MachineInstr.cpp revision a4f2bb08de92ccec21cbb3d0a9518384b0173660
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Metadata.h"
19#include "llvm/Type.h"
20#include "llvm/Value.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetInstrDesc.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/LeakDetector.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/FoldingSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43// MachineOperand Implementation
44//===----------------------------------------------------------------------===//
45
46/// AddRegOperandToRegInfo - Add this register operand to the specified
47/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
48/// explicitly nulled out.
49void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50  assert(isReg() && "Can only add reg operand to use lists");
51
52  // If the reginfo pointer is null, just explicitly null out or next/prev
53  // pointers, to ensure they are not garbage.
54  if (RegInfo == 0) {
55    Contents.Reg.Prev = 0;
56    Contents.Reg.Next = 0;
57    return;
58  }
59
60  // Otherwise, add this operand to the head of the registers use/def list.
61  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
62
63  // For SSA values, we prefer to keep the definition at the start of the list.
64  // we do this by skipping over the definition if it is at the head of the
65  // list.
66  if (*Head && (*Head)->isDef())
67    Head = &(*Head)->Contents.Reg.Next;
68
69  Contents.Reg.Next = *Head;
70  if (Contents.Reg.Next) {
71    assert(getReg() == Contents.Reg.Next->getReg() &&
72           "Different regs on the same list!");
73    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
74  }
75
76  Contents.Reg.Prev = Head;
77  *Head = this;
78}
79
80/// RemoveRegOperandFromRegInfo - Remove this register operand from the
81/// MachineRegisterInfo it is linked with.
82void MachineOperand::RemoveRegOperandFromRegInfo() {
83  assert(isOnRegUseList() && "Reg operand is not on a use list");
84  // Unlink this from the doubly linked list of operands.
85  MachineOperand *NextOp = Contents.Reg.Next;
86  *Contents.Reg.Prev = NextOp;
87  if (NextOp) {
88    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
90  }
91  Contents.Reg.Prev = 0;
92  Contents.Reg.Next = 0;
93}
94
95void MachineOperand::setReg(unsigned Reg) {
96  if (getReg() == Reg) return; // No change.
97
98  // Otherwise, we have to change the register.  If this operand is embedded
99  // into a machine function, we need to update the old and new register's
100  // use/def lists.
101  if (MachineInstr *MI = getParent())
102    if (MachineBasicBlock *MBB = MI->getParent())
103      if (MachineFunction *MF = MBB->getParent()) {
104        RemoveRegOperandFromRegInfo();
105        Contents.Reg.RegNo = Reg;
106        AddRegOperandToRegInfo(&MF->getRegInfo());
107        return;
108      }
109
110  // Otherwise, just change the register, no problem.  :)
111  Contents.Reg.RegNo = Reg;
112}
113
114/// ChangeToImmediate - Replace this operand with a new immediate operand of
115/// the specified value.  If an operand is known to be an immediate already,
116/// the setImm method should be used.
117void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
118  // If this operand is currently a register operand, and if this is in a
119  // function, deregister the operand from the register's use/def list.
120  if (isReg() && getParent() && getParent()->getParent() &&
121      getParent()->getParent()->getParent())
122    RemoveRegOperandFromRegInfo();
123
124  OpKind = MO_Immediate;
125  Contents.ImmVal = ImmVal;
126}
127
128/// ChangeToRegister - Replace this operand with a new register operand of
129/// the specified value.  If an operand is known to be an register already,
130/// the setReg method should be used.
131void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
132                                      bool isKill, bool isDead, bool isUndef,
133                                      bool isDebug) {
134  // If this operand is already a register operand, use setReg to update the
135  // register's use/def lists.
136  if (isReg()) {
137    assert(!isEarlyClobber());
138    setReg(Reg);
139  } else {
140    // Otherwise, change this to a register and set the reg#.
141    OpKind = MO_Register;
142    Contents.Reg.RegNo = Reg;
143
144    // If this operand is embedded in a function, add the operand to the
145    // register's use/def list.
146    if (MachineInstr *MI = getParent())
147      if (MachineBasicBlock *MBB = MI->getParent())
148        if (MachineFunction *MF = MBB->getParent())
149          AddRegOperandToRegInfo(&MF->getRegInfo());
150  }
151
152  IsDef = isDef;
153  IsImp = isImp;
154  IsKill = isKill;
155  IsDead = isDead;
156  IsUndef = isUndef;
157  IsEarlyClobber = false;
158  IsDebug = isDebug;
159  SubReg = 0;
160}
161
162/// isIdenticalTo - Return true if this operand is identical to the specified
163/// operand.
164bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
165  if (getType() != Other.getType() ||
166      getTargetFlags() != Other.getTargetFlags())
167    return false;
168
169  switch (getType()) {
170  default: llvm_unreachable("Unrecognized operand type");
171  case MachineOperand::MO_Register:
172    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
173           getSubReg() == Other.getSubReg();
174  case MachineOperand::MO_Immediate:
175    return getImm() == Other.getImm();
176  case MachineOperand::MO_FPImmediate:
177    return getFPImm() == Other.getFPImm();
178  case MachineOperand::MO_MachineBasicBlock:
179    return getMBB() == Other.getMBB();
180  case MachineOperand::MO_FrameIndex:
181    return getIndex() == Other.getIndex();
182  case MachineOperand::MO_ConstantPoolIndex:
183    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
184  case MachineOperand::MO_JumpTableIndex:
185    return getIndex() == Other.getIndex();
186  case MachineOperand::MO_GlobalAddress:
187    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
188  case MachineOperand::MO_ExternalSymbol:
189    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
190           getOffset() == Other.getOffset();
191  case MachineOperand::MO_BlockAddress:
192    return getBlockAddress() == Other.getBlockAddress();
193  case MachineOperand::MO_MCSymbol:
194    return getMCSymbol() == Other.getMCSymbol();
195  }
196}
197
198/// print - Print the specified machine operand.
199///
200void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
201  // If the instruction is embedded into a basic block, we can find the
202  // target info for the instruction.
203  if (!TM)
204    if (const MachineInstr *MI = getParent())
205      if (const MachineBasicBlock *MBB = MI->getParent())
206        if (const MachineFunction *MF = MBB->getParent())
207          TM = &MF->getTarget();
208
209  switch (getType()) {
210  case MachineOperand::MO_Register:
211    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
212      OS << "%reg" << getReg();
213    } else {
214      if (TM)
215        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
216      else
217        OS << "%physreg" << getReg();
218    }
219
220    if (getSubReg() != 0)
221      OS << ':' << getSubReg();
222
223    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
224        isEarlyClobber()) {
225      OS << '<';
226      bool NeedComma = false;
227      if (isDef()) {
228        if (NeedComma) OS << ',';
229        if (isEarlyClobber())
230          OS << "earlyclobber,";
231        if (isImplicit())
232          OS << "imp-";
233        OS << "def";
234        NeedComma = true;
235      } else if (isImplicit()) {
236          OS << "imp-use";
237          NeedComma = true;
238      }
239
240      if (isKill() || isDead() || isUndef()) {
241        if (NeedComma) OS << ',';
242        if (isKill())  OS << "kill";
243        if (isDead())  OS << "dead";
244        if (isUndef()) {
245          if (isKill() || isDead())
246            OS << ',';
247          OS << "undef";
248        }
249      }
250      OS << '>';
251    }
252    break;
253  case MachineOperand::MO_Immediate:
254    OS << getImm();
255    break;
256  case MachineOperand::MO_FPImmediate:
257    if (getFPImm()->getType()->isFloatTy())
258      OS << getFPImm()->getValueAPF().convertToFloat();
259    else
260      OS << getFPImm()->getValueAPF().convertToDouble();
261    break;
262  case MachineOperand::MO_MachineBasicBlock:
263    OS << "<BB#" << getMBB()->getNumber() << ">";
264    break;
265  case MachineOperand::MO_FrameIndex:
266    OS << "<fi#" << getIndex() << '>';
267    break;
268  case MachineOperand::MO_ConstantPoolIndex:
269    OS << "<cp#" << getIndex();
270    if (getOffset()) OS << "+" << getOffset();
271    OS << '>';
272    break;
273  case MachineOperand::MO_JumpTableIndex:
274    OS << "<jt#" << getIndex() << '>';
275    break;
276  case MachineOperand::MO_GlobalAddress:
277    OS << "<ga:";
278    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
279    if (getOffset()) OS << "+" << getOffset();
280    OS << '>';
281    break;
282  case MachineOperand::MO_ExternalSymbol:
283    OS << "<es:" << getSymbolName();
284    if (getOffset()) OS << "+" << getOffset();
285    OS << '>';
286    break;
287  case MachineOperand::MO_BlockAddress:
288    OS << '<';
289    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
290    OS << '>';
291    break;
292  case MachineOperand::MO_Metadata:
293    OS << '<';
294    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
295    OS << '>';
296    break;
297  case MachineOperand::MO_MCSymbol:
298    OS << "<MCSym=" << *getMCSymbol() << '>';
299    break;
300  default:
301    llvm_unreachable("Unrecognized operand type");
302  }
303
304  if (unsigned TF = getTargetFlags())
305    OS << "[TF=" << TF << ']';
306}
307
308//===----------------------------------------------------------------------===//
309// MachineMemOperand Implementation
310//===----------------------------------------------------------------------===//
311
312MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
313                                     int64_t o, uint64_t s, unsigned int a)
314  : Offset(o), Size(s), V(v),
315    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) {
316  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
317  assert((isLoad() || isStore()) && "Not a load/store!");
318}
319
320/// Profile - Gather unique data for the object.
321///
322void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
323  ID.AddInteger(Offset);
324  ID.AddInteger(Size);
325  ID.AddPointer(V);
326  ID.AddInteger(Flags);
327}
328
329void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
330  // The Value and Offset may differ due to CSE. But the flags and size
331  // should be the same.
332  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
333  assert(MMO->getSize() == getSize() && "Size mismatch!");
334
335  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
336    // Update the alignment value.
337    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
338      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
339    // Also update the base and offset, because the new alignment may
340    // not be applicable with the old ones.
341    V = MMO->getValue();
342    Offset = MMO->getOffset();
343  }
344}
345
346/// getAlignment - Return the minimum known alignment in bytes of the
347/// actual memory reference.
348uint64_t MachineMemOperand::getAlignment() const {
349  return MinAlign(getBaseAlignment(), getOffset());
350}
351
352raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
353  assert((MMO.isLoad() || MMO.isStore()) &&
354         "SV has to be a load, store or both.");
355
356  if (MMO.isVolatile())
357    OS << "Volatile ";
358
359  if (MMO.isLoad())
360    OS << "LD";
361  if (MMO.isStore())
362    OS << "ST";
363  OS << MMO.getSize();
364
365  // Print the address information.
366  OS << "[";
367  if (!MMO.getValue())
368    OS << "<unknown>";
369  else
370    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
371
372  // If the alignment of the memory reference itself differs from the alignment
373  // of the base pointer, print the base alignment explicitly, next to the base
374  // pointer.
375  if (MMO.getBaseAlignment() != MMO.getAlignment())
376    OS << "(align=" << MMO.getBaseAlignment() << ")";
377
378  if (MMO.getOffset() != 0)
379    OS << "+" << MMO.getOffset();
380  OS << "]";
381
382  // Print the alignment of the reference.
383  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
384      MMO.getBaseAlignment() != MMO.getSize())
385    OS << "(align=" << MMO.getAlignment() << ")";
386
387  return OS;
388}
389
390//===----------------------------------------------------------------------===//
391// MachineInstr Implementation
392//===----------------------------------------------------------------------===//
393
394/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
395/// TID NULL and no operands.
396MachineInstr::MachineInstr()
397  : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
398    Parent(0) {
399  // Make sure that we get added to a machine basicblock
400  LeakDetector::addGarbageObject(this);
401}
402
403void MachineInstr::addImplicitDefUseOperands() {
404  if (TID->ImplicitDefs)
405    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
406      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
407  if (TID->ImplicitUses)
408    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
409      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
410}
411
412/// MachineInstr ctor - This constructor create a MachineInstr and add the
413/// implicit operands. It reserves space for number of operands specified by
414/// TargetInstrDesc or the numOperands if it is not zero. (for
415/// instructions with variable number of operands).
416MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
417  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
418    MemRefs(0), MemRefsEnd(0), Parent(0) {
419  if (!NoImp && TID->getImplicitDefs())
420    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
421      NumImplicitOps++;
422  if (!NoImp && TID->getImplicitUses())
423    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
424      NumImplicitOps++;
425  Operands.reserve(NumImplicitOps + TID->getNumOperands());
426  if (!NoImp)
427    addImplicitDefUseOperands();
428  // Make sure that we get added to a machine basicblock
429  LeakDetector::addGarbageObject(this);
430}
431
432/// MachineInstr ctor - As above, but with a DebugLoc.
433MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
434                           bool NoImp)
435  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
436    Parent(0), debugLoc(dl) {
437  if (!NoImp && TID->getImplicitDefs())
438    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
439      NumImplicitOps++;
440  if (!NoImp && TID->getImplicitUses())
441    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
442      NumImplicitOps++;
443  Operands.reserve(NumImplicitOps + TID->getNumOperands());
444  if (!NoImp)
445    addImplicitDefUseOperands();
446  // Make sure that we get added to a machine basicblock
447  LeakDetector::addGarbageObject(this);
448}
449
450/// MachineInstr ctor - Work exactly the same as the ctor two above, except
451/// that the MachineInstr is created and added to the end of the specified
452/// basic block.
453///
454MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
455  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
456    MemRefs(0), MemRefsEnd(0), Parent(0) {
457  assert(MBB && "Cannot use inserting ctor with null basic block!");
458  if (TID->ImplicitDefs)
459    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
460      NumImplicitOps++;
461  if (TID->ImplicitUses)
462    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
463      NumImplicitOps++;
464  Operands.reserve(NumImplicitOps + TID->getNumOperands());
465  addImplicitDefUseOperands();
466  // Make sure that we get added to a machine basicblock
467  LeakDetector::addGarbageObject(this);
468  MBB->push_back(this);  // Add instruction to end of basic block!
469}
470
471/// MachineInstr ctor - As above, but with a DebugLoc.
472///
473MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
474                           const TargetInstrDesc &tid)
475  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
476    Parent(0), debugLoc(dl) {
477  assert(MBB && "Cannot use inserting ctor with null basic block!");
478  if (TID->ImplicitDefs)
479    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
480      NumImplicitOps++;
481  if (TID->ImplicitUses)
482    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
483      NumImplicitOps++;
484  Operands.reserve(NumImplicitOps + TID->getNumOperands());
485  addImplicitDefUseOperands();
486  // Make sure that we get added to a machine basicblock
487  LeakDetector::addGarbageObject(this);
488  MBB->push_back(this);  // Add instruction to end of basic block!
489}
490
491/// MachineInstr ctor - Copies MachineInstr arg exactly
492///
493MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
494  : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
495    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
496    Parent(0), debugLoc(MI.getDebugLoc()) {
497  Operands.reserve(MI.getNumOperands());
498
499  // Add operands
500  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
501    addOperand(MI.getOperand(i));
502  NumImplicitOps = MI.NumImplicitOps;
503
504  // Set parent to null.
505  Parent = 0;
506
507  LeakDetector::addGarbageObject(this);
508}
509
510MachineInstr::~MachineInstr() {
511  LeakDetector::removeGarbageObject(this);
512#ifndef NDEBUG
513  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
514    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
515    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
516           "Reg operand def/use list corrupted");
517  }
518#endif
519}
520
521/// getRegInfo - If this instruction is embedded into a MachineFunction,
522/// return the MachineRegisterInfo object for the current function, otherwise
523/// return null.
524MachineRegisterInfo *MachineInstr::getRegInfo() {
525  if (MachineBasicBlock *MBB = getParent())
526    return &MBB->getParent()->getRegInfo();
527  return 0;
528}
529
530/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
531/// this instruction from their respective use lists.  This requires that the
532/// operands already be on their use lists.
533void MachineInstr::RemoveRegOperandsFromUseLists() {
534  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
535    if (Operands[i].isReg())
536      Operands[i].RemoveRegOperandFromRegInfo();
537  }
538}
539
540/// AddRegOperandsToUseLists - Add all of the register operands in
541/// this instruction from their respective use lists.  This requires that the
542/// operands not be on their use lists yet.
543void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
544  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
545    if (Operands[i].isReg())
546      Operands[i].AddRegOperandToRegInfo(&RegInfo);
547  }
548}
549
550
551/// addOperand - Add the specified operand to the instruction.  If it is an
552/// implicit operand, it is added to the end of the operand list.  If it is
553/// an explicit operand it is added at the end of the explicit operand list
554/// (before the first implicit operand).
555void MachineInstr::addOperand(const MachineOperand &Op) {
556  bool isImpReg = Op.isReg() && Op.isImplicit();
557  assert((isImpReg || !OperandsComplete()) &&
558         "Trying to add an operand to a machine instr that is already done!");
559
560  MachineRegisterInfo *RegInfo = getRegInfo();
561
562  // If we are adding the operand to the end of the list, our job is simpler.
563  // This is true most of the time, so this is a reasonable optimization.
564  if (isImpReg || NumImplicitOps == 0) {
565    // We can only do this optimization if we know that the operand list won't
566    // reallocate.
567    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
568      Operands.push_back(Op);
569
570      // Set the parent of the operand.
571      Operands.back().ParentMI = this;
572
573      // If the operand is a register, update the operand's use list.
574      if (Op.isReg()) {
575        Operands.back().AddRegOperandToRegInfo(RegInfo);
576        // If the register operand is flagged as early, mark the operand as such
577        unsigned OpNo = Operands.size() - 1;
578        if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
579          Operands[OpNo].setIsEarlyClobber(true);
580      }
581      return;
582    }
583  }
584
585  // Otherwise, we have to insert a real operand before any implicit ones.
586  unsigned OpNo = Operands.size()-NumImplicitOps;
587
588  // If this instruction isn't embedded into a function, then we don't need to
589  // update any operand lists.
590  if (RegInfo == 0) {
591    // Simple insertion, no reginfo update needed for other register operands.
592    Operands.insert(Operands.begin()+OpNo, Op);
593    Operands[OpNo].ParentMI = this;
594
595    // Do explicitly set the reginfo for this operand though, to ensure the
596    // next/prev fields are properly nulled out.
597    if (Operands[OpNo].isReg()) {
598      Operands[OpNo].AddRegOperandToRegInfo(0);
599      // If the register operand is flagged as early, mark the operand as such
600      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
601        Operands[OpNo].setIsEarlyClobber(true);
602    }
603
604  } else if (Operands.size()+1 <= Operands.capacity()) {
605    // Otherwise, we have to remove register operands from their register use
606    // list, add the operand, then add the register operands back to their use
607    // list.  This also must handle the case when the operand list reallocates
608    // to somewhere else.
609
610    // If insertion of this operand won't cause reallocation of the operand
611    // list, just remove the implicit operands, add the operand, then re-add all
612    // the rest of the operands.
613    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
614      assert(Operands[i].isReg() && "Should only be an implicit reg!");
615      Operands[i].RemoveRegOperandFromRegInfo();
616    }
617
618    // Add the operand.  If it is a register, add it to the reg list.
619    Operands.insert(Operands.begin()+OpNo, Op);
620    Operands[OpNo].ParentMI = this;
621
622    if (Operands[OpNo].isReg()) {
623      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
624      // If the register operand is flagged as early, mark the operand as such
625      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
626        Operands[OpNo].setIsEarlyClobber(true);
627    }
628
629    // Re-add all the implicit ops.
630    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
631      assert(Operands[i].isReg() && "Should only be an implicit reg!");
632      Operands[i].AddRegOperandToRegInfo(RegInfo);
633    }
634  } else {
635    // Otherwise, we will be reallocating the operand list.  Remove all reg
636    // operands from their list, then readd them after the operand list is
637    // reallocated.
638    RemoveRegOperandsFromUseLists();
639
640    Operands.insert(Operands.begin()+OpNo, Op);
641    Operands[OpNo].ParentMI = this;
642
643    // Re-add all the operands.
644    AddRegOperandsToUseLists(*RegInfo);
645
646      // If the register operand is flagged as early, mark the operand as such
647    if (Operands[OpNo].isReg()
648        && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
649      Operands[OpNo].setIsEarlyClobber(true);
650  }
651}
652
653/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
654/// fewer operand than it started with.
655///
656void MachineInstr::RemoveOperand(unsigned OpNo) {
657  assert(OpNo < Operands.size() && "Invalid operand number");
658
659  // Special case removing the last one.
660  if (OpNo == Operands.size()-1) {
661    // If needed, remove from the reg def/use list.
662    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
663      Operands.back().RemoveRegOperandFromRegInfo();
664
665    Operands.pop_back();
666    return;
667  }
668
669  // Otherwise, we are removing an interior operand.  If we have reginfo to
670  // update, remove all operands that will be shifted down from their reg lists,
671  // move everything down, then re-add them.
672  MachineRegisterInfo *RegInfo = getRegInfo();
673  if (RegInfo) {
674    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
675      if (Operands[i].isReg())
676        Operands[i].RemoveRegOperandFromRegInfo();
677    }
678  }
679
680  Operands.erase(Operands.begin()+OpNo);
681
682  if (RegInfo) {
683    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
684      if (Operands[i].isReg())
685        Operands[i].AddRegOperandToRegInfo(RegInfo);
686    }
687  }
688}
689
690/// addMemOperand - Add a MachineMemOperand to the machine instruction.
691/// This function should be used only occasionally. The setMemRefs function
692/// is the primary method for setting up a MachineInstr's MemRefs list.
693void MachineInstr::addMemOperand(MachineFunction &MF,
694                                 MachineMemOperand *MO) {
695  mmo_iterator OldMemRefs = MemRefs;
696  mmo_iterator OldMemRefsEnd = MemRefsEnd;
697
698  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
699  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
700  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
701
702  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
703  NewMemRefs[NewNum - 1] = MO;
704
705  MemRefs = NewMemRefs;
706  MemRefsEnd = NewMemRefsEnd;
707}
708
709bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
710                                 MICheckType Check) const {
711  // If opcodes or number of operands are not the same then the two
712  // instructions are obviously not identical.
713  if (Other->getOpcode() != getOpcode() ||
714      Other->getNumOperands() != getNumOperands())
715    return false;
716
717  // Check operands to make sure they match.
718  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
719    const MachineOperand &MO = getOperand(i);
720    const MachineOperand &OMO = Other->getOperand(i);
721    // Clients may or may not want to ignore defs when testing for equality.
722    // For example, machine CSE pass only cares about finding common
723    // subexpressions, so it's safe to ignore virtual register defs.
724    if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
725      if (Check == IgnoreDefs)
726        continue;
727      // Check == IgnoreVRegDefs
728      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
729          TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
730        if (MO.getReg() != OMO.getReg())
731          return false;
732    } else if (!MO.isIdenticalTo(OMO))
733      return false;
734  }
735  return true;
736}
737
738/// removeFromParent - This method unlinks 'this' from the containing basic
739/// block, and returns it, but does not delete it.
740MachineInstr *MachineInstr::removeFromParent() {
741  assert(getParent() && "Not embedded in a basic block!");
742  getParent()->remove(this);
743  return this;
744}
745
746
747/// eraseFromParent - This method unlinks 'this' from the containing basic
748/// block, and deletes it.
749void MachineInstr::eraseFromParent() {
750  assert(getParent() && "Not embedded in a basic block!");
751  getParent()->erase(this);
752}
753
754
755/// OperandComplete - Return true if it's illegal to add a new operand
756///
757bool MachineInstr::OperandsComplete() const {
758  unsigned short NumOperands = TID->getNumOperands();
759  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
760    return true;  // Broken: we have all the operands of this instruction!
761  return false;
762}
763
764/// getNumExplicitOperands - Returns the number of non-implicit operands.
765///
766unsigned MachineInstr::getNumExplicitOperands() const {
767  unsigned NumOperands = TID->getNumOperands();
768  if (!TID->isVariadic())
769    return NumOperands;
770
771  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
772    const MachineOperand &MO = getOperand(i);
773    if (!MO.isReg() || !MO.isImplicit())
774      NumOperands++;
775  }
776  return NumOperands;
777}
778
779
780/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
781/// the specific register or -1 if it is not found. It further tightens
782/// the search criteria to a use that kills the register if isKill is true.
783int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
784                                          const TargetRegisterInfo *TRI) const {
785  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
786    const MachineOperand &MO = getOperand(i);
787    if (!MO.isReg() || !MO.isUse())
788      continue;
789    unsigned MOReg = MO.getReg();
790    if (!MOReg)
791      continue;
792    if (MOReg == Reg ||
793        (TRI &&
794         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
795         TargetRegisterInfo::isPhysicalRegister(Reg) &&
796         TRI->isSubRegister(MOReg, Reg)))
797      if (!isKill || MO.isKill())
798        return i;
799  }
800  return -1;
801}
802
803/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
804/// the specified register or -1 if it is not found. If isDead is true, defs
805/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
806/// also checks if there is a def of a super-register.
807int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
808                                          const TargetRegisterInfo *TRI) const {
809  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
810    const MachineOperand &MO = getOperand(i);
811    if (!MO.isReg() || !MO.isDef())
812      continue;
813    unsigned MOReg = MO.getReg();
814    if (MOReg == Reg ||
815        (TRI &&
816         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
817         TargetRegisterInfo::isPhysicalRegister(Reg) &&
818         TRI->isSubRegister(MOReg, Reg)))
819      if (!isDead || MO.isDead())
820        return i;
821  }
822  return -1;
823}
824
825/// findFirstPredOperandIdx() - Find the index of the first operand in the
826/// operand list that is used to represent the predicate. It returns -1 if
827/// none is found.
828int MachineInstr::findFirstPredOperandIdx() const {
829  const TargetInstrDesc &TID = getDesc();
830  if (TID.isPredicable()) {
831    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
832      if (TID.OpInfo[i].isPredicate())
833        return i;
834  }
835
836  return -1;
837}
838
839/// isRegTiedToUseOperand - Given the index of a register def operand,
840/// check if the register def is tied to a source operand, due to either
841/// two-address elimination or inline assembly constraints. Returns the
842/// first tied use operand index by reference is UseOpIdx is not null.
843bool MachineInstr::
844isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
845  if (isInlineAsm()) {
846    assert(DefOpIdx >= 2);
847    const MachineOperand &MO = getOperand(DefOpIdx);
848    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
849      return false;
850    // Determine the actual operand index that corresponds to this index.
851    unsigned DefNo = 0;
852    unsigned DefPart = 0;
853    for (unsigned i = 1, e = getNumOperands(); i < e; ) {
854      const MachineOperand &FMO = getOperand(i);
855      // After the normal asm operands there may be additional imp-def regs.
856      if (!FMO.isImm())
857        return false;
858      // Skip over this def.
859      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
860      unsigned PrevDef = i + 1;
861      i = PrevDef + NumOps;
862      if (i > DefOpIdx) {
863        DefPart = DefOpIdx - PrevDef;
864        break;
865      }
866      ++DefNo;
867    }
868    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
869      const MachineOperand &FMO = getOperand(i);
870      if (!FMO.isImm())
871        continue;
872      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
873        continue;
874      unsigned Idx;
875      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
876          Idx == DefNo) {
877        if (UseOpIdx)
878          *UseOpIdx = (unsigned)i + 1 + DefPart;
879        return true;
880      }
881    }
882    return false;
883  }
884
885  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
886  const TargetInstrDesc &TID = getDesc();
887  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
888    const MachineOperand &MO = getOperand(i);
889    if (MO.isReg() && MO.isUse() &&
890        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
891      if (UseOpIdx)
892        *UseOpIdx = (unsigned)i;
893      return true;
894    }
895  }
896  return false;
897}
898
899/// isRegTiedToDefOperand - Return true if the operand of the specified index
900/// is a register use and it is tied to an def operand. It also returns the def
901/// operand index by reference.
902bool MachineInstr::
903isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
904  if (isInlineAsm()) {
905    const MachineOperand &MO = getOperand(UseOpIdx);
906    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
907      return false;
908
909    // Find the flag operand corresponding to UseOpIdx
910    unsigned FlagIdx, NumOps=0;
911    for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
912      const MachineOperand &UFMO = getOperand(FlagIdx);
913      // After the normal asm operands there may be additional imp-def regs.
914      if (!UFMO.isImm())
915        return false;
916      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
917      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
918      if (UseOpIdx < FlagIdx+NumOps+1)
919        break;
920    }
921    if (FlagIdx >= UseOpIdx)
922      return false;
923    const MachineOperand &UFMO = getOperand(FlagIdx);
924    unsigned DefNo;
925    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
926      if (!DefOpIdx)
927        return true;
928
929      unsigned DefIdx = 1;
930      // Remember to adjust the index. First operand is asm string, then there
931      // is a flag for each.
932      while (DefNo) {
933        const MachineOperand &FMO = getOperand(DefIdx);
934        assert(FMO.isImm());
935        // Skip over this def.
936        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
937        --DefNo;
938      }
939      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
940      return true;
941    }
942    return false;
943  }
944
945  const TargetInstrDesc &TID = getDesc();
946  if (UseOpIdx >= TID.getNumOperands())
947    return false;
948  const MachineOperand &MO = getOperand(UseOpIdx);
949  if (!MO.isReg() || !MO.isUse())
950    return false;
951  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
952  if (DefIdx == -1)
953    return false;
954  if (DefOpIdx)
955    *DefOpIdx = (unsigned)DefIdx;
956  return true;
957}
958
959/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
960///
961void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
962  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
963    const MachineOperand &MO = MI->getOperand(i);
964    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
965      continue;
966    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
967      MachineOperand &MOp = getOperand(j);
968      if (!MOp.isIdenticalTo(MO))
969        continue;
970      if (MO.isKill())
971        MOp.setIsKill();
972      else
973        MOp.setIsDead();
974      break;
975    }
976  }
977}
978
979/// copyPredicates - Copies predicate operand(s) from MI.
980void MachineInstr::copyPredicates(const MachineInstr *MI) {
981  const TargetInstrDesc &TID = MI->getDesc();
982  if (!TID.isPredicable())
983    return;
984  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
985    if (TID.OpInfo[i].isPredicate()) {
986      // Predicated operands must be last operands.
987      addOperand(MI->getOperand(i));
988    }
989  }
990}
991
992/// isSafeToMove - Return true if it is safe to move this instruction. If
993/// SawStore is set to true, it means that there is a store (or call) between
994/// the instruction's location and its intended destination.
995bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
996                                AliasAnalysis *AA,
997                                bool &SawStore) const {
998  // Ignore stuff that we obviously can't move.
999  if (TID->mayStore() || TID->isCall()) {
1000    SawStore = true;
1001    return false;
1002  }
1003  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
1004    return false;
1005
1006  // See if this instruction does a load.  If so, we have to guarantee that the
1007  // loaded value doesn't change between the load and the its intended
1008  // destination. The check for isInvariantLoad gives the targe the chance to
1009  // classify the load as always returning a constant, e.g. a constant pool
1010  // load.
1011  if (TID->mayLoad() && !isInvariantLoad(AA))
1012    // Otherwise, this is a real load.  If there is a store between the load and
1013    // end of block, or if the load is volatile, we can't move it.
1014    return !SawStore && !hasVolatileMemoryRef();
1015
1016  return true;
1017}
1018
1019/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1020/// instruction which defined the specified register instead of copying it.
1021bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1022                                 AliasAnalysis *AA,
1023                                 unsigned DstReg) const {
1024  bool SawStore = false;
1025  if (!TII->isTriviallyReMaterializable(this, AA) ||
1026      !isSafeToMove(TII, AA, SawStore))
1027    return false;
1028  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1029    const MachineOperand &MO = getOperand(i);
1030    if (!MO.isReg())
1031      continue;
1032    // FIXME: For now, do not remat any instruction with register operands.
1033    // Later on, we can loosen the restriction is the register operands have
1034    // not been modified between the def and use. Note, this is different from
1035    // MachineSink because the code is no longer in two-address form (at least
1036    // partially).
1037    if (MO.isUse())
1038      return false;
1039    else if (!MO.isDead() && MO.getReg() != DstReg)
1040      return false;
1041  }
1042  return true;
1043}
1044
1045/// hasVolatileMemoryRef - Return true if this instruction may have a
1046/// volatile memory reference, or if the information describing the
1047/// memory reference is not available. Return false if it is known to
1048/// have no volatile memory references.
1049bool MachineInstr::hasVolatileMemoryRef() const {
1050  // An instruction known never to access memory won't have a volatile access.
1051  if (!TID->mayStore() &&
1052      !TID->mayLoad() &&
1053      !TID->isCall() &&
1054      !TID->hasUnmodeledSideEffects())
1055    return false;
1056
1057  // Otherwise, if the instruction has no memory reference information,
1058  // conservatively assume it wasn't preserved.
1059  if (memoperands_empty())
1060    return true;
1061
1062  // Check the memory reference information for volatile references.
1063  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1064    if ((*I)->isVolatile())
1065      return true;
1066
1067  return false;
1068}
1069
1070/// isInvariantLoad - Return true if this instruction is loading from a
1071/// location whose value is invariant across the function.  For example,
1072/// loading a value from the constant pool or from the argument area
1073/// of a function if it does not change.  This should only return true of
1074/// *all* loads the instruction does are invariant (if it does multiple loads).
1075bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1076  // If the instruction doesn't load at all, it isn't an invariant load.
1077  if (!TID->mayLoad())
1078    return false;
1079
1080  // If the instruction has lost its memoperands, conservatively assume that
1081  // it may not be an invariant load.
1082  if (memoperands_empty())
1083    return false;
1084
1085  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1086
1087  for (mmo_iterator I = memoperands_begin(),
1088       E = memoperands_end(); I != E; ++I) {
1089    if ((*I)->isVolatile()) return false;
1090    if ((*I)->isStore()) return false;
1091
1092    if (const Value *V = (*I)->getValue()) {
1093      // A load from a constant PseudoSourceValue is invariant.
1094      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1095        if (PSV->isConstant(MFI))
1096          continue;
1097      // If we have an AliasAnalysis, ask it whether the memory is constant.
1098      if (AA && AA->pointsToConstantMemory(V))
1099        continue;
1100    }
1101
1102    // Otherwise assume conservatively.
1103    return false;
1104  }
1105
1106  // Everything checks out.
1107  return true;
1108}
1109
1110/// isConstantValuePHI - If the specified instruction is a PHI that always
1111/// merges together the same virtual register, return the register, otherwise
1112/// return 0.
1113unsigned MachineInstr::isConstantValuePHI() const {
1114  if (!isPHI())
1115    return 0;
1116  assert(getNumOperands() >= 3 &&
1117         "It's illegal to have a PHI without source operands");
1118
1119  unsigned Reg = getOperand(1).getReg();
1120  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1121    if (getOperand(i).getReg() != Reg)
1122      return 0;
1123  return Reg;
1124}
1125
1126void MachineInstr::dump() const {
1127  dbgs() << "  " << *this;
1128}
1129
1130void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1131  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1132  const MachineFunction *MF = 0;
1133  if (const MachineBasicBlock *MBB = getParent()) {
1134    MF = MBB->getParent();
1135    if (!TM && MF)
1136      TM = &MF->getTarget();
1137  }
1138
1139  // Print explicitly defined operands on the left of an assignment syntax.
1140  unsigned StartOp = 0, e = getNumOperands();
1141  for (; StartOp < e && getOperand(StartOp).isReg() &&
1142         getOperand(StartOp).isDef() &&
1143         !getOperand(StartOp).isImplicit();
1144       ++StartOp) {
1145    if (StartOp != 0) OS << ", ";
1146    getOperand(StartOp).print(OS, TM);
1147  }
1148
1149  if (StartOp != 0)
1150    OS << " = ";
1151
1152  // Print the opcode name.
1153  OS << getDesc().getName();
1154
1155  // Print the rest of the operands.
1156  bool OmittedAnyCallClobbers = false;
1157  bool FirstOp = true;
1158  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1159    const MachineOperand &MO = getOperand(i);
1160
1161    // Omit call-clobbered registers which aren't used anywhere. This makes
1162    // call instructions much less noisy on targets where calls clobber lots
1163    // of registers. Don't rely on MO.isDead() because we may be called before
1164    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1165    if (MF && getDesc().isCall() &&
1166        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1167      unsigned Reg = MO.getReg();
1168      if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1169        const MachineRegisterInfo &MRI = MF->getRegInfo();
1170        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1171          bool HasAliasLive = false;
1172          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1173               unsigned AliasReg = *Alias; ++Alias)
1174            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1175              HasAliasLive = true;
1176              break;
1177            }
1178          if (!HasAliasLive) {
1179            OmittedAnyCallClobbers = true;
1180            continue;
1181          }
1182        }
1183      }
1184    }
1185
1186    if (FirstOp) FirstOp = false; else OS << ",";
1187    OS << " ";
1188    if (i < getDesc().NumOperands) {
1189      const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1190      if (TOI.isPredicate())
1191        OS << "pred:";
1192      if (TOI.isOptionalDef())
1193        OS << "opt:";
1194    }
1195    MO.print(OS, TM);
1196  }
1197
1198  // Briefly indicate whether any call clobbers were omitted.
1199  if (OmittedAnyCallClobbers) {
1200    if (!FirstOp) OS << ",";
1201    OS << " ...";
1202  }
1203
1204  bool HaveSemi = false;
1205  if (!memoperands_empty()) {
1206    if (!HaveSemi) OS << ";"; HaveSemi = true;
1207
1208    OS << " mem:";
1209    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1210         i != e; ++i) {
1211      OS << **i;
1212      if (next(i) != e)
1213        OS << " ";
1214    }
1215  }
1216
1217  if (!debugLoc.isUnknown() && MF) {
1218    if (!HaveSemi) OS << ";";
1219
1220    // TODO: print InlinedAtLoc information
1221
1222    DIScope Scope(debugLoc.getScope(MF->getFunction()->getContext()));
1223    OS << " dbg:";
1224    // Omit the directory, since it's usually long and uninteresting.
1225    if (Scope.Verify())
1226      OS << Scope.getFilename();
1227    else
1228      OS << "<unknown>";
1229    OS << ':' << debugLoc.getLine();
1230    if (debugLoc.getCol() != 0)
1231      OS << ':' << debugLoc.getCol();
1232  }
1233
1234  OS << "\n";
1235}
1236
1237bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1238                                     const TargetRegisterInfo *RegInfo,
1239                                     bool AddIfNotFound) {
1240  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1241  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1242  bool Found = false;
1243  SmallVector<unsigned,4> DeadOps;
1244  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1245    MachineOperand &MO = getOperand(i);
1246    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1247      continue;
1248    unsigned Reg = MO.getReg();
1249    if (!Reg)
1250      continue;
1251
1252    if (Reg == IncomingReg) {
1253      if (!Found) {
1254        if (MO.isKill())
1255          // The register is already marked kill.
1256          return true;
1257        if (isPhysReg && isRegTiedToDefOperand(i))
1258          // Two-address uses of physregs must not be marked kill.
1259          return true;
1260        MO.setIsKill();
1261        Found = true;
1262      }
1263    } else if (hasAliases && MO.isKill() &&
1264               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1265      // A super-register kill already exists.
1266      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1267        return true;
1268      if (RegInfo->isSubRegister(IncomingReg, Reg))
1269        DeadOps.push_back(i);
1270    }
1271  }
1272
1273  // Trim unneeded kill operands.
1274  while (!DeadOps.empty()) {
1275    unsigned OpIdx = DeadOps.back();
1276    if (getOperand(OpIdx).isImplicit())
1277      RemoveOperand(OpIdx);
1278    else
1279      getOperand(OpIdx).setIsKill(false);
1280    DeadOps.pop_back();
1281  }
1282
1283  // If not found, this means an alias of one of the operands is killed. Add a
1284  // new implicit operand if required.
1285  if (!Found && AddIfNotFound) {
1286    addOperand(MachineOperand::CreateReg(IncomingReg,
1287                                         false /*IsDef*/,
1288                                         true  /*IsImp*/,
1289                                         true  /*IsKill*/));
1290    return true;
1291  }
1292  return Found;
1293}
1294
1295bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1296                                   const TargetRegisterInfo *RegInfo,
1297                                   bool AddIfNotFound) {
1298  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1299  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1300  bool Found = false;
1301  SmallVector<unsigned,4> DeadOps;
1302  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1303    MachineOperand &MO = getOperand(i);
1304    if (!MO.isReg() || !MO.isDef())
1305      continue;
1306    unsigned Reg = MO.getReg();
1307    if (!Reg)
1308      continue;
1309
1310    if (Reg == IncomingReg) {
1311      if (!Found) {
1312        if (MO.isDead())
1313          // The register is already marked dead.
1314          return true;
1315        MO.setIsDead();
1316        Found = true;
1317      }
1318    } else if (hasAliases && MO.isDead() &&
1319               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1320      // There exists a super-register that's marked dead.
1321      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1322        return true;
1323      if (RegInfo->getSubRegisters(IncomingReg) &&
1324          RegInfo->getSuperRegisters(Reg) &&
1325          RegInfo->isSubRegister(IncomingReg, Reg))
1326        DeadOps.push_back(i);
1327    }
1328  }
1329
1330  // Trim unneeded dead operands.
1331  while (!DeadOps.empty()) {
1332    unsigned OpIdx = DeadOps.back();
1333    if (getOperand(OpIdx).isImplicit())
1334      RemoveOperand(OpIdx);
1335    else
1336      getOperand(OpIdx).setIsDead(false);
1337    DeadOps.pop_back();
1338  }
1339
1340  // If not found, this means an alias of one of the operands is dead. Add a
1341  // new implicit operand if required.
1342  if (Found || !AddIfNotFound)
1343    return Found;
1344
1345  addOperand(MachineOperand::CreateReg(IncomingReg,
1346                                       true  /*IsDef*/,
1347                                       true  /*IsImp*/,
1348                                       false /*IsKill*/,
1349                                       true  /*IsDead*/));
1350  return true;
1351}
1352
1353void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1354                                      const TargetRegisterInfo *RegInfo) {
1355  MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1356  if (!MO || MO->getSubReg())
1357    addOperand(MachineOperand::CreateReg(IncomingReg,
1358                                         true  /*IsDef*/,
1359                                         true  /*IsImp*/));
1360}
1361
1362unsigned
1363MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1364  unsigned Hash = MI->getOpcode() * 37;
1365  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1366    const MachineOperand &MO = MI->getOperand(i);
1367    uint64_t Key = (uint64_t)MO.getType() << 32;
1368    switch (MO.getType()) {
1369    default: break;
1370    case MachineOperand::MO_Register:
1371      if (MO.isDef() && MO.getReg() &&
1372          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1373        continue;  // Skip virtual register defs.
1374      Key |= MO.getReg();
1375      break;
1376    case MachineOperand::MO_Immediate:
1377      Key |= MO.getImm();
1378      break;
1379    case MachineOperand::MO_FrameIndex:
1380    case MachineOperand::MO_ConstantPoolIndex:
1381    case MachineOperand::MO_JumpTableIndex:
1382      Key |= MO.getIndex();
1383      break;
1384    case MachineOperand::MO_MachineBasicBlock:
1385      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1386      break;
1387    case MachineOperand::MO_GlobalAddress:
1388      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1389      break;
1390    case MachineOperand::MO_BlockAddress:
1391      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1392      break;
1393    case MachineOperand::MO_MCSymbol:
1394      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1395      break;
1396    }
1397    Key += ~(Key << 32);
1398    Key ^= (Key >> 22);
1399    Key += ~(Key << 13);
1400    Key ^= (Key >> 8);
1401    Key += (Key << 3);
1402    Key ^= (Key >> 15);
1403    Key += ~(Key << 27);
1404    Key ^= (Key >> 31);
1405    Hash = (unsigned)Key + Hash * 37;
1406  }
1407  return Hash;
1408}
1409