MachineCSE.cpp revision ba86b13ad9cd6a9707a954598863da1e2a9f773b
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopedHashTable.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/RecyclingAllocator.h"
29using namespace llvm;
30
31STATISTIC(NumCoalesces, "Number of copies coalesced");
32STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33STATISTIC(NumPhysCSEs,
34          "Number of physreg referencing common subexpr eliminated");
35STATISTIC(NumCrossBBCSEs,
36          "Number of cross-MBB physreg referencing CS eliminated");
37STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
38
39namespace {
40  class MachineCSE : public MachineFunctionPass {
41    const TargetInstrInfo *TII;
42    const TargetRegisterInfo *TRI;
43    AliasAnalysis *AA;
44    MachineDominatorTree *DT;
45    MachineRegisterInfo *MRI;
46  public:
47    static char ID; // Pass identification
48    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
49      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
50    }
51
52    virtual bool runOnMachineFunction(MachineFunction &MF);
53
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.setPreservesCFG();
56      MachineFunctionPass::getAnalysisUsage(AU);
57      AU.addRequired<AliasAnalysis>();
58      AU.addPreservedID(MachineLoopInfoID);
59      AU.addRequired<MachineDominatorTree>();
60      AU.addPreserved<MachineDominatorTree>();
61    }
62
63    virtual void releaseMemory() {
64      ScopeMap.clear();
65      Exps.clear();
66      AllocatableRegs.clear();
67      ReservedRegs.clear();
68    }
69
70  private:
71    const unsigned LookAheadLimit;
72    typedef RecyclingAllocator<BumpPtrAllocator,
73        ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
74    typedef ScopedHashTable<MachineInstr*, unsigned,
75        MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
76    typedef ScopedHTType::ScopeTy ScopeType;
77    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
78    ScopedHTType VNT;
79    SmallVector<MachineInstr*, 64> Exps;
80    unsigned CurrVN;
81    BitVector AllocatableRegs;
82    BitVector ReservedRegs;
83
84    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
85    bool isPhysDefTriviallyDead(unsigned Reg,
86                                MachineBasicBlock::const_iterator I,
87                                MachineBasicBlock::const_iterator E) const;
88    bool hasLivePhysRegDefUses(const MachineInstr *MI,
89                               const MachineBasicBlock *MBB,
90                               SmallSet<unsigned,8> &PhysRefs,
91                               SmallVector<unsigned,2> &PhysDefs) const;
92    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
93                          SmallSet<unsigned,8> &PhysRefs,
94                          SmallVector<unsigned,2> &PhysDefs,
95                          bool &NonLocal) const;
96    bool isCSECandidate(MachineInstr *MI);
97    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
98                           MachineInstr *CSMI, MachineInstr *MI);
99    void EnterScope(MachineBasicBlock *MBB);
100    void ExitScope(MachineBasicBlock *MBB);
101    bool ProcessBlock(MachineBasicBlock *MBB);
102    void ExitScopeIfDone(MachineDomTreeNode *Node,
103                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
104    bool PerformCSE(MachineDomTreeNode *Node);
105  };
106} // end anonymous namespace
107
108char MachineCSE::ID = 0;
109char &llvm::MachineCSEID = MachineCSE::ID;
110INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
111                "Machine Common Subexpression Elimination", false, false)
112INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
113INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
114INITIALIZE_PASS_END(MachineCSE, "machine-cse",
115                "Machine Common Subexpression Elimination", false, false)
116
117bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
118                                          MachineBasicBlock *MBB) {
119  bool Changed = false;
120  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
121    MachineOperand &MO = MI->getOperand(i);
122    if (!MO.isReg() || !MO.isUse())
123      continue;
124    unsigned Reg = MO.getReg();
125    if (!TargetRegisterInfo::isVirtualRegister(Reg))
126      continue;
127    if (!MRI->hasOneNonDBGUse(Reg))
128      // Only coalesce single use copies. This ensure the copy will be
129      // deleted.
130      continue;
131    MachineInstr *DefMI = MRI->getVRegDef(Reg);
132    if (DefMI->getParent() != MBB)
133      continue;
134    if (!DefMI->isCopy())
135      continue;
136    unsigned SrcReg = DefMI->getOperand(1).getReg();
137    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
138      continue;
139    if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
140      continue;
141    if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
142      continue;
143    DEBUG(dbgs() << "Coalescing: " << *DefMI);
144    DEBUG(dbgs() << "***     to: " << *MI);
145    MO.setReg(SrcReg);
146    MRI->clearKillFlags(SrcReg);
147    DefMI->eraseFromParent();
148    ++NumCoalesces;
149    Changed = true;
150  }
151
152  return Changed;
153}
154
155bool
156MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
157                                   MachineBasicBlock::const_iterator I,
158                                   MachineBasicBlock::const_iterator E) const {
159  unsigned LookAheadLeft = LookAheadLimit;
160  while (LookAheadLeft) {
161    // Skip over dbg_value's.
162    while (I != E && I->isDebugValue())
163      ++I;
164
165    if (I == E)
166      // Reached end of block, register is obviously dead.
167      return true;
168
169    bool SeenDef = false;
170    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
171      const MachineOperand &MO = I->getOperand(i);
172      if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
173        SeenDef = true;
174      if (!MO.isReg() || !MO.getReg())
175        continue;
176      if (!TRI->regsOverlap(MO.getReg(), Reg))
177        continue;
178      if (MO.isUse())
179        // Found a use!
180        return false;
181      SeenDef = true;
182    }
183    if (SeenDef)
184      // See a def of Reg (or an alias) before encountering any use, it's
185      // trivially dead.
186      return true;
187
188    --LookAheadLeft;
189    ++I;
190  }
191  return false;
192}
193
194/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
195/// physical registers (except for dead defs of physical registers). It also
196/// returns the physical register def by reference if it's the only one and the
197/// instruction does not uses a physical register.
198bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
199                                       const MachineBasicBlock *MBB,
200                                       SmallSet<unsigned,8> &PhysRefs,
201                                       SmallVector<unsigned,2> &PhysDefs) const{
202  MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
203  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
204    const MachineOperand &MO = MI->getOperand(i);
205    if (!MO.isReg())
206      continue;
207    unsigned Reg = MO.getReg();
208    if (!Reg)
209      continue;
210    if (TargetRegisterInfo::isVirtualRegister(Reg))
211      continue;
212    // If the def is dead, it's ok. But the def may not marked "dead". That's
213    // common since this pass is run before livevariables. We can scan
214    // forward a few instructions and check if it is obviously dead.
215    if (MO.isDef() &&
216        (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
217      continue;
218    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
219      PhysRefs.insert(*AI);
220    if (MO.isDef())
221      PhysDefs.push_back(Reg);
222  }
223
224  return !PhysRefs.empty();
225}
226
227bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
228                                  SmallSet<unsigned,8> &PhysRefs,
229                                  SmallVector<unsigned,2> &PhysDefs,
230                                  bool &NonLocal) const {
231  // For now conservatively returns false if the common subexpression is
232  // not in the same basic block as the given instruction. The only exception
233  // is if the common subexpression is in the sole predecessor block.
234  const MachineBasicBlock *MBB = MI->getParent();
235  const MachineBasicBlock *CSMBB = CSMI->getParent();
236
237  bool CrossMBB = false;
238  if (CSMBB != MBB) {
239    if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
240      return false;
241
242    for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
243      if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i]))
244        // Avoid extending live range of physical registers if they are
245        //allocatable or reserved.
246        return false;
247    }
248    CrossMBB = true;
249  }
250  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
251  MachineBasicBlock::const_iterator E = MI;
252  MachineBasicBlock::const_iterator EE = CSMBB->end();
253  unsigned LookAheadLeft = LookAheadLimit;
254  while (LookAheadLeft) {
255    // Skip over dbg_value's.
256    while (I != E && I != EE && I->isDebugValue())
257      ++I;
258
259    if (I == EE) {
260      assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
261      (void)CrossMBB;
262      CrossMBB = false;
263      NonLocal = true;
264      I = MBB->begin();
265      EE = MBB->end();
266      continue;
267    }
268
269    if (I == E)
270      return true;
271
272    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
273      const MachineOperand &MO = I->getOperand(i);
274      // RegMasks go on instructions like calls that clobber lots of physregs.
275      // Don't attempt to CSE across such an instruction.
276      if (MO.isRegMask())
277        return false;
278      if (!MO.isReg() || !MO.isDef())
279        continue;
280      unsigned MOReg = MO.getReg();
281      if (TargetRegisterInfo::isVirtualRegister(MOReg))
282        continue;
283      if (PhysRefs.count(MOReg))
284        return false;
285    }
286
287    --LookAheadLeft;
288    ++I;
289  }
290
291  return false;
292}
293
294bool MachineCSE::isCSECandidate(MachineInstr *MI) {
295  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
296      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
297    return false;
298
299  // Ignore copies.
300  if (MI->isCopyLike())
301    return false;
302
303  // Ignore stuff that we obviously can't move.
304  if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
305      MI->hasUnmodeledSideEffects())
306    return false;
307
308  if (MI->mayLoad()) {
309    // Okay, this instruction does a load. As a refinement, we allow the target
310    // to decide whether the loaded value is actually a constant. If so, we can
311    // actually use it as a load.
312    if (!MI->isInvariantLoad(AA))
313      // FIXME: we should be able to hoist loads with no other side effects if
314      // there are no other instructions which can change memory in this loop.
315      // This is a trivial form of alias analysis.
316      return false;
317  }
318  return true;
319}
320
321/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
322/// common expression that defines Reg.
323bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
324                                   MachineInstr *CSMI, MachineInstr *MI) {
325  // FIXME: Heuristics that works around the lack the live range splitting.
326
327  // If CSReg is used at all uses of Reg, CSE should not increase register
328  // pressure of CSReg.
329  bool MayIncreasePressure = true;
330  if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
331      TargetRegisterInfo::isVirtualRegister(Reg)) {
332    MayIncreasePressure = false;
333    SmallPtrSet<MachineInstr*, 8> CSUses;
334    for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg),
335         E = MRI->use_nodbg_end(); I != E; ++I) {
336      MachineInstr *Use = &*I;
337      CSUses.insert(Use);
338    }
339    for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
340         E = MRI->use_nodbg_end(); I != E; ++I) {
341      MachineInstr *Use = &*I;
342      if (!CSUses.count(Use)) {
343        MayIncreasePressure = true;
344        break;
345      }
346    }
347  }
348  if (!MayIncreasePressure) return true;
349
350  // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
351  // an immediate predecessor. We don't want to increase register pressure and
352  // end up causing other computation to be spilled.
353  if (MI->isAsCheapAsAMove()) {
354    MachineBasicBlock *CSBB = CSMI->getParent();
355    MachineBasicBlock *BB = MI->getParent();
356    if (CSBB != BB && !CSBB->isSuccessor(BB))
357      return false;
358  }
359
360  // Heuristics #2: If the expression doesn't not use a vr and the only use
361  // of the redundant computation are copies, do not cse.
362  bool HasVRegUse = false;
363  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
364    const MachineOperand &MO = MI->getOperand(i);
365    if (MO.isReg() && MO.isUse() &&
366        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
367      HasVRegUse = true;
368      break;
369    }
370  }
371  if (!HasVRegUse) {
372    bool HasNonCopyUse = false;
373    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
374           E = MRI->use_nodbg_end(); I != E; ++I) {
375      MachineInstr *Use = &*I;
376      // Ignore copies.
377      if (!Use->isCopyLike()) {
378        HasNonCopyUse = true;
379        break;
380      }
381    }
382    if (!HasNonCopyUse)
383      return false;
384  }
385
386  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
387  // it unless the defined value is already used in the BB of the new use.
388  bool HasPHI = false;
389  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
390  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
391       E = MRI->use_nodbg_end(); I != E; ++I) {
392    MachineInstr *Use = &*I;
393    HasPHI |= Use->isPHI();
394    CSBBs.insert(Use->getParent());
395  }
396
397  if (!HasPHI)
398    return true;
399  return CSBBs.count(MI->getParent());
400}
401
402void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
403  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
404  ScopeType *Scope = new ScopeType(VNT);
405  ScopeMap[MBB] = Scope;
406}
407
408void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
409  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
410  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
411  assert(SI != ScopeMap.end());
412  ScopeMap.erase(SI);
413  delete SI->second;
414}
415
416bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
417  bool Changed = false;
418
419  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
420  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
421    MachineInstr *MI = &*I;
422    ++I;
423
424    if (!isCSECandidate(MI))
425      continue;
426
427    bool FoundCSE = VNT.count(MI);
428    if (!FoundCSE) {
429      // Look for trivial copy coalescing opportunities.
430      if (PerformTrivialCoalescing(MI, MBB)) {
431        Changed = true;
432
433        // After coalescing MI itself may become a copy.
434        if (MI->isCopyLike())
435          continue;
436        FoundCSE = VNT.count(MI);
437      }
438    }
439
440    // Commute commutable instructions.
441    bool Commuted = false;
442    if (!FoundCSE && MI->isCommutable()) {
443      MachineInstr *NewMI = TII->commuteInstruction(MI);
444      if (NewMI) {
445        Commuted = true;
446        FoundCSE = VNT.count(NewMI);
447        if (NewMI != MI) {
448          // New instruction. It doesn't need to be kept.
449          NewMI->eraseFromParent();
450          Changed = true;
451        } else if (!FoundCSE)
452          // MI was changed but it didn't help, commute it back!
453          (void)TII->commuteInstruction(MI);
454      }
455    }
456
457    // If the instruction defines physical registers and the values *may* be
458    // used, then it's not safe to replace it with a common subexpression.
459    // It's also not safe if the instruction uses physical registers.
460    bool CrossMBBPhysDef = false;
461    SmallSet<unsigned, 8> PhysRefs;
462    SmallVector<unsigned, 2> PhysDefs;
463    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) {
464      FoundCSE = false;
465
466      // ... Unless the CS is local or is in the sole predecessor block
467      // and it also defines the physical register which is not clobbered
468      // in between and the physical register uses were not clobbered.
469      unsigned CSVN = VNT.lookup(MI);
470      MachineInstr *CSMI = Exps[CSVN];
471      if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
472        FoundCSE = true;
473    }
474
475    if (!FoundCSE) {
476      VNT.insert(MI, CurrVN++);
477      Exps.push_back(MI);
478      continue;
479    }
480
481    // Found a common subexpression, eliminate it.
482    unsigned CSVN = VNT.lookup(MI);
483    MachineInstr *CSMI = Exps[CSVN];
484    DEBUG(dbgs() << "Examining: " << *MI);
485    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
486
487    // Check if it's profitable to perform this CSE.
488    bool DoCSE = true;
489    unsigned NumDefs = MI->getDesc().getNumDefs();
490    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
491      MachineOperand &MO = MI->getOperand(i);
492      if (!MO.isReg() || !MO.isDef())
493        continue;
494      unsigned OldReg = MO.getReg();
495      unsigned NewReg = CSMI->getOperand(i).getReg();
496      if (OldReg == NewReg)
497        continue;
498
499      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
500             TargetRegisterInfo::isVirtualRegister(NewReg) &&
501             "Do not CSE physical register defs!");
502
503      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
504        DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
505        DoCSE = false;
506        break;
507      }
508
509      // Don't perform CSE if the result of the old instruction cannot exist
510      // within the register class of the new instruction.
511      const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
512      if (!MRI->constrainRegClass(NewReg, OldRC)) {
513        DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
514        DoCSE = false;
515        break;
516      }
517
518      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
519      --NumDefs;
520    }
521
522    // Actually perform the elimination.
523    if (DoCSE) {
524      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
525        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
526        MRI->clearKillFlags(CSEPairs[i].second);
527      }
528
529      if (CrossMBBPhysDef) {
530        // Add physical register defs now coming in from a predecessor to MBB
531        // livein list.
532        while (!PhysDefs.empty()) {
533          unsigned LiveIn = PhysDefs.pop_back_val();
534          if (!MBB->isLiveIn(LiveIn))
535            MBB->addLiveIn(LiveIn);
536        }
537        ++NumCrossBBCSEs;
538      }
539
540      MI->eraseFromParent();
541      ++NumCSEs;
542      if (!PhysRefs.empty())
543        ++NumPhysCSEs;
544      if (Commuted)
545        ++NumCommutes;
546      Changed = true;
547    } else {
548      VNT.insert(MI, CurrVN++);
549      Exps.push_back(MI);
550    }
551    CSEPairs.clear();
552  }
553
554  return Changed;
555}
556
557/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
558/// dominator tree node if its a leaf or all of its children are done. Walk
559/// up the dominator tree to destroy ancestors which are now done.
560void
561MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
562                        DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
563  if (OpenChildren[Node])
564    return;
565
566  // Pop scope.
567  ExitScope(Node->getBlock());
568
569  // Now traverse upwards to pop ancestors whose offsprings are all done.
570  while (MachineDomTreeNode *Parent = Node->getIDom()) {
571    unsigned Left = --OpenChildren[Parent];
572    if (Left != 0)
573      break;
574    ExitScope(Parent->getBlock());
575    Node = Parent;
576  }
577}
578
579bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
580  SmallVector<MachineDomTreeNode*, 32> Scopes;
581  SmallVector<MachineDomTreeNode*, 8> WorkList;
582  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
583
584  CurrVN = 0;
585
586  // Perform a DFS walk to determine the order of visit.
587  WorkList.push_back(Node);
588  do {
589    Node = WorkList.pop_back_val();
590    Scopes.push_back(Node);
591    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
592    unsigned NumChildren = Children.size();
593    OpenChildren[Node] = NumChildren;
594    for (unsigned i = 0; i != NumChildren; ++i) {
595      MachineDomTreeNode *Child = Children[i];
596      WorkList.push_back(Child);
597    }
598  } while (!WorkList.empty());
599
600  // Now perform CSE.
601  bool Changed = false;
602  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
603    MachineDomTreeNode *Node = Scopes[i];
604    MachineBasicBlock *MBB = Node->getBlock();
605    EnterScope(MBB);
606    Changed |= ProcessBlock(MBB);
607    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
608    ExitScopeIfDone(Node, OpenChildren);
609  }
610
611  return Changed;
612}
613
614bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
615  TII = MF.getTarget().getInstrInfo();
616  TRI = MF.getTarget().getRegisterInfo();
617  MRI = &MF.getRegInfo();
618  AA = &getAnalysis<AliasAnalysis>();
619  DT = &getAnalysis<MachineDominatorTree>();
620  AllocatableRegs = TRI->getAllocatableSet(MF);
621  ReservedRegs = TRI->getReservedRegs(MF);
622  return PerformCSE(DT->getRootNode());
623}
624