splitting.
284
285  // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
286  // immediate predecessor. We don't want to increase register pressure and end up
287  // causing other computation to be spilled.
288  if (MI->getDesc().isAsCheapAsAMove()) {
289    MachineBasicBlock *CSBB = CSMI->getParent();
290    MachineBasicBlock *BB = MI->getParent();
291    if (CSBB != BB &&
292        find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
293      return false;
294  }
295
296  // Heuristics #2: If the expression doesn't not use a vr and the only use
297  // of the redundant computation are copies, do not cse.
298  bool HasVRegUse = false;
299  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
300    const MachineOperand &MO = MI->getOperand(i);
301    if (MO.isReg() && MO.isUse() && MO.getReg() &&
302        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
303      HasVRegUse = true;
304      break;
305    }
306  }
307  if (!HasVRegUse) {
308    bool HasNonCopyUse = false;
309    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
310           E = MRI->use_nodbg_end(); I != E; ++I) {
311      MachineInstr *Use = &*I;
312      // Ignore copies.
313      if (!Use->isCopyLike()) {
314        HasNonCopyUse = true;
315        break;
316      }
317    }
318    if (!HasNonCopyUse)
319      return false;
320  }
321
322  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
323  // it unless the defined value is already used in the BB of the new use.
324  bool HasPHI = false;
325  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
326  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
327       E = MRI->use_nodbg_end(); I != E; ++I) {
328    MachineInstr *Use = &*I;
329    HasPHI |= Use->isPHI();
330    CSBBs.insert(Use->getParent());
331  }
332
333  if (!HasPHI)
334    return true;
335  return CSBBs.count(MI->getParent());
336}
337
338void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
339  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
340  ScopeType *Scope = new ScopeType(VNT);
341  ScopeMap[MBB] = Scope;
342}
343
344void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
345  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
346  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
347  assert(SI != ScopeMap.end());
348  ScopeMap.erase(SI);
349  delete SI->second;
350}
351
352bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
353  bool Changed = false;
354
355  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
356  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
357    MachineInstr *MI = &*I;
358    ++I;
359
360    if (!isCSECandidate(MI))
361      continue;
362
363    bool DefPhys = false;
364    bool FoundCSE = VNT.count(MI);
365    if (!FoundCSE) {
366      // Look for trivial copy coalescing opportunities.
367      if (PerformTrivialCoalescing(MI, MBB)) {
368        // After coalescing MI itself may become a copy.
369        if (MI->isCopyLike())
370          continue;
371        FoundCSE = VNT.count(MI);
372      }
373    }
374    // FIXME: commute commutable instructions?
375
376    // If the instruction defines a physical register and the value *may* be
377    // used, then it's not safe to replace it with a common subexpression.
378    unsigned PhysDef = 0;
379    if (FoundCSE && hasLivePhysRegDefUse(MI, MBB, PhysDef)) {
380      FoundCSE = false;
381
382      // ... Unless the CS is local and it also defines the physical register
383      // which is not clobbered in between.
384      if (PhysDef) {
385        unsigned CSVN = VNT.lookup(MI);
386        MachineInstr *CSMI = Exps[CSVN];
387        if (PhysRegDefReaches(CSMI, MI, PhysDef)) {
388          FoundCSE = true;
389          DefPhys = true;
390        }
391      }
392    }
393
394    if (!FoundCSE) {
395      VNT.insert(MI, CurrVN++);
396      Exps.push_back(MI);
397      continue;
398    }
399
400    // Found a common subexpression, eliminate it.
401    unsigned CSVN = VNT.lookup(MI);
402    MachineInstr *CSMI = Exps[CSVN];
403    DEBUG(dbgs() << "Examining: " << *MI);
404    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
405
406    // Check if it's profitable to perform this CSE.
407    bool DoCSE = true;
408    unsigned NumDefs = MI->getDesc().getNumDefs();
409    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
410      MachineOperand &MO = MI->getOperand(i);
411      if (!MO.isReg() || !MO.isDef())
412        continue;
413      unsigned OldReg = MO.getReg();
414      unsigned NewReg = CSMI->getOperand(i).getReg();
415      if (OldReg == NewReg)
416        continue;
417      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
418             TargetRegisterInfo::isVirtualRegister(NewReg) &&
419             "Do not CSE physical register defs!");
420      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
421        DoCSE = false;
422        break;
423      }
424      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
425      --NumDefs;
426    }
427
428    // Actually perform the elimination.
429    if (DoCSE) {
430      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
431        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
432        MRI->clearKillFlags(CSEPairs[i].second);
433      }
434      MI->eraseFromParent();
435      ++NumCSEs;
436      if (DefPhys)
437        ++NumPhysCSEs;
438    } else {
439      DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
440      VNT.insert(MI, CurrVN++);
441      Exps.push_back(MI);
442    }
443    CSEPairs.clear();
444  }
445
446  return Changed;
447}
448
449/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
450/// dominator tree node if its a leaf or all of its children are done. Walk
451/// up the dominator tree to destroy ancestors which are now done.
452void
453MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
454                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
455                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
456  if (OpenChildren[Node])
457    return;
458
459  // Pop scope.
460  ExitScope(Node->getBlock());
461
462  // Now traverse upwards to pop ancestors whose offsprings are all done.
463  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
464    unsigned Left = --OpenChildren[Parent];
465    if (Left != 0)
466      break;
467    ExitScope(Parent->getBlock());
468    Node = Parent;
469  }
470}
471
472bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
473  SmallVector<MachineDomTreeNode*, 32> Scopes;
474  SmallVector<MachineDomTreeNode*, 8> WorkList;
475  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
476  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
477
478  CurrVN = 0;
479
480  // Perform a DFS walk to determine the order of visit.
481  WorkList.push_back(Node);
482  do {
483    Node = WorkList.pop_back_val();
484    Scopes.push_back(Node);
485    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
486    unsigned NumChildren = Children.size();
487    OpenChildren[Node] = NumChildren;
488    for (unsigned i = 0; i != NumChildren; ++i) {
489      MachineDomTreeNode *Child = Children[i];
490      ParentMap[Child] = Node;
491      WorkList.push_back(Child);
492    }
493  } while (!WorkList.empty());
494
495  // Now perform CSE.
496  bool Changed = false;
497  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
498    MachineDomTreeNode *Node = Scopes[i];
499    MachineBasicBlock *MBB = Node->getBlock();
500    EnterScope(MBB);
501    Changed |= ProcessBlock(MBB);
502    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
503    ExitScopeIfDone(Node, OpenChildren, ParentMap);
504  }
505
506  return Changed;
507}
508
509bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
510  TII = MF.getTarget().getInstrInfo();
511  TRI = MF.getTarget().getRegisterInfo();
512  MRI = &MF.getRegInfo();
513  AA = &getAnalysis<AliasAnalysis>();
514  DT = &getAnalysis<MachineDominatorTree>();
515  return PerformCSE(DT->getRootNode());
516}
517