MachineInstr.cpp revision 80f6c5898113806130975fd56d24929b06bf54f8
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Value.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetInstrDesc.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/Analysis/DebugInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/LeakDetector.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/FoldingSet.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38// MachineOperand Implementation
39//===----------------------------------------------------------------------===//
40
41/// AddRegOperandToRegInfo - Add this register operand to the specified
42/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
43/// explicitly nulled out.
44void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
45  assert(isReg() && "Can only add reg operand to use lists");
46
47  // If the reginfo pointer is null, just explicitly null out or next/prev
48  // pointers, to ensure they are not garbage.
49  if (RegInfo == 0) {
50    Contents.Reg.Prev = 0;
51    Contents.Reg.Next = 0;
52    return;
53  }
54
55  // Otherwise, add this operand to the head of the registers use/def list.
56  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
57
58  // For SSA values, we prefer to keep the definition at the start of the list.
59  // we do this by skipping over the definition if it is at the head of the
60  // list.
61  if (*Head && (*Head)->isDef())
62    Head = &(*Head)->Contents.Reg.Next;
63
64  Contents.Reg.Next = *Head;
65  if (Contents.Reg.Next) {
66    assert(getReg() == Contents.Reg.Next->getReg() &&
67           "Different regs on the same list!");
68    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
69  }
70
71  Contents.Reg.Prev = Head;
72  *Head = this;
73}
74
75/// RemoveRegOperandFromRegInfo - Remove this register operand from the
76/// MachineRegisterInfo it is linked with.
77void MachineOperand::RemoveRegOperandFromRegInfo() {
78  assert(isOnRegUseList() && "Reg operand is not on a use list");
79  // Unlink this from the doubly linked list of operands.
80  MachineOperand *NextOp = Contents.Reg.Next;
81  *Contents.Reg.Prev = NextOp;
82  if (NextOp) {
83    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
84    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
85  }
86  Contents.Reg.Prev = 0;
87  Contents.Reg.Next = 0;
88}
89
90void MachineOperand::setReg(unsigned Reg) {
91  if (getReg() == Reg) return; // No change.
92
93  // Otherwise, we have to change the register.  If this operand is embedded
94  // into a machine function, we need to update the old and new register's
95  // use/def lists.
96  if (MachineInstr *MI = getParent())
97    if (MachineBasicBlock *MBB = MI->getParent())
98      if (MachineFunction *MF = MBB->getParent()) {
99        RemoveRegOperandFromRegInfo();
100        Contents.Reg.RegNo = Reg;
101        AddRegOperandToRegInfo(&MF->getRegInfo());
102        return;
103      }
104
105  // Otherwise, just change the register, no problem.  :)
106  Contents.Reg.RegNo = Reg;
107}
108
109/// ChangeToImmediate - Replace this operand with a new immediate operand of
110/// the specified value.  If an operand is known to be an immediate already,
111/// the setImm method should be used.
112void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
113  // If this operand is currently a register operand, and if this is in a
114  // function, deregister the operand from the register's use/def list.
115  if (isReg() && getParent() && getParent()->getParent() &&
116      getParent()->getParent()->getParent())
117    RemoveRegOperandFromRegInfo();
118
119  OpKind = MO_Immediate;
120  Contents.ImmVal = ImmVal;
121}
122
123/// ChangeToRegister - Replace this operand with a new register operand of
124/// the specified value.  If an operand is known to be an register already,
125/// the setReg method should be used.
126void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
127                                      bool isKill, bool isDead, bool isUndef) {
128  // If this operand is already a register operand, use setReg to update the
129  // register's use/def lists.
130  if (isReg()) {
131    assert(!isEarlyClobber());
132    setReg(Reg);
133  } else {
134    // Otherwise, change this to a register and set the reg#.
135    OpKind = MO_Register;
136    Contents.Reg.RegNo = Reg;
137
138    // If this operand is embedded in a function, add the operand to the
139    // register's use/def list.
140    if (MachineInstr *MI = getParent())
141      if (MachineBasicBlock *MBB = MI->getParent())
142        if (MachineFunction *MF = MBB->getParent())
143          AddRegOperandToRegInfo(&MF->getRegInfo());
144  }
145
146  IsDef = isDef;
147  IsImp = isImp;
148  IsKill = isKill;
149  IsDead = isDead;
150  IsUndef = isUndef;
151  IsEarlyClobber = false;
152  SubReg = 0;
153}
154
155/// isIdenticalTo - Return true if this operand is identical to the specified
156/// operand.
157bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
158  if (getType() != Other.getType() ||
159      getTargetFlags() != Other.getTargetFlags())
160    return false;
161
162  switch (getType()) {
163  default: llvm_unreachable("Unrecognized operand type");
164  case MachineOperand::MO_Register:
165    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
166           getSubReg() == Other.getSubReg();
167  case MachineOperand::MO_Immediate:
168    return getImm() == Other.getImm();
169  case MachineOperand::MO_FPImmediate:
170    return getFPImm() == Other.getFPImm();
171  case MachineOperand::MO_MachineBasicBlock:
172    return getMBB() == Other.getMBB();
173  case MachineOperand::MO_FrameIndex:
174    return getIndex() == Other.getIndex();
175  case MachineOperand::MO_ConstantPoolIndex:
176    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
177  case MachineOperand::MO_JumpTableIndex:
178    return getIndex() == Other.getIndex();
179  case MachineOperand::MO_GlobalAddress:
180    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
181  case MachineOperand::MO_ExternalSymbol:
182    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
183           getOffset() == Other.getOffset();
184  case MachineOperand::MO_BlockAddress:
185    return getBlockAddress() == Other.getBlockAddress();
186  }
187}
188
189/// print - Print the specified machine operand.
190///
191void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
192  // If the instruction is embedded into a basic block, we can find the
193  // target info for the instruction.
194  if (!TM)
195    if (const MachineInstr *MI = getParent())
196      if (const MachineBasicBlock *MBB = MI->getParent())
197        if (const MachineFunction *MF = MBB->getParent())
198          TM = &MF->getTarget();
199
200  switch (getType()) {
201  case MachineOperand::MO_Register:
202    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
203      OS << "%reg" << getReg();
204    } else {
205      if (TM)
206        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
207      else
208        OS << "%physreg" << getReg();
209    }
210
211    if (getSubReg() != 0)
212      OS << ':' << getSubReg();
213
214    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
215        isEarlyClobber()) {
216      OS << '<';
217      bool NeedComma = false;
218      if (isDef()) {
219        if (NeedComma) OS << ',';
220        if (isEarlyClobber())
221          OS << "earlyclobber,";
222        if (isImplicit())
223          OS << "imp-";
224        OS << "def";
225        NeedComma = true;
226      } else if (isImplicit()) {
227          OS << "imp-use";
228          NeedComma = true;
229      }
230
231      if (isKill() || isDead() || isUndef()) {
232        if (NeedComma) OS << ',';
233        if (isKill())  OS << "kill";
234        if (isDead())  OS << "dead";
235        if (isUndef()) {
236          if (isKill() || isDead())
237            OS << ',';
238          OS << "undef";
239        }
240      }
241      OS << '>';
242    }
243    break;
244  case MachineOperand::MO_Immediate:
245    OS << getImm();
246    break;
247  case MachineOperand::MO_FPImmediate:
248    if (getFPImm()->getType()->isFloatTy())
249      OS << getFPImm()->getValueAPF().convertToFloat();
250    else
251      OS << getFPImm()->getValueAPF().convertToDouble();
252    break;
253  case MachineOperand::MO_MachineBasicBlock:
254    OS << "<BB#" << getMBB()->getNumber() << ">";
255    break;
256  case MachineOperand::MO_FrameIndex:
257    OS << "<fi#" << getIndex() << '>';
258    break;
259  case MachineOperand::MO_ConstantPoolIndex:
260    OS << "<cp#" << getIndex();
261    if (getOffset()) OS << "+" << getOffset();
262    OS << '>';
263    break;
264  case MachineOperand::MO_JumpTableIndex:
265    OS << "<jt#" << getIndex() << '>';
266    break;
267  case MachineOperand::MO_GlobalAddress:
268    OS << "<ga:";
269    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
270    if (getOffset()) OS << "+" << getOffset();
271    OS << '>';
272    break;
273  case MachineOperand::MO_ExternalSymbol:
274    OS << "<es:" << getSymbolName();
275    if (getOffset()) OS << "+" << getOffset();
276    OS << '>';
277    break;
278  case MachineOperand::MO_BlockAddress:
279    OS << "<";
280    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
281    OS << '>';
282    break;
283  default:
284    llvm_unreachable("Unrecognized operand type");
285  }
286
287  if (unsigned TF = getTargetFlags())
288    OS << "[TF=" << TF << ']';
289}
290
291//===----------------------------------------------------------------------===//
292// MachineMemOperand Implementation
293//===----------------------------------------------------------------------===//
294
295MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
296                                     int64_t o, uint64_t s, unsigned int a)
297  : Offset(o), Size(s), V(v),
298    Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
299  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
300  assert((isLoad() || isStore()) && "Not a load/store!");
301}
302
303/// Profile - Gather unique data for the object.
304///
305void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
306  ID.AddInteger(Offset);
307  ID.AddInteger(Size);
308  ID.AddPointer(V);
309  ID.AddInteger(Flags);
310}
311
312void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
313  // The Value and Offset may differ due to CSE. But the flags and size
314  // should be the same.
315  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
316  assert(MMO->getSize() == getSize() && "Size mismatch!");
317
318  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
319    // Update the alignment value.
320    Flags = (Flags & 7) | ((Log2_32(MMO->getBaseAlignment()) + 1) << 3);
321    // Also update the base and offset, because the new alignment may
322    // not be applicable with the old ones.
323    V = MMO->getValue();
324    Offset = MMO->getOffset();
325  }
326}
327
328/// getAlignment - Return the minimum known alignment in bytes of the
329/// actual memory reference.
330uint64_t MachineMemOperand::getAlignment() const {
331  return MinAlign(getBaseAlignment(), getOffset());
332}
333
334raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
335  assert((MMO.isLoad() || MMO.isStore()) &&
336         "SV has to be a load, store or both.");
337
338  if (MMO.isVolatile())
339    OS << "Volatile ";
340
341  if (MMO.isLoad())
342    OS << "LD";
343  if (MMO.isStore())
344    OS << "ST";
345  OS << MMO.getSize();
346
347  // Print the address information.
348  OS << "[";
349  if (!MMO.getValue())
350    OS << "<unknown>";
351  else
352    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
353
354  // If the alignment of the memory reference itself differs from the alignment
355  // of the base pointer, print the base alignment explicitly, next to the base
356  // pointer.
357  if (MMO.getBaseAlignment() != MMO.getAlignment())
358    OS << "(align=" << MMO.getBaseAlignment() << ")";
359
360  if (MMO.getOffset() != 0)
361    OS << "+" << MMO.getOffset();
362  OS << "]";
363
364  // Print the alignment of the reference.
365  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
366      MMO.getBaseAlignment() != MMO.getSize())
367    OS << "(align=" << MMO.getAlignment() << ")";
368
369  return OS;
370}
371
372//===----------------------------------------------------------------------===//
373// MachineInstr Implementation
374//===----------------------------------------------------------------------===//
375
376/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
377/// TID NULL and no operands.
378MachineInstr::MachineInstr()
379  : TID(0), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
380    Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
381  // Make sure that we get added to a machine basicblock
382  LeakDetector::addGarbageObject(this);
383}
384
385void MachineInstr::addImplicitDefUseOperands() {
386  if (TID->ImplicitDefs)
387    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
388      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
389  if (TID->ImplicitUses)
390    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
391      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
392}
393
394/// MachineInstr ctor - This constructor create a MachineInstr and add the
395/// implicit operands. It reserves space for number of operands specified by
396/// TargetInstrDesc or the numOperands if it is not zero. (for
397/// instructions with variable number of operands).
398MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
399  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0), Parent(0),
400    debugLoc(DebugLoc::getUnknownLoc()) {
401  if (!NoImp && TID->getImplicitDefs())
402    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
403      NumImplicitOps++;
404  if (!NoImp && TID->getImplicitUses())
405    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
406      NumImplicitOps++;
407  Operands.reserve(NumImplicitOps + TID->getNumOperands());
408  if (!NoImp)
409    addImplicitDefUseOperands();
410  // Make sure that we get added to a machine basicblock
411  LeakDetector::addGarbageObject(this);
412}
413
414/// MachineInstr ctor - As above, but with a DebugLoc.
415MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
416                           bool NoImp)
417  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
418    Parent(0), debugLoc(dl) {
419  if (!NoImp && TID->getImplicitDefs())
420    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
421      NumImplicitOps++;
422  if (!NoImp && TID->getImplicitUses())
423    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
424      NumImplicitOps++;
425  Operands.reserve(NumImplicitOps + TID->getNumOperands());
426  if (!NoImp)
427    addImplicitDefUseOperands();
428  // Make sure that we get added to a machine basicblock
429  LeakDetector::addGarbageObject(this);
430}
431
432/// MachineInstr ctor - Work exactly the same as the ctor two above, except
433/// that the MachineInstr is created and added to the end of the specified
434/// basic block.
435///
436MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
437  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0), Parent(0),
438    debugLoc(DebugLoc::getUnknownLoc()) {
439  assert(MBB && "Cannot use inserting ctor with null basic block!");
440  if (TID->ImplicitDefs)
441    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
442      NumImplicitOps++;
443  if (TID->ImplicitUses)
444    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
445      NumImplicitOps++;
446  Operands.reserve(NumImplicitOps + TID->getNumOperands());
447  addImplicitDefUseOperands();
448  // Make sure that we get added to a machine basicblock
449  LeakDetector::addGarbageObject(this);
450  MBB->push_back(this);  // Add instruction to end of basic block!
451}
452
453/// MachineInstr ctor - As above, but with a DebugLoc.
454///
455MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
456                           const TargetInstrDesc &tid)
457  : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
458    Parent(0), debugLoc(dl) {
459  assert(MBB && "Cannot use inserting ctor with null basic block!");
460  if (TID->ImplicitDefs)
461    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
462      NumImplicitOps++;
463  if (TID->ImplicitUses)
464    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
465      NumImplicitOps++;
466  Operands.reserve(NumImplicitOps + TID->getNumOperands());
467  addImplicitDefUseOperands();
468  // Make sure that we get added to a machine basicblock
469  LeakDetector::addGarbageObject(this);
470  MBB->push_back(this);  // Add instruction to end of basic block!
471}
472
473/// MachineInstr ctor - Copies MachineInstr arg exactly
474///
475MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
476  : TID(&MI.getDesc()), NumImplicitOps(0),
477    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
478    Parent(0), debugLoc(MI.getDebugLoc()) {
479  Operands.reserve(MI.getNumOperands());
480
481  // Add operands
482  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
483    addOperand(MI.getOperand(i));
484  NumImplicitOps = MI.NumImplicitOps;
485
486  // Set parent to null.
487  Parent = 0;
488
489  LeakDetector::addGarbageObject(this);
490}
491
492MachineInstr::~MachineInstr() {
493  LeakDetector::removeGarbageObject(this);
494#ifndef NDEBUG
495  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
496    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
497    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
498           "Reg operand def/use list corrupted");
499  }
500#endif
501}
502
503/// getRegInfo - If this instruction is embedded into a MachineFunction,
504/// return the MachineRegisterInfo object for the current function, otherwise
505/// return null.
506MachineRegisterInfo *MachineInstr::getRegInfo() {
507  if (MachineBasicBlock *MBB = getParent())
508    return &MBB->getParent()->getRegInfo();
509  return 0;
510}
511
512/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
513/// this instruction from their respective use lists.  This requires that the
514/// operands already be on their use lists.
515void MachineInstr::RemoveRegOperandsFromUseLists() {
516  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
517    if (Operands[i].isReg())
518      Operands[i].RemoveRegOperandFromRegInfo();
519  }
520}
521
522/// AddRegOperandsToUseLists - Add all of the register operands in
523/// this instruction from their respective use lists.  This requires that the
524/// operands not be on their use lists yet.
525void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
526  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
527    if (Operands[i].isReg())
528      Operands[i].AddRegOperandToRegInfo(&RegInfo);
529  }
530}
531
532
533/// addOperand - Add the specified operand to the instruction.  If it is an
534/// implicit operand, it is added to the end of the operand list.  If it is
535/// an explicit operand it is added at the end of the explicit operand list
536/// (before the first implicit operand).
537void MachineInstr::addOperand(const MachineOperand &Op) {
538  bool isImpReg = Op.isReg() && Op.isImplicit();
539  assert((isImpReg || !OperandsComplete()) &&
540         "Trying to add an operand to a machine instr that is already done!");
541
542  MachineRegisterInfo *RegInfo = getRegInfo();
543
544  // If we are adding the operand to the end of the list, our job is simpler.
545  // This is true most of the time, so this is a reasonable optimization.
546  if (isImpReg || NumImplicitOps == 0) {
547    // We can only do this optimization if we know that the operand list won't
548    // reallocate.
549    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
550      Operands.push_back(Op);
551
552      // Set the parent of the operand.
553      Operands.back().ParentMI = this;
554
555      // If the operand is a register, update the operand's use list.
556      if (Op.isReg())
557        Operands.back().AddRegOperandToRegInfo(RegInfo);
558      return;
559    }
560  }
561
562  // Otherwise, we have to insert a real operand before any implicit ones.
563  unsigned OpNo = Operands.size()-NumImplicitOps;
564
565  // If this instruction isn't embedded into a function, then we don't need to
566  // update any operand lists.
567  if (RegInfo == 0) {
568    // Simple insertion, no reginfo update needed for other register operands.
569    Operands.insert(Operands.begin()+OpNo, Op);
570    Operands[OpNo].ParentMI = this;
571
572    // Do explicitly set the reginfo for this operand though, to ensure the
573    // next/prev fields are properly nulled out.
574    if (Operands[OpNo].isReg())
575      Operands[OpNo].AddRegOperandToRegInfo(0);
576
577  } else if (Operands.size()+1 <= Operands.capacity()) {
578    // Otherwise, we have to remove register operands from their register use
579    // list, add the operand, then add the register operands back to their use
580    // list.  This also must handle the case when the operand list reallocates
581    // to somewhere else.
582
583    // If insertion of this operand won't cause reallocation of the operand
584    // list, just remove the implicit operands, add the operand, then re-add all
585    // the rest of the operands.
586    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
587      assert(Operands[i].isReg() && "Should only be an implicit reg!");
588      Operands[i].RemoveRegOperandFromRegInfo();
589    }
590
591    // Add the operand.  If it is a register, add it to the reg list.
592    Operands.insert(Operands.begin()+OpNo, Op);
593    Operands[OpNo].ParentMI = this;
594
595    if (Operands[OpNo].isReg())
596      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
597
598    // Re-add all the implicit ops.
599    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
600      assert(Operands[i].isReg() && "Should only be an implicit reg!");
601      Operands[i].AddRegOperandToRegInfo(RegInfo);
602    }
603  } else {
604    // Otherwise, we will be reallocating the operand list.  Remove all reg
605    // operands from their list, then readd them after the operand list is
606    // reallocated.
607    RemoveRegOperandsFromUseLists();
608
609    Operands.insert(Operands.begin()+OpNo, Op);
610    Operands[OpNo].ParentMI = this;
611
612    // Re-add all the operands.
613    AddRegOperandsToUseLists(*RegInfo);
614  }
615}
616
617/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
618/// fewer operand than it started with.
619///
620void MachineInstr::RemoveOperand(unsigned OpNo) {
621  assert(OpNo < Operands.size() && "Invalid operand number");
622
623  // Special case removing the last one.
624  if (OpNo == Operands.size()-1) {
625    // If needed, remove from the reg def/use list.
626    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
627      Operands.back().RemoveRegOperandFromRegInfo();
628
629    Operands.pop_back();
630    return;
631  }
632
633  // Otherwise, we are removing an interior operand.  If we have reginfo to
634  // update, remove all operands that will be shifted down from their reg lists,
635  // move everything down, then re-add them.
636  MachineRegisterInfo *RegInfo = getRegInfo();
637  if (RegInfo) {
638    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
639      if (Operands[i].isReg())
640        Operands[i].RemoveRegOperandFromRegInfo();
641    }
642  }
643
644  Operands.erase(Operands.begin()+OpNo);
645
646  if (RegInfo) {
647    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
648      if (Operands[i].isReg())
649        Operands[i].AddRegOperandToRegInfo(RegInfo);
650    }
651  }
652}
653
654/// addMemOperand - Add a MachineMemOperand to the machine instruction.
655/// This function should be used only occasionally. The setMemRefs function
656/// is the primary method for setting up a MachineInstr's MemRefs list.
657void MachineInstr::addMemOperand(MachineFunction &MF,
658                                 MachineMemOperand *MO) {
659  mmo_iterator OldMemRefs = MemRefs;
660  mmo_iterator OldMemRefsEnd = MemRefsEnd;
661
662  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
663  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
664  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
665
666  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
667  NewMemRefs[NewNum - 1] = MO;
668
669  MemRefs = NewMemRefs;
670  MemRefsEnd = NewMemRefsEnd;
671}
672
673/// removeFromParent - This method unlinks 'this' from the containing basic
674/// block, and returns it, but does not delete it.
675MachineInstr *MachineInstr::removeFromParent() {
676  assert(getParent() && "Not embedded in a basic block!");
677  getParent()->remove(this);
678  return this;
679}
680
681
682/// eraseFromParent - This method unlinks 'this' from the containing basic
683/// block, and deletes it.
684void MachineInstr::eraseFromParent() {
685  assert(getParent() && "Not embedded in a basic block!");
686  getParent()->erase(this);
687}
688
689
690/// OperandComplete - Return true if it's illegal to add a new operand
691///
692bool MachineInstr::OperandsComplete() const {
693  unsigned short NumOperands = TID->getNumOperands();
694  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
695    return true;  // Broken: we have all the operands of this instruction!
696  return false;
697}
698
699/// getNumExplicitOperands - Returns the number of non-implicit operands.
700///
701unsigned MachineInstr::getNumExplicitOperands() const {
702  unsigned NumOperands = TID->getNumOperands();
703  if (!TID->isVariadic())
704    return NumOperands;
705
706  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
707    const MachineOperand &MO = getOperand(i);
708    if (!MO.isReg() || !MO.isImplicit())
709      NumOperands++;
710  }
711  return NumOperands;
712}
713
714
715/// isLabel - Returns true if the MachineInstr represents a label.
716///
717bool MachineInstr::isLabel() const {
718  return getOpcode() == TargetInstrInfo::DBG_LABEL ||
719         getOpcode() == TargetInstrInfo::EH_LABEL ||
720         getOpcode() == TargetInstrInfo::GC_LABEL;
721}
722
723/// isDebugLabel - Returns true if the MachineInstr represents a debug label.
724///
725bool MachineInstr::isDebugLabel() const {
726  return getOpcode() == TargetInstrInfo::DBG_LABEL;
727}
728
729/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
730/// the specific register or -1 if it is not found. It further tightens
731/// the search criteria to a use that kills the register if isKill is true.
732int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
733                                          const TargetRegisterInfo *TRI) const {
734  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
735    const MachineOperand &MO = getOperand(i);
736    if (!MO.isReg() || !MO.isUse())
737      continue;
738    unsigned MOReg = MO.getReg();
739    if (!MOReg)
740      continue;
741    if (MOReg == Reg ||
742        (TRI &&
743         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
744         TargetRegisterInfo::isPhysicalRegister(Reg) &&
745         TRI->isSubRegister(MOReg, Reg)))
746      if (!isKill || MO.isKill())
747        return i;
748  }
749  return -1;
750}
751
752/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
753/// the specified register or -1 if it is not found. If isDead is true, defs
754/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
755/// also checks if there is a def of a super-register.
756int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
757                                          const TargetRegisterInfo *TRI) const {
758  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
759    const MachineOperand &MO = getOperand(i);
760    if (!MO.isReg() || !MO.isDef())
761      continue;
762    unsigned MOReg = MO.getReg();
763    if (MOReg == Reg ||
764        (TRI &&
765         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
766         TargetRegisterInfo::isPhysicalRegister(Reg) &&
767         TRI->isSubRegister(MOReg, Reg)))
768      if (!isDead || MO.isDead())
769        return i;
770  }
771  return -1;
772}
773
774/// findFirstPredOperandIdx() - Find the index of the first operand in the
775/// operand list that is used to represent the predicate. It returns -1 if
776/// none is found.
777int MachineInstr::findFirstPredOperandIdx() const {
778  const TargetInstrDesc &TID = getDesc();
779  if (TID.isPredicable()) {
780    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
781      if (TID.OpInfo[i].isPredicate())
782        return i;
783  }
784
785  return -1;
786}
787
788/// isRegTiedToUseOperand - Given the index of a register def operand,
789/// check if the register def is tied to a source operand, due to either
790/// two-address elimination or inline assembly constraints. Returns the
791/// first tied use operand index by reference is UseOpIdx is not null.
792bool MachineInstr::
793isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
794  if (getOpcode() == TargetInstrInfo::INLINEASM) {
795    assert(DefOpIdx >= 2);
796    const MachineOperand &MO = getOperand(DefOpIdx);
797    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
798      return false;
799    // Determine the actual operand index that corresponds to this index.
800    unsigned DefNo = 0;
801    unsigned DefPart = 0;
802    for (unsigned i = 1, e = getNumOperands(); i < e; ) {
803      const MachineOperand &FMO = getOperand(i);
804      // After the normal asm operands there may be additional imp-def regs.
805      if (!FMO.isImm())
806        return false;
807      // Skip over this def.
808      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
809      unsigned PrevDef = i + 1;
810      i = PrevDef + NumOps;
811      if (i > DefOpIdx) {
812        DefPart = DefOpIdx - PrevDef;
813        break;
814      }
815      ++DefNo;
816    }
817    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
818      const MachineOperand &FMO = getOperand(i);
819      if (!FMO.isImm())
820        continue;
821      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
822        continue;
823      unsigned Idx;
824      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
825          Idx == DefNo) {
826        if (UseOpIdx)
827          *UseOpIdx = (unsigned)i + 1 + DefPart;
828        return true;
829      }
830    }
831    return false;
832  }
833
834  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
835  const TargetInstrDesc &TID = getDesc();
836  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
837    const MachineOperand &MO = getOperand(i);
838    if (MO.isReg() && MO.isUse() &&
839        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
840      if (UseOpIdx)
841        *UseOpIdx = (unsigned)i;
842      return true;
843    }
844  }
845  return false;
846}
847
848/// isRegTiedToDefOperand - Return true if the operand of the specified index
849/// is a register use and it is tied to an def operand. It also returns the def
850/// operand index by reference.
851bool MachineInstr::
852isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
853  if (getOpcode() == TargetInstrInfo::INLINEASM) {
854    const MachineOperand &MO = getOperand(UseOpIdx);
855    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
856      return false;
857
858    // Find the flag operand corresponding to UseOpIdx
859    unsigned FlagIdx, NumOps=0;
860    for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
861      const MachineOperand &UFMO = getOperand(FlagIdx);
862      // After the normal asm operands there may be additional imp-def regs.
863      if (!UFMO.isImm())
864        return false;
865      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
866      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
867      if (UseOpIdx < FlagIdx+NumOps+1)
868        break;
869    }
870    if (FlagIdx >= UseOpIdx)
871      return false;
872    const MachineOperand &UFMO = getOperand(FlagIdx);
873    unsigned DefNo;
874    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
875      if (!DefOpIdx)
876        return true;
877
878      unsigned DefIdx = 1;
879      // Remember to adjust the index. First operand is asm string, then there
880      // is a flag for each.
881      while (DefNo) {
882        const MachineOperand &FMO = getOperand(DefIdx);
883        assert(FMO.isImm());
884        // Skip over this def.
885        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
886        --DefNo;
887      }
888      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
889      return true;
890    }
891    return false;
892  }
893
894  const TargetInstrDesc &TID = getDesc();
895  if (UseOpIdx >= TID.getNumOperands())
896    return false;
897  const MachineOperand &MO = getOperand(UseOpIdx);
898  if (!MO.isReg() || !MO.isUse())
899    return false;
900  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
901  if (DefIdx == -1)
902    return false;
903  if (DefOpIdx)
904    *DefOpIdx = (unsigned)DefIdx;
905  return true;
906}
907
908/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
909///
910void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
911  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
912    const MachineOperand &MO = MI->getOperand(i);
913    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
914      continue;
915    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
916      MachineOperand &MOp = getOperand(j);
917      if (!MOp.isIdenticalTo(MO))
918        continue;
919      if (MO.isKill())
920        MOp.setIsKill();
921      else
922        MOp.setIsDead();
923      break;
924    }
925  }
926}
927
928/// copyPredicates - Copies predicate operand(s) from MI.
929void MachineInstr::copyPredicates(const MachineInstr *MI) {
930  const TargetInstrDesc &TID = MI->getDesc();
931  if (!TID.isPredicable())
932    return;
933  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
934    if (TID.OpInfo[i].isPredicate()) {
935      // Predicated operands must be last operands.
936      addOperand(MI->getOperand(i));
937    }
938  }
939}
940
941/// isSafeToMove - Return true if it is safe to move this instruction. If
942/// SawStore is set to true, it means that there is a store (or call) between
943/// the instruction's location and its intended destination.
944bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
945                                bool &SawStore,
946                                AliasAnalysis *AA) const {
947  // Ignore stuff that we obviously can't move.
948  if (TID->mayStore() || TID->isCall()) {
949    SawStore = true;
950    return false;
951  }
952  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
953    return false;
954
955  // See if this instruction does a load.  If so, we have to guarantee that the
956  // loaded value doesn't change between the load and the its intended
957  // destination. The check for isInvariantLoad gives the targe the chance to
958  // classify the load as always returning a constant, e.g. a constant pool
959  // load.
960  if (TID->mayLoad() && !isInvariantLoad(AA))
961    // Otherwise, this is a real load.  If there is a store between the load and
962    // end of block, or if the load is volatile, we can't move it.
963    return !SawStore && !hasVolatileMemoryRef();
964
965  return true;
966}
967
968/// isSafeToReMat - Return true if it's safe to rematerialize the specified
969/// instruction which defined the specified register instead of copying it.
970bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
971                                 unsigned DstReg,
972                                 AliasAnalysis *AA) const {
973  bool SawStore = false;
974  if (!TII->isTriviallyReMaterializable(this, AA) ||
975      !isSafeToMove(TII, SawStore, AA))
976    return false;
977  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
978    const MachineOperand &MO = getOperand(i);
979    if (!MO.isReg())
980      continue;
981    // FIXME: For now, do not remat any instruction with register operands.
982    // Later on, we can loosen the restriction is the register operands have
983    // not been modified between the def and use. Note, this is different from
984    // MachineSink because the code is no longer in two-address form (at least
985    // partially).
986    if (MO.isUse())
987      return false;
988    else if (!MO.isDead() && MO.getReg() != DstReg)
989      return false;
990  }
991  return true;
992}
993
994/// hasVolatileMemoryRef - Return true if this instruction may have a
995/// volatile memory reference, or if the information describing the
996/// memory reference is not available. Return false if it is known to
997/// have no volatile memory references.
998bool MachineInstr::hasVolatileMemoryRef() const {
999  // An instruction known never to access memory won't have a volatile access.
1000  if (!TID->mayStore() &&
1001      !TID->mayLoad() &&
1002      !TID->isCall() &&
1003      !TID->hasUnmodeledSideEffects())
1004    return false;
1005
1006  // Otherwise, if the instruction has no memory reference information,
1007  // conservatively assume it wasn't preserved.
1008  if (memoperands_empty())
1009    return true;
1010
1011  // Check the memory reference information for volatile references.
1012  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1013    if ((*I)->isVolatile())
1014      return true;
1015
1016  return false;
1017}
1018
1019/// isInvariantLoad - Return true if this instruction is loading from a
1020/// location whose value is invariant across the function.  For example,
1021/// loading a value from the constant pool or from from the argument area
1022/// of a function if it does not change.  This should only return true of
1023/// *all* loads the instruction does are invariant (if it does multiple loads).
1024bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1025  // If the instruction doesn't load at all, it isn't an invariant load.
1026  if (!TID->mayLoad())
1027    return false;
1028
1029  // If the instruction has lost its memoperands, conservatively assume that
1030  // it may not be an invariant load.
1031  if (memoperands_empty())
1032    return false;
1033
1034  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1035
1036  for (mmo_iterator I = memoperands_begin(),
1037       E = memoperands_end(); I != E; ++I) {
1038    if ((*I)->isVolatile()) return false;
1039    if ((*I)->isStore()) return false;
1040
1041    if (const Value *V = (*I)->getValue()) {
1042      // A load from a constant PseudoSourceValue is invariant.
1043      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1044        if (PSV->isConstant(MFI))
1045          continue;
1046      // If we have an AliasAnalysis, ask it whether the memory is constant.
1047      if (AA && AA->pointsToConstantMemory(V))
1048        continue;
1049    }
1050
1051    // Otherwise assume conservatively.
1052    return false;
1053  }
1054
1055  // Everything checks out.
1056  return true;
1057}
1058
1059void MachineInstr::dump() const {
1060  errs() << "  " << *this;
1061}
1062
1063void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1064  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1065  const MachineFunction *MF = 0;
1066  if (const MachineBasicBlock *MBB = getParent()) {
1067    MF = MBB->getParent();
1068    if (!TM && MF)
1069      TM = &MF->getTarget();
1070  }
1071
1072  // Print explicitly defined operands on the left of an assignment syntax.
1073  unsigned StartOp = 0, e = getNumOperands();
1074  for (; StartOp < e && getOperand(StartOp).isReg() &&
1075         getOperand(StartOp).isDef() &&
1076         !getOperand(StartOp).isImplicit();
1077       ++StartOp) {
1078    if (StartOp != 0) OS << ", ";
1079    getOperand(StartOp).print(OS, TM);
1080  }
1081
1082  if (StartOp != 0)
1083    OS << " = ";
1084
1085  // Print the opcode name.
1086  OS << getDesc().getName();
1087
1088  // Print the rest of the operands.
1089  bool OmittedAnyCallClobbers = false;
1090  bool FirstOp = true;
1091  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1092    const MachineOperand &MO = getOperand(i);
1093
1094    // Omit call-clobbered registers which aren't used anywhere. This makes
1095    // call instructions much less noisy on targets where calls clobber lots
1096    // of registers. Don't rely on MO.isDead() because we may be called before
1097    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1098    if (MF && getDesc().isCall() &&
1099        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1100      unsigned Reg = MO.getReg();
1101      if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1102        const MachineRegisterInfo &MRI = MF->getRegInfo();
1103        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1104          bool HasAliasLive = false;
1105          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1106               unsigned AliasReg = *Alias; ++Alias)
1107            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1108              HasAliasLive = true;
1109              break;
1110            }
1111          if (!HasAliasLive) {
1112            OmittedAnyCallClobbers = true;
1113            continue;
1114          }
1115        }
1116      }
1117    }
1118
1119    if (FirstOp) FirstOp = false; else OS << ",";
1120    OS << " ";
1121    MO.print(OS, TM);
1122  }
1123
1124  // Briefly indicate whether any call clobbers were omitted.
1125  if (OmittedAnyCallClobbers) {
1126    if (FirstOp) FirstOp = false; else OS << ",";
1127    OS << " ...";
1128  }
1129
1130  bool HaveSemi = false;
1131  if (!memoperands_empty()) {
1132    if (!HaveSemi) OS << ";"; HaveSemi = true;
1133
1134    OS << " mem:";
1135    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1136         i != e; ++i) {
1137      OS << **i;
1138      if (next(i) != e)
1139        OS << " ";
1140    }
1141  }
1142
1143  if (!debugLoc.isUnknown() && MF) {
1144    if (!HaveSemi) OS << ";"; HaveSemi = true;
1145
1146    // TODO: print InlinedAtLoc information
1147
1148    DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
1149    DICompileUnit CU(DLT.Scope);
1150    if (!CU.isNull())
1151      OS << " dbg:" << CU.getDirectory() << '/' << CU.getFilename() << ":"
1152         << DLT.Line << ":" << DLT.Col;
1153  }
1154
1155  OS << "\n";
1156}
1157
1158bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1159                                     const TargetRegisterInfo *RegInfo,
1160                                     bool AddIfNotFound) {
1161  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1162  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1163  bool Found = false;
1164  SmallVector<unsigned,4> DeadOps;
1165  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1166    MachineOperand &MO = getOperand(i);
1167    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1168      continue;
1169    unsigned Reg = MO.getReg();
1170    if (!Reg)
1171      continue;
1172
1173    if (Reg == IncomingReg) {
1174      if (!Found) {
1175        if (MO.isKill())
1176          // The register is already marked kill.
1177          return true;
1178        if (isPhysReg && isRegTiedToDefOperand(i))
1179          // Two-address uses of physregs must not be marked kill.
1180          return true;
1181        MO.setIsKill();
1182        Found = true;
1183      }
1184    } else if (hasAliases && MO.isKill() &&
1185               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1186      // A super-register kill already exists.
1187      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1188        return true;
1189      if (RegInfo->isSubRegister(IncomingReg, Reg))
1190        DeadOps.push_back(i);
1191    }
1192  }
1193
1194  // Trim unneeded kill operands.
1195  while (!DeadOps.empty()) {
1196    unsigned OpIdx = DeadOps.back();
1197    if (getOperand(OpIdx).isImplicit())
1198      RemoveOperand(OpIdx);
1199    else
1200      getOperand(OpIdx).setIsKill(false);
1201    DeadOps.pop_back();
1202  }
1203
1204  // If not found, this means an alias of one of the operands is killed. Add a
1205  // new implicit operand if required.
1206  if (!Found && AddIfNotFound) {
1207    addOperand(MachineOperand::CreateReg(IncomingReg,
1208                                         false /*IsDef*/,
1209                                         true  /*IsImp*/,
1210                                         true  /*IsKill*/));
1211    return true;
1212  }
1213  return Found;
1214}
1215
1216bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1217                                   const TargetRegisterInfo *RegInfo,
1218                                   bool AddIfNotFound) {
1219  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1220  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1221  bool Found = false;
1222  SmallVector<unsigned,4> DeadOps;
1223  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1224    MachineOperand &MO = getOperand(i);
1225    if (!MO.isReg() || !MO.isDef())
1226      continue;
1227    unsigned Reg = MO.getReg();
1228    if (!Reg)
1229      continue;
1230
1231    if (Reg == IncomingReg) {
1232      if (!Found) {
1233        if (MO.isDead())
1234          // The register is already marked dead.
1235          return true;
1236        MO.setIsDead();
1237        Found = true;
1238      }
1239    } else if (hasAliases && MO.isDead() &&
1240               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1241      // There exists a super-register that's marked dead.
1242      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1243        return true;
1244      if (RegInfo->getSubRegisters(IncomingReg) &&
1245          RegInfo->getSuperRegisters(Reg) &&
1246          RegInfo->isSubRegister(IncomingReg, Reg))
1247        DeadOps.push_back(i);
1248    }
1249  }
1250
1251  // Trim unneeded dead operands.
1252  while (!DeadOps.empty()) {
1253    unsigned OpIdx = DeadOps.back();
1254    if (getOperand(OpIdx).isImplicit())
1255      RemoveOperand(OpIdx);
1256    else
1257      getOperand(OpIdx).setIsDead(false);
1258    DeadOps.pop_back();
1259  }
1260
1261  // If not found, this means an alias of one of the operands is dead. Add a
1262  // new implicit operand if required.
1263  if (Found || !AddIfNotFound)
1264    return Found;
1265
1266  addOperand(MachineOperand::CreateReg(IncomingReg,
1267                                       true  /*IsDef*/,
1268                                       true  /*IsImp*/,
1269                                       false /*IsKill*/,
1270                                       true  /*IsDead*/));
1271  return true;
1272}
1273