MachineInstr.cpp revision b8087451cadab83332d6ba9c65227b6e925ea38f
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/DebugInfo.h"
17#include "llvm/Function.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Metadata.h"
21#include "llvm/Module.h"
22#include "llvm/Type.h"
23#include "llvm/Value.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/MC/MCSymbol.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/LeakDetector.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/FoldingSet.h"
43#include "llvm/ADT/Hashing.h"
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47// MachineOperand Implementation
48//===----------------------------------------------------------------------===//
49
50/// AddRegOperandToRegInfo - Add this register operand to the specified
51/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
52/// explicitly nulled out.
53void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
54  assert(isReg() && "Can only add reg operand to use lists");
55
56  // If the reginfo pointer is null, just explicitly null out or next/prev
57  // pointers, to ensure they are not garbage.
58  if (RegInfo == 0) {
59    Contents.Reg.Prev = 0;
60    Contents.Reg.Next = 0;
61    return;
62  }
63
64  // Otherwise, add this operand to the head of the registers use/def list.
65  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
66
67  // For SSA values, we prefer to keep the definition at the start of the list.
68  // we do this by skipping over the definition if it is at the head of the
69  // list.
70  if (*Head && (*Head)->isDef())
71    Head = &(*Head)->Contents.Reg.Next;
72
73  Contents.Reg.Next = *Head;
74  if (Contents.Reg.Next) {
75    assert(getReg() == Contents.Reg.Next->getReg() &&
76           "Different regs on the same list!");
77    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
78  }
79
80  Contents.Reg.Prev = Head;
81  *Head = this;
82}
83
84/// RemoveRegOperandFromRegInfo - Remove this register operand from the
85/// MachineRegisterInfo it is linked with.
86void MachineOperand::RemoveRegOperandFromRegInfo() {
87  assert(isOnRegUseList() && "Reg operand is not on a use list");
88  // Unlink this from the doubly linked list of operands.
89  MachineOperand *NextOp = Contents.Reg.Next;
90  *Contents.Reg.Prev = NextOp;
91  if (NextOp) {
92    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
93    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
94  }
95  Contents.Reg.Prev = 0;
96  Contents.Reg.Next = 0;
97}
98
99void MachineOperand::setReg(unsigned Reg) {
100  if (getReg() == Reg) return; // No change.
101
102  // Otherwise, we have to change the register.  If this operand is embedded
103  // into a machine function, we need to update the old and new register's
104  // use/def lists.
105  if (MachineInstr *MI = getParent())
106    if (MachineBasicBlock *MBB = MI->getParent())
107      if (MachineFunction *MF = MBB->getParent()) {
108        RemoveRegOperandFromRegInfo();
109        SmallContents.RegNo = Reg;
110        AddRegOperandToRegInfo(&MF->getRegInfo());
111        return;
112      }
113
114  // Otherwise, just change the register, no problem.  :)
115  SmallContents.RegNo = Reg;
116}
117
118void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
119                                  const TargetRegisterInfo &TRI) {
120  assert(TargetRegisterInfo::isVirtualRegister(Reg));
121  if (SubIdx && getSubReg())
122    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
123  setReg(Reg);
124  if (SubIdx)
125    setSubReg(SubIdx);
126}
127
128void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
129  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
130  if (getSubReg()) {
131    Reg = TRI.getSubReg(Reg, getSubReg());
132    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
133    // That won't happen in legal code.
134    setSubReg(0);
135  }
136  setReg(Reg);
137}
138
139/// ChangeToImmediate - Replace this operand with a new immediate operand of
140/// the specified value.  If an operand is known to be an immediate already,
141/// the setImm method should be used.
142void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
143  // If this operand is currently a register operand, and if this is in a
144  // function, deregister the operand from the register's use/def list.
145  if (isReg() && getParent() && getParent()->getParent() &&
146      getParent()->getParent()->getParent())
147    RemoveRegOperandFromRegInfo();
148
149  OpKind = MO_Immediate;
150  Contents.ImmVal = ImmVal;
151}
152
153/// ChangeToRegister - Replace this operand with a new register operand of
154/// the specified value.  If an operand is known to be an register already,
155/// the setReg method should be used.
156void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
157                                      bool isKill, bool isDead, bool isUndef,
158                                      bool isDebug) {
159  // If this operand is already a register operand, use setReg to update the
160  // register's use/def lists.
161  if (isReg()) {
162    assert(!isEarlyClobber());
163    setReg(Reg);
164  } else {
165    // Otherwise, change this to a register and set the reg#.
166    OpKind = MO_Register;
167    SmallContents.RegNo = Reg;
168
169    // If this operand is embedded in a function, add the operand to the
170    // register's use/def list.
171    if (MachineInstr *MI = getParent())
172      if (MachineBasicBlock *MBB = MI->getParent())
173        if (MachineFunction *MF = MBB->getParent())
174          AddRegOperandToRegInfo(&MF->getRegInfo());
175  }
176
177  IsDef = isDef;
178  IsImp = isImp;
179  IsKill = isKill;
180  IsDead = isDead;
181  IsUndef = isUndef;
182  IsInternalRead = false;
183  IsEarlyClobber = false;
184  IsDebug = isDebug;
185  SubReg = 0;
186}
187
188/// isIdenticalTo - Return true if this operand is identical to the specified
189/// operand.
190bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
191  if (getType() != Other.getType() ||
192      getTargetFlags() != Other.getTargetFlags())
193    return false;
194
195  switch (getType()) {
196  case MachineOperand::MO_Register:
197    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
198           getSubReg() == Other.getSubReg();
199  case MachineOperand::MO_Immediate:
200    return getImm() == Other.getImm();
201  case MachineOperand::MO_CImmediate:
202    return getCImm() == Other.getCImm();
203  case MachineOperand::MO_FPImmediate:
204    return getFPImm() == Other.getFPImm();
205  case MachineOperand::MO_MachineBasicBlock:
206    return getMBB() == Other.getMBB();
207  case MachineOperand::MO_FrameIndex:
208    return getIndex() == Other.getIndex();
209  case MachineOperand::MO_ConstantPoolIndex:
210    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
211  case MachineOperand::MO_JumpTableIndex:
212    return getIndex() == Other.getIndex();
213  case MachineOperand::MO_GlobalAddress:
214    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
215  case MachineOperand::MO_ExternalSymbol:
216    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
217           getOffset() == Other.getOffset();
218  case MachineOperand::MO_BlockAddress:
219    return getBlockAddress() == Other.getBlockAddress();
220  case MO_RegisterMask:
221    return getRegMask() == Other.getRegMask();
222  case MachineOperand::MO_MCSymbol:
223    return getMCSymbol() == Other.getMCSymbol();
224  case MachineOperand::MO_Metadata:
225    return getMetadata() == Other.getMetadata();
226  }
227  llvm_unreachable("Invalid machine operand type");
228}
229
230/// print - Print the specified machine operand.
231///
232void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
233  // If the instruction is embedded into a basic block, we can find the
234  // target info for the instruction.
235  if (!TM)
236    if (const MachineInstr *MI = getParent())
237      if (const MachineBasicBlock *MBB = MI->getParent())
238        if (const MachineFunction *MF = MBB->getParent())
239          TM = &MF->getTarget();
240  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
241
242  switch (getType()) {
243  case MachineOperand::MO_Register:
244    OS << PrintReg(getReg(), TRI, getSubReg());
245
246    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
247        isInternalRead() || isEarlyClobber()) {
248      OS << '<';
249      bool NeedComma = false;
250      if (isDef()) {
251        if (NeedComma) OS << ',';
252        if (isEarlyClobber())
253          OS << "earlyclobber,";
254        if (isImplicit())
255          OS << "imp-";
256        OS << "def";
257        NeedComma = true;
258        // <def,read-undef> only makes sense when getSubReg() is set.
259        // Don't clutter the output otherwise.
260        if (isUndef() && getSubReg())
261          OS << ",read-undef";
262      } else if (isImplicit()) {
263          OS << "imp-use";
264          NeedComma = true;
265      }
266
267      if (isKill() || isDead() || (isUndef() && isUse()) || isInternalRead()) {
268        if (NeedComma) OS << ',';
269        NeedComma = false;
270        if (isKill()) {
271          OS << "kill";
272          NeedComma = true;
273        }
274        if (isDead()) {
275          OS << "dead";
276          NeedComma = true;
277        }
278        if (isUndef() && isUse()) {
279          if (NeedComma) OS << ',';
280          OS << "undef";
281          NeedComma = true;
282        }
283        if (isInternalRead()) {
284          if (NeedComma) OS << ',';
285          OS << "internal";
286          NeedComma = true;
287        }
288      }
289      OS << '>';
290    }
291    break;
292  case MachineOperand::MO_Immediate:
293    OS << getImm();
294    break;
295  case MachineOperand::MO_CImmediate:
296    getCImm()->getValue().print(OS, false);
297    break;
298  case MachineOperand::MO_FPImmediate:
299    if (getFPImm()->getType()->isFloatTy())
300      OS << getFPImm()->getValueAPF().convertToFloat();
301    else
302      OS << getFPImm()->getValueAPF().convertToDouble();
303    break;
304  case MachineOperand::MO_MachineBasicBlock:
305    OS << "<BB#" << getMBB()->getNumber() << ">";
306    break;
307  case MachineOperand::MO_FrameIndex:
308    OS << "<fi#" << getIndex() << '>';
309    break;
310  case MachineOperand::MO_ConstantPoolIndex:
311    OS << "<cp#" << getIndex();
312    if (getOffset()) OS << "+" << getOffset();
313    OS << '>';
314    break;
315  case MachineOperand::MO_JumpTableIndex:
316    OS << "<jt#" << getIndex() << '>';
317    break;
318  case MachineOperand::MO_GlobalAddress:
319    OS << "<ga:";
320    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
321    if (getOffset()) OS << "+" << getOffset();
322    OS << '>';
323    break;
324  case MachineOperand::MO_ExternalSymbol:
325    OS << "<es:" << getSymbolName();
326    if (getOffset()) OS << "+" << getOffset();
327    OS << '>';
328    break;
329  case MachineOperand::MO_BlockAddress:
330    OS << '<';
331    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
332    OS << '>';
333    break;
334  case MachineOperand::MO_RegisterMask:
335    OS << "<regmask>";
336    break;
337  case MachineOperand::MO_Metadata:
338    OS << '<';
339    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
340    OS << '>';
341    break;
342  case MachineOperand::MO_MCSymbol:
343    OS << "<MCSym=" << *getMCSymbol() << '>';
344    break;
345  }
346
347  if (unsigned TF = getTargetFlags())
348    OS << "[TF=" << TF << ']';
349}
350
351//===----------------------------------------------------------------------===//
352// MachineMemOperand Implementation
353//===----------------------------------------------------------------------===//
354
355/// getAddrSpace - Return the LLVM IR address space number that this pointer
356/// points into.
357unsigned MachinePointerInfo::getAddrSpace() const {
358  if (V == 0) return 0;
359  return cast<PointerType>(V->getType())->getAddressSpace();
360}
361
362/// getConstantPool - Return a MachinePointerInfo record that refers to the
363/// constant pool.
364MachinePointerInfo MachinePointerInfo::getConstantPool() {
365  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
366}
367
368/// getFixedStack - Return a MachinePointerInfo record that refers to the
369/// the specified FrameIndex.
370MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
371  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
372}
373
374MachinePointerInfo MachinePointerInfo::getJumpTable() {
375  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
376}
377
378MachinePointerInfo MachinePointerInfo::getGOT() {
379  return MachinePointerInfo(PseudoSourceValue::getGOT());
380}
381
382MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
383  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
384}
385
386MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
387                                     uint64_t s, unsigned int a,
388                                     const MDNode *TBAAInfo,
389                                     const MDNode *Ranges)
390  : PtrInfo(ptrinfo), Size(s),
391    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
392    TBAAInfo(TBAAInfo), Ranges(Ranges) {
393  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
394         "invalid pointer value");
395  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
396  assert((isLoad() || isStore()) && "Not a load/store!");
397}
398
399/// Profile - Gather unique data for the object.
400///
401void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
402  ID.AddInteger(getOffset());
403  ID.AddInteger(Size);
404  ID.AddPointer(getValue());
405  ID.AddInteger(Flags);
406}
407
408void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
409  // The Value and Offset may differ due to CSE. But the flags and size
410  // should be the same.
411  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
412  assert(MMO->getSize() == getSize() && "Size mismatch!");
413
414  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
415    // Update the alignment value.
416    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
417      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
418    // Also update the base and offset, because the new alignment may
419    // not be applicable with the old ones.
420    PtrInfo = MMO->PtrInfo;
421  }
422}
423
424/// getAlignment - Return the minimum known alignment in bytes of the
425/// actual memory reference.
426uint64_t MachineMemOperand::getAlignment() const {
427  return MinAlign(getBaseAlignment(), getOffset());
428}
429
430raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
431  assert((MMO.isLoad() || MMO.isStore()) &&
432         "SV has to be a load, store or both.");
433
434  if (MMO.isVolatile())
435    OS << "Volatile ";
436
437  if (MMO.isLoad())
438    OS << "LD";
439  if (MMO.isStore())
440    OS << "ST";
441  OS << MMO.getSize();
442
443  // Print the address information.
444  OS << "[";
445  if (!MMO.getValue())
446    OS << "<unknown>";
447  else
448    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
449
450  // If the alignment of the memory reference itself differs from the alignment
451  // of the base pointer, print the base alignment explicitly, next to the base
452  // pointer.
453  if (MMO.getBaseAlignment() != MMO.getAlignment())
454    OS << "(align=" << MMO.getBaseAlignment() << ")";
455
456  if (MMO.getOffset() != 0)
457    OS << "+" << MMO.getOffset();
458  OS << "]";
459
460  // Print the alignment of the reference.
461  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
462      MMO.getBaseAlignment() != MMO.getSize())
463    OS << "(align=" << MMO.getAlignment() << ")";
464
465  // Print TBAA info.
466  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
467    OS << "(tbaa=";
468    if (TBAAInfo->getNumOperands() > 0)
469      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
470    else
471      OS << "<unknown>";
472    OS << ")";
473  }
474
475  // Print nontemporal info.
476  if (MMO.isNonTemporal())
477    OS << "(nontemporal)";
478
479  return OS;
480}
481
482//===----------------------------------------------------------------------===//
483// MachineInstr Implementation
484//===----------------------------------------------------------------------===//
485
486/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
487/// MCID NULL and no operands.
488MachineInstr::MachineInstr()
489  : MCID(0), Flags(0), AsmPrinterFlags(0),
490    NumMemRefs(0), MemRefs(0),
491    Parent(0) {
492  // Make sure that we get added to a machine basicblock
493  LeakDetector::addGarbageObject(this);
494}
495
496void MachineInstr::addImplicitDefUseOperands() {
497  if (MCID->ImplicitDefs)
498    for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
499      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
500  if (MCID->ImplicitUses)
501    for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
502      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
503}
504
505/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
506/// implicit operands. It reserves space for the number of operands specified by
507/// the MCInstrDesc.
508MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
509  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
510    NumMemRefs(0), MemRefs(0), Parent(0) {
511  unsigned NumImplicitOps = 0;
512  if (!NoImp)
513    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
514  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
515  if (!NoImp)
516    addImplicitDefUseOperands();
517  // Make sure that we get added to a machine basicblock
518  LeakDetector::addGarbageObject(this);
519}
520
521/// MachineInstr ctor - As above, but with a DebugLoc.
522MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
523                           bool NoImp)
524  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
525    NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
526  unsigned NumImplicitOps = 0;
527  if (!NoImp)
528    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
529  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
530  if (!NoImp)
531    addImplicitDefUseOperands();
532  // Make sure that we get added to a machine basicblock
533  LeakDetector::addGarbageObject(this);
534}
535
536/// MachineInstr ctor - Work exactly the same as the ctor two above, except
537/// that the MachineInstr is created and added to the end of the specified
538/// basic block.
539MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
540  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
541    NumMemRefs(0), MemRefs(0), Parent(0) {
542  assert(MBB && "Cannot use inserting ctor with null basic block!");
543  unsigned NumImplicitOps =
544    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
545  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
546  addImplicitDefUseOperands();
547  // Make sure that we get added to a machine basicblock
548  LeakDetector::addGarbageObject(this);
549  MBB->push_back(this);  // Add instruction to end of basic block!
550}
551
552/// MachineInstr ctor - As above, but with a DebugLoc.
553///
554MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
555                           const MCInstrDesc &tid)
556  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
557    NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
558  assert(MBB && "Cannot use inserting ctor with null basic block!");
559  unsigned NumImplicitOps =
560    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
561  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
562  addImplicitDefUseOperands();
563  // Make sure that we get added to a machine basicblock
564  LeakDetector::addGarbageObject(this);
565  MBB->push_back(this);  // Add instruction to end of basic block!
566}
567
568/// MachineInstr ctor - Copies MachineInstr arg exactly
569///
570MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
571  : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
572    NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
573    Parent(0), debugLoc(MI.getDebugLoc()) {
574  Operands.reserve(MI.getNumOperands());
575
576  // Add operands
577  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
578    addOperand(MI.getOperand(i));
579
580  // Copy all the flags.
581  Flags = MI.Flags;
582
583  // Set parent to null.
584  Parent = 0;
585
586  LeakDetector::addGarbageObject(this);
587}
588
589MachineInstr::~MachineInstr() {
590  LeakDetector::removeGarbageObject(this);
591#ifndef NDEBUG
592  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
593    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
594    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
595           "Reg operand def/use list corrupted");
596  }
597#endif
598}
599
600/// getRegInfo - If this instruction is embedded into a MachineFunction,
601/// return the MachineRegisterInfo object for the current function, otherwise
602/// return null.
603MachineRegisterInfo *MachineInstr::getRegInfo() {
604  if (MachineBasicBlock *MBB = getParent())
605    return &MBB->getParent()->getRegInfo();
606  return 0;
607}
608
609/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
610/// this instruction from their respective use lists.  This requires that the
611/// operands already be on their use lists.
612void MachineInstr::RemoveRegOperandsFromUseLists() {
613  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
614    if (Operands[i].isReg())
615      Operands[i].RemoveRegOperandFromRegInfo();
616  }
617}
618
619/// AddRegOperandsToUseLists - Add all of the register operands in
620/// this instruction from their respective use lists.  This requires that the
621/// operands not be on their use lists yet.
622void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
623  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
624    if (Operands[i].isReg())
625      Operands[i].AddRegOperandToRegInfo(&RegInfo);
626  }
627}
628
629
630/// addOperand - Add the specified operand to the instruction.  If it is an
631/// implicit operand, it is added to the end of the operand list.  If it is
632/// an explicit operand it is added at the end of the explicit operand list
633/// (before the first implicit operand).
634void MachineInstr::addOperand(const MachineOperand &Op) {
635  assert(MCID && "Cannot add operands before providing an instr descriptor");
636  bool isImpReg = Op.isReg() && Op.isImplicit();
637  MachineRegisterInfo *RegInfo = getRegInfo();
638
639  // If the Operands backing store is reallocated, all register operands must
640  // be removed and re-added to RegInfo.  It is storing pointers to operands.
641  bool Reallocate = RegInfo &&
642    !Operands.empty() && Operands.size() == Operands.capacity();
643
644  // Find the insert location for the new operand.  Implicit registers go at
645  // the end, everything goes before the implicit regs.
646  unsigned OpNo = Operands.size();
647
648  // Remove all the implicit operands from RegInfo if they need to be shifted.
649  // FIXME: Allow mixed explicit and implicit operands on inline asm.
650  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
651  // implicit-defs, but they must not be moved around.  See the FIXME in
652  // InstrEmitter.cpp.
653  if (!isImpReg && !isInlineAsm()) {
654    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
655      --OpNo;
656      if (RegInfo)
657        Operands[OpNo].RemoveRegOperandFromRegInfo();
658    }
659  }
660
661  // OpNo now points as the desired insertion point.  Unless this is a variadic
662  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
663  // RegMask operands go between the explicit and implicit operands.
664  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
665          OpNo < MCID->getNumOperands()) &&
666         "Trying to add an operand to a machine instr that is already done!");
667
668  // All operands from OpNo have been removed from RegInfo.  If the Operands
669  // backing store needs to be reallocated, we also need to remove any other
670  // register operands.
671  if (Reallocate)
672    for (unsigned i = 0; i != OpNo; ++i)
673      if (Operands[i].isReg())
674        Operands[i].RemoveRegOperandFromRegInfo();
675
676  // Insert the new operand at OpNo.
677  Operands.insert(Operands.begin() + OpNo, Op);
678  Operands[OpNo].ParentMI = this;
679
680  // The Operands backing store has now been reallocated, so we can re-add the
681  // operands before OpNo.
682  if (Reallocate)
683    for (unsigned i = 0; i != OpNo; ++i)
684      if (Operands[i].isReg())
685        Operands[i].AddRegOperandToRegInfo(RegInfo);
686
687  // When adding a register operand, tell RegInfo about it.
688  if (Operands[OpNo].isReg()) {
689    // Add the new operand to RegInfo, even when RegInfo is NULL.
690    // This will initialize the linked list pointers.
691    Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
692    // If the register operand is flagged as early, mark the operand as such.
693    if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
694      Operands[OpNo].setIsEarlyClobber(true);
695  }
696
697  // Re-add all the implicit ops.
698  if (RegInfo) {
699    for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
700      assert(Operands[i].isReg() && "Should only be an implicit reg!");
701      Operands[i].AddRegOperandToRegInfo(RegInfo);
702    }
703  }
704}
705
706/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
707/// fewer operand than it started with.
708///
709void MachineInstr::RemoveOperand(unsigned OpNo) {
710  assert(OpNo < Operands.size() && "Invalid operand number");
711
712  // Special case removing the last one.
713  if (OpNo == Operands.size()-1) {
714    // If needed, remove from the reg def/use list.
715    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
716      Operands.back().RemoveRegOperandFromRegInfo();
717
718    Operands.pop_back();
719    return;
720  }
721
722  // Otherwise, we are removing an interior operand.  If we have reginfo to
723  // update, remove all operands that will be shifted down from their reg lists,
724  // move everything down, then re-add them.
725  MachineRegisterInfo *RegInfo = getRegInfo();
726  if (RegInfo) {
727    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
728      if (Operands[i].isReg())
729        Operands[i].RemoveRegOperandFromRegInfo();
730    }
731  }
732
733  Operands.erase(Operands.begin()+OpNo);
734
735  if (RegInfo) {
736    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
737      if (Operands[i].isReg())
738        Operands[i].AddRegOperandToRegInfo(RegInfo);
739    }
740  }
741}
742
743/// addMemOperand - Add a MachineMemOperand to the machine instruction.
744/// This function should be used only occasionally. The setMemRefs function
745/// is the primary method for setting up a MachineInstr's MemRefs list.
746void MachineInstr::addMemOperand(MachineFunction &MF,
747                                 MachineMemOperand *MO) {
748  mmo_iterator OldMemRefs = MemRefs;
749  uint16_t OldNumMemRefs = NumMemRefs;
750
751  uint16_t NewNum = NumMemRefs + 1;
752  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
753
754  std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
755  NewMemRefs[NewNum - 1] = MO;
756
757  MemRefs = NewMemRefs;
758  NumMemRefs = NewNum;
759}
760
761bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
762  const MachineBasicBlock *MBB = getParent();
763  MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
764  while (MII != MBB->end() && MII->isInsideBundle()) {
765    if (MII->getDesc().getFlags() & Mask) {
766      if (Type == AnyInBundle)
767        return true;
768    } else {
769      if (Type == AllInBundle)
770        return false;
771    }
772    ++MII;
773  }
774
775  return Type == AllInBundle;
776}
777
778bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
779                                 MICheckType Check) const {
780  // If opcodes or number of operands are not the same then the two
781  // instructions are obviously not identical.
782  if (Other->getOpcode() != getOpcode() ||
783      Other->getNumOperands() != getNumOperands())
784    return false;
785
786  if (isBundle()) {
787    // Both instructions are bundles, compare MIs inside the bundle.
788    MachineBasicBlock::const_instr_iterator I1 = *this;
789    MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
790    MachineBasicBlock::const_instr_iterator I2 = *Other;
791    MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
792    while (++I1 != E1 && I1->isInsideBundle()) {
793      ++I2;
794      if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
795        return false;
796    }
797  }
798
799  // Check operands to make sure they match.
800  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
801    const MachineOperand &MO = getOperand(i);
802    const MachineOperand &OMO = Other->getOperand(i);
803    if (!MO.isReg()) {
804      if (!MO.isIdenticalTo(OMO))
805        return false;
806      continue;
807    }
808
809    // Clients may or may not want to ignore defs when testing for equality.
810    // For example, machine CSE pass only cares about finding common
811    // subexpressions, so it's safe to ignore virtual register defs.
812    if (MO.isDef()) {
813      if (Check == IgnoreDefs)
814        continue;
815      else if (Check == IgnoreVRegDefs) {
816        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
817            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
818          if (MO.getReg() != OMO.getReg())
819            return false;
820      } else {
821        if (!MO.isIdenticalTo(OMO))
822          return false;
823        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
824          return false;
825      }
826    } else {
827      if (!MO.isIdenticalTo(OMO))
828        return false;
829      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
830        return false;
831    }
832  }
833  // If DebugLoc does not match then two dbg.values are not identical.
834  if (isDebugValue())
835    if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
836        && getDebugLoc() != Other->getDebugLoc())
837      return false;
838  return true;
839}
840
841/// removeFromParent - This method unlinks 'this' from the containing basic
842/// block, and returns it, but does not delete it.
843MachineInstr *MachineInstr::removeFromParent() {
844  assert(getParent() && "Not embedded in a basic block!");
845
846  // If it's a bundle then remove the MIs inside the bundle as well.
847  if (isBundle()) {
848    MachineBasicBlock *MBB = getParent();
849    MachineBasicBlock::instr_iterator MII = *this; ++MII;
850    MachineBasicBlock::instr_iterator E = MBB->instr_end();
851    while (MII != E && MII->isInsideBundle()) {
852      MachineInstr *MI = &*MII;
853      ++MII;
854      MBB->remove(MI);
855    }
856  }
857  getParent()->remove(this);
858  return this;
859}
860
861
862/// eraseFromParent - This method unlinks 'this' from the containing basic
863/// block, and deletes it.
864void MachineInstr::eraseFromParent() {
865  assert(getParent() && "Not embedded in a basic block!");
866  // If it's a bundle then remove the MIs inside the bundle as well.
867  if (isBundle()) {
868    MachineBasicBlock *MBB = getParent();
869    MachineBasicBlock::instr_iterator MII = *this; ++MII;
870    MachineBasicBlock::instr_iterator E = MBB->instr_end();
871    while (MII != E && MII->isInsideBundle()) {
872      MachineInstr *MI = &*MII;
873      ++MII;
874      MBB->erase(MI);
875    }
876  }
877  // Erase the individual instruction, which may itself be inside a bundle.
878  getParent()->erase_instr(this);
879}
880
881
882/// getNumExplicitOperands - Returns the number of non-implicit operands.
883///
884unsigned MachineInstr::getNumExplicitOperands() const {
885  unsigned NumOperands = MCID->getNumOperands();
886  if (!MCID->isVariadic())
887    return NumOperands;
888
889  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
890    const MachineOperand &MO = getOperand(i);
891    if (!MO.isReg() || !MO.isImplicit())
892      NumOperands++;
893  }
894  return NumOperands;
895}
896
897/// isBundled - Return true if this instruction part of a bundle. This is true
898/// if either itself or its following instruction is marked "InsideBundle".
899bool MachineInstr::isBundled() const {
900  if (isInsideBundle())
901    return true;
902  MachineBasicBlock::const_instr_iterator nextMI = this;
903  ++nextMI;
904  return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
905}
906
907bool MachineInstr::isStackAligningInlineAsm() const {
908  if (isInlineAsm()) {
909    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
910    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
911      return true;
912  }
913  return false;
914}
915
916int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
917                                       unsigned *GroupNo) const {
918  assert(isInlineAsm() && "Expected an inline asm instruction");
919  assert(OpIdx < getNumOperands() && "OpIdx out of range");
920
921  // Ignore queries about the initial operands.
922  if (OpIdx < InlineAsm::MIOp_FirstOperand)
923    return -1;
924
925  unsigned Group = 0;
926  unsigned NumOps;
927  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
928       i += NumOps) {
929    const MachineOperand &FlagMO = getOperand(i);
930    // If we reach the implicit register operands, stop looking.
931    if (!FlagMO.isImm())
932      return -1;
933    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
934    if (i + NumOps > OpIdx) {
935      if (GroupNo)
936        *GroupNo = Group;
937      return i;
938    }
939    ++Group;
940  }
941  return -1;
942}
943
944const TargetRegisterClass*
945MachineInstr::getRegClassConstraint(unsigned OpIdx,
946                                    const TargetInstrInfo *TII,
947                                    const TargetRegisterInfo *TRI) const {
948  assert(getParent() && "Can't have an MBB reference here!");
949  assert(getParent()->getParent() && "Can't have an MF reference here!");
950  const MachineFunction &MF = *getParent()->getParent();
951
952  // Most opcodes have fixed constraints in their MCInstrDesc.
953  if (!isInlineAsm())
954    return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
955
956  if (!getOperand(OpIdx).isReg())
957    return NULL;
958
959  // For tied uses on inline asm, get the constraint from the def.
960  unsigned DefIdx;
961  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
962    OpIdx = DefIdx;
963
964  // Inline asm stores register class constraints in the flag word.
965  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
966  if (FlagIdx < 0)
967    return NULL;
968
969  unsigned Flag = getOperand(FlagIdx).getImm();
970  unsigned RCID;
971  if (InlineAsm::hasRegClassConstraint(Flag, RCID))
972    return TRI->getRegClass(RCID);
973
974  // Assume that all registers in a memory operand are pointers.
975  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
976    return TRI->getPointerRegClass(MF);
977
978  return NULL;
979}
980
981/// getBundleSize - Return the number of instructions inside the MI bundle.
982unsigned MachineInstr::getBundleSize() const {
983  assert(isBundle() && "Expecting a bundle");
984
985  MachineBasicBlock::const_instr_iterator I = *this;
986  unsigned Size = 0;
987  while ((++I)->isInsideBundle()) {
988    ++Size;
989  }
990  assert(Size > 1 && "Malformed bundle");
991
992  return Size;
993}
994
995/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
996/// the specific register or -1 if it is not found. It further tightens
997/// the search criteria to a use that kills the register if isKill is true.
998int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
999                                          const TargetRegisterInfo *TRI) const {
1000  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1001    const MachineOperand &MO = getOperand(i);
1002    if (!MO.isReg() || !MO.isUse())
1003      continue;
1004    unsigned MOReg = MO.getReg();
1005    if (!MOReg)
1006      continue;
1007    if (MOReg == Reg ||
1008        (TRI &&
1009         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1010         TargetRegisterInfo::isPhysicalRegister(Reg) &&
1011         TRI->isSubRegister(MOReg, Reg)))
1012      if (!isKill || MO.isKill())
1013        return i;
1014  }
1015  return -1;
1016}
1017
1018/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1019/// indicating if this instruction reads or writes Reg. This also considers
1020/// partial defines.
1021std::pair<bool,bool>
1022MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1023                                         SmallVectorImpl<unsigned> *Ops) const {
1024  bool PartDef = false; // Partial redefine.
1025  bool FullDef = false; // Full define.
1026  bool Use = false;
1027
1028  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1029    const MachineOperand &MO = getOperand(i);
1030    if (!MO.isReg() || MO.getReg() != Reg)
1031      continue;
1032    if (Ops)
1033      Ops->push_back(i);
1034    if (MO.isUse())
1035      Use |= !MO.isUndef();
1036    else if (MO.getSubReg() && !MO.isUndef())
1037      // A partial <def,undef> doesn't count as reading the register.
1038      PartDef = true;
1039    else
1040      FullDef = true;
1041  }
1042  // A partial redefine uses Reg unless there is also a full define.
1043  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1044}
1045
1046/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1047/// the specified register or -1 if it is not found. If isDead is true, defs
1048/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1049/// also checks if there is a def of a super-register.
1050int
1051MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1052                                        const TargetRegisterInfo *TRI) const {
1053  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1054  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1055    const MachineOperand &MO = getOperand(i);
1056    // Accept regmask operands when Overlap is set.
1057    // Ignore them when looking for a specific def operand (Overlap == false).
1058    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1059      return i;
1060    if (!MO.isReg() || !MO.isDef())
1061      continue;
1062    unsigned MOReg = MO.getReg();
1063    bool Found = (MOReg == Reg);
1064    if (!Found && TRI && isPhys &&
1065        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1066      if (Overlap)
1067        Found = TRI->regsOverlap(MOReg, Reg);
1068      else
1069        Found = TRI->isSubRegister(MOReg, Reg);
1070    }
1071    if (Found && (!isDead || MO.isDead()))
1072      return i;
1073  }
1074  return -1;
1075}
1076
1077/// findFirstPredOperandIdx() - Find the index of the first operand in the
1078/// operand list that is used to represent the predicate. It returns -1 if
1079/// none is found.
1080int MachineInstr::findFirstPredOperandIdx() const {
1081  // Don't call MCID.findFirstPredOperandIdx() because this variant
1082  // is sometimes called on an instruction that's not yet complete, and
1083  // so the number of operands is less than the MCID indicates. In
1084  // particular, the PTX target does this.
1085  const MCInstrDesc &MCID = getDesc();
1086  if (MCID.isPredicable()) {
1087    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1088      if (MCID.OpInfo[i].isPredicate())
1089        return i;
1090  }
1091
1092  return -1;
1093}
1094
1095/// isRegTiedToUseOperand - Given the index of a register def operand,
1096/// check if the register def is tied to a source operand, due to either
1097/// two-address elimination or inline assembly constraints. Returns the
1098/// first tied use operand index by reference is UseOpIdx is not null.
1099bool MachineInstr::
1100isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
1101  if (isInlineAsm()) {
1102    assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
1103    const MachineOperand &MO = getOperand(DefOpIdx);
1104    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
1105      return false;
1106    // Determine the actual operand index that corresponds to this index.
1107    unsigned DefNo = 0;
1108    int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1109    if (FlagIdx < 0)
1110      return false;
1111
1112    // Which part of the group is DefOpIdx?
1113    unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1114
1115    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1116         i != e; ++i) {
1117      const MachineOperand &FMO = getOperand(i);
1118      if (!FMO.isImm())
1119        continue;
1120      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1121        continue;
1122      unsigned Idx;
1123      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1124          Idx == DefNo) {
1125        if (UseOpIdx)
1126          *UseOpIdx = (unsigned)i + 1 + DefPart;
1127        return true;
1128      }
1129    }
1130    return false;
1131  }
1132
1133  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1134  const MCInstrDesc &MCID = getDesc();
1135  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1136    const MachineOperand &MO = getOperand(i);
1137    if (MO.isReg() && MO.isUse() &&
1138        MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1139      if (UseOpIdx)
1140        *UseOpIdx = (unsigned)i;
1141      return true;
1142    }
1143  }
1144  return false;
1145}
1146
1147/// isRegTiedToDefOperand - Return true if the operand of the specified index
1148/// is a register use and it is tied to an def operand. It also returns the def
1149/// operand index by reference.
1150bool MachineInstr::
1151isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1152  if (isInlineAsm()) {
1153    const MachineOperand &MO = getOperand(UseOpIdx);
1154    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1155      return false;
1156
1157    // Find the flag operand corresponding to UseOpIdx
1158    int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1159    if (FlagIdx < 0)
1160      return false;
1161
1162    const MachineOperand &UFMO = getOperand(FlagIdx);
1163    unsigned DefNo;
1164    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1165      if (!DefOpIdx)
1166        return true;
1167
1168      unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1169      // Remember to adjust the index. First operand is asm string, second is
1170      // the HasSideEffects and AlignStack bits, then there is a flag for each.
1171      while (DefNo) {
1172        const MachineOperand &FMO = getOperand(DefIdx);
1173        assert(FMO.isImm());
1174        // Skip over this def.
1175        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1176        --DefNo;
1177      }
1178      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1179      return true;
1180    }
1181    return false;
1182  }
1183
1184  const MCInstrDesc &MCID = getDesc();
1185  if (UseOpIdx >= MCID.getNumOperands())
1186    return false;
1187  const MachineOperand &MO = getOperand(UseOpIdx);
1188  if (!MO.isReg() || !MO.isUse())
1189    return false;
1190  int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1191  if (DefIdx == -1)
1192    return false;
1193  if (DefOpIdx)
1194    *DefOpIdx = (unsigned)DefIdx;
1195  return true;
1196}
1197
1198/// clearKillInfo - Clears kill flags on all operands.
1199///
1200void MachineInstr::clearKillInfo() {
1201  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1202    MachineOperand &MO = getOperand(i);
1203    if (MO.isReg() && MO.isUse())
1204      MO.setIsKill(false);
1205  }
1206}
1207
1208/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1209///
1210void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1211  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1212    const MachineOperand &MO = MI->getOperand(i);
1213    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1214      continue;
1215    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1216      MachineOperand &MOp = getOperand(j);
1217      if (!MOp.isIdenticalTo(MO))
1218        continue;
1219      if (MO.isKill())
1220        MOp.setIsKill();
1221      else
1222        MOp.setIsDead();
1223      break;
1224    }
1225  }
1226}
1227
1228/// copyPredicates - Copies predicate operand(s) from MI.
1229void MachineInstr::copyPredicates(const MachineInstr *MI) {
1230  assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1231
1232  const MCInstrDesc &MCID = MI->getDesc();
1233  if (!MCID.isPredicable())
1234    return;
1235  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1236    if (MCID.OpInfo[i].isPredicate()) {
1237      // Predicated operands must be last operands.
1238      addOperand(MI->getOperand(i));
1239    }
1240  }
1241}
1242
1243void MachineInstr::substituteRegister(unsigned FromReg,
1244                                      unsigned ToReg,
1245                                      unsigned SubIdx,
1246                                      const TargetRegisterInfo &RegInfo) {
1247  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1248    if (SubIdx)
1249      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1250    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1251      MachineOperand &MO = getOperand(i);
1252      if (!MO.isReg() || MO.getReg() != FromReg)
1253        continue;
1254      MO.substPhysReg(ToReg, RegInfo);
1255    }
1256  } else {
1257    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1258      MachineOperand &MO = getOperand(i);
1259      if (!MO.isReg() || MO.getReg() != FromReg)
1260        continue;
1261      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1262    }
1263  }
1264}
1265
1266/// isSafeToMove - Return true if it is safe to move this instruction. If
1267/// SawStore is set to true, it means that there is a store (or call) between
1268/// the instruction's location and its intended destination.
1269bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1270                                AliasAnalysis *AA,
1271                                bool &SawStore) const {
1272  // Ignore stuff that we obviously can't move.
1273  if (mayStore() || isCall()) {
1274    SawStore = true;
1275    return false;
1276  }
1277
1278  if (isLabel() || isDebugValue() ||
1279      isTerminator() || hasUnmodeledSideEffects())
1280    return false;
1281
1282  // See if this instruction does a load.  If so, we have to guarantee that the
1283  // loaded value doesn't change between the load and the its intended
1284  // destination. The check for isInvariantLoad gives the targe the chance to
1285  // classify the load as always returning a constant, e.g. a constant pool
1286  // load.
1287  if (mayLoad() && !isInvariantLoad(AA))
1288    // Otherwise, this is a real load.  If there is a store between the load and
1289    // end of block, or if the load is volatile, we can't move it.
1290    return !SawStore && !hasVolatileMemoryRef();
1291
1292  return true;
1293}
1294
1295/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1296/// instruction which defined the specified register instead of copying it.
1297bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1298                                 AliasAnalysis *AA,
1299                                 unsigned DstReg) const {
1300  bool SawStore = false;
1301  if (!TII->isTriviallyReMaterializable(this, AA) ||
1302      !isSafeToMove(TII, AA, SawStore))
1303    return false;
1304  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1305    const MachineOperand &MO = getOperand(i);
1306    if (!MO.isReg())
1307      continue;
1308    // FIXME: For now, do not remat any instruction with register operands.
1309    // Later on, we can loosen the restriction is the register operands have
1310    // not been modified between the def and use. Note, this is different from
1311    // MachineSink because the code is no longer in two-address form (at least
1312    // partially).
1313    if (MO.isUse())
1314      return false;
1315    else if (!MO.isDead() && MO.getReg() != DstReg)
1316      return false;
1317  }
1318  return true;
1319}
1320
1321/// hasVolatileMemoryRef - Return true if this instruction may have a
1322/// volatile memory reference, or if the information describing the
1323/// memory reference is not available. Return false if it is known to
1324/// have no volatile memory references.
1325bool MachineInstr::hasVolatileMemoryRef() const {
1326  // An instruction known never to access memory won't have a volatile access.
1327  if (!mayStore() &&
1328      !mayLoad() &&
1329      !isCall() &&
1330      !hasUnmodeledSideEffects())
1331    return false;
1332
1333  // Otherwise, if the instruction has no memory reference information,
1334  // conservatively assume it wasn't preserved.
1335  if (memoperands_empty())
1336    return true;
1337
1338  // Check the memory reference information for volatile references.
1339  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1340    if ((*I)->isVolatile())
1341      return true;
1342
1343  return false;
1344}
1345
1346/// isInvariantLoad - Return true if this instruction is loading from a
1347/// location whose value is invariant across the function.  For example,
1348/// loading a value from the constant pool or from the argument area
1349/// of a function if it does not change.  This should only return true of
1350/// *all* loads the instruction does are invariant (if it does multiple loads).
1351bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1352  // If the instruction doesn't load at all, it isn't an invariant load.
1353  if (!mayLoad())
1354    return false;
1355
1356  // If the instruction has lost its memoperands, conservatively assume that
1357  // it may not be an invariant load.
1358  if (memoperands_empty())
1359    return false;
1360
1361  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1362
1363  for (mmo_iterator I = memoperands_begin(),
1364       E = memoperands_end(); I != E; ++I) {
1365    if ((*I)->isVolatile()) return false;
1366    if ((*I)->isStore()) return false;
1367    if ((*I)->isInvariant()) return true;
1368
1369    if (const Value *V = (*I)->getValue()) {
1370      // A load from a constant PseudoSourceValue is invariant.
1371      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1372        if (PSV->isConstant(MFI))
1373          continue;
1374      // If we have an AliasAnalysis, ask it whether the memory is constant.
1375      if (AA && AA->pointsToConstantMemory(
1376                      AliasAnalysis::Location(V, (*I)->getSize(),
1377                                              (*I)->getTBAAInfo())))
1378        continue;
1379    }
1380
1381    // Otherwise assume conservatively.
1382    return false;
1383  }
1384
1385  // Everything checks out.
1386  return true;
1387}
1388
1389/// isConstantValuePHI - If the specified instruction is a PHI that always
1390/// merges together the same virtual register, return the register, otherwise
1391/// return 0.
1392unsigned MachineInstr::isConstantValuePHI() const {
1393  if (!isPHI())
1394    return 0;
1395  assert(getNumOperands() >= 3 &&
1396         "It's illegal to have a PHI without source operands");
1397
1398  unsigned Reg = getOperand(1).getReg();
1399  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1400    if (getOperand(i).getReg() != Reg)
1401      return 0;
1402  return Reg;
1403}
1404
1405bool MachineInstr::hasUnmodeledSideEffects() const {
1406  if (hasProperty(MCID::UnmodeledSideEffects))
1407    return true;
1408  if (isInlineAsm()) {
1409    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1410    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1411      return true;
1412  }
1413
1414  return false;
1415}
1416
1417/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1418///
1419bool MachineInstr::allDefsAreDead() const {
1420  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1421    const MachineOperand &MO = getOperand(i);
1422    if (!MO.isReg() || MO.isUse())
1423      continue;
1424    if (!MO.isDead())
1425      return false;
1426  }
1427  return true;
1428}
1429
1430/// copyImplicitOps - Copy implicit register operands from specified
1431/// instruction to this instruction.
1432void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1433  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1434       i != e; ++i) {
1435    const MachineOperand &MO = MI->getOperand(i);
1436    if (MO.isReg() && MO.isImplicit())
1437      addOperand(MO);
1438  }
1439}
1440
1441void MachineInstr::dump() const {
1442  dbgs() << "  " << *this;
1443}
1444
1445static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1446                         raw_ostream &CommentOS) {
1447  const LLVMContext &Ctx = MF->getFunction()->getContext();
1448  if (!DL.isUnknown()) {          // Print source line info.
1449    DIScope Scope(DL.getScope(Ctx));
1450    // Omit the directory, because it's likely to be long and uninteresting.
1451    if (Scope.Verify())
1452      CommentOS << Scope.getFilename();
1453    else
1454      CommentOS << "<unknown>";
1455    CommentOS << ':' << DL.getLine();
1456    if (DL.getCol() != 0)
1457      CommentOS << ':' << DL.getCol();
1458    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1459    if (!InlinedAtDL.isUnknown()) {
1460      CommentOS << " @[ ";
1461      printDebugLoc(InlinedAtDL, MF, CommentOS);
1462      CommentOS << " ]";
1463    }
1464  }
1465}
1466
1467void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1468  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1469  const MachineFunction *MF = 0;
1470  const MachineRegisterInfo *MRI = 0;
1471  if (const MachineBasicBlock *MBB = getParent()) {
1472    MF = MBB->getParent();
1473    if (!TM && MF)
1474      TM = &MF->getTarget();
1475    if (MF)
1476      MRI = &MF->getRegInfo();
1477  }
1478
1479  // Save a list of virtual registers.
1480  SmallVector<unsigned, 8> VirtRegs;
1481
1482  // Print explicitly defined operands on the left of an assignment syntax.
1483  unsigned StartOp = 0, e = getNumOperands();
1484  for (; StartOp < e && getOperand(StartOp).isReg() &&
1485         getOperand(StartOp).isDef() &&
1486         !getOperand(StartOp).isImplicit();
1487       ++StartOp) {
1488    if (StartOp != 0) OS << ", ";
1489    getOperand(StartOp).print(OS, TM);
1490    unsigned Reg = getOperand(StartOp).getReg();
1491    if (TargetRegisterInfo::isVirtualRegister(Reg))
1492      VirtRegs.push_back(Reg);
1493  }
1494
1495  if (StartOp != 0)
1496    OS << " = ";
1497
1498  // Print the opcode name.
1499  if (TM && TM->getInstrInfo())
1500    OS << TM->getInstrInfo()->getName(getOpcode());
1501  else
1502    OS << "UNKNOWN";
1503
1504  // Print the rest of the operands.
1505  bool OmittedAnyCallClobbers = false;
1506  bool FirstOp = true;
1507  unsigned AsmDescOp = ~0u;
1508  unsigned AsmOpCount = 0;
1509
1510  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1511    // Print asm string.
1512    OS << " ";
1513    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1514
1515    // Print HasSideEffects, IsAlignStack
1516    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1517    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1518      OS << " [sideeffect]";
1519    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1520      OS << " [alignstack]";
1521
1522    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1523    FirstOp = false;
1524  }
1525
1526
1527  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1528    const MachineOperand &MO = getOperand(i);
1529
1530    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1531      VirtRegs.push_back(MO.getReg());
1532
1533    // Omit call-clobbered registers which aren't used anywhere. This makes
1534    // call instructions much less noisy on targets where calls clobber lots
1535    // of registers. Don't rely on MO.isDead() because we may be called before
1536    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1537    if (MF && isCall() &&
1538        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1539      unsigned Reg = MO.getReg();
1540      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1541        const MachineRegisterInfo &MRI = MF->getRegInfo();
1542        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1543          bool HasAliasLive = false;
1544          for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1545               AI.isValid(); ++AI) {
1546            unsigned AliasReg = *AI;
1547            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1548              HasAliasLive = true;
1549              break;
1550            }
1551          }
1552          if (!HasAliasLive) {
1553            OmittedAnyCallClobbers = true;
1554            continue;
1555          }
1556        }
1557      }
1558    }
1559
1560    if (FirstOp) FirstOp = false; else OS << ",";
1561    OS << " ";
1562    if (i < getDesc().NumOperands) {
1563      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1564      if (MCOI.isPredicate())
1565        OS << "pred:";
1566      if (MCOI.isOptionalDef())
1567        OS << "opt:";
1568    }
1569    if (isDebugValue() && MO.isMetadata()) {
1570      // Pretty print DBG_VALUE instructions.
1571      const MDNode *MD = MO.getMetadata();
1572      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1573        OS << "!\"" << MDS->getString() << '\"';
1574      else
1575        MO.print(OS, TM);
1576    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1577      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1578    } else if (i == AsmDescOp && MO.isImm()) {
1579      // Pretty print the inline asm operand descriptor.
1580      OS << '$' << AsmOpCount++;
1581      unsigned Flag = MO.getImm();
1582      switch (InlineAsm::getKind(Flag)) {
1583      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1584      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1585      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1586      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1587      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1588      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1589      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1590      }
1591
1592      unsigned RCID = 0;
1593      if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1594        if (TM)
1595          OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1596        else
1597          OS << ":RC" << RCID;
1598      }
1599
1600      unsigned TiedTo = 0;
1601      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1602        OS << " tiedto:$" << TiedTo;
1603
1604      OS << ']';
1605
1606      // Compute the index of the next operand descriptor.
1607      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1608    } else
1609      MO.print(OS, TM);
1610  }
1611
1612  // Briefly indicate whether any call clobbers were omitted.
1613  if (OmittedAnyCallClobbers) {
1614    if (!FirstOp) OS << ",";
1615    OS << " ...";
1616  }
1617
1618  bool HaveSemi = false;
1619  if (Flags) {
1620    if (!HaveSemi) OS << ";"; HaveSemi = true;
1621    OS << " flags: ";
1622
1623    if (Flags & FrameSetup)
1624      OS << "FrameSetup";
1625  }
1626
1627  if (!memoperands_empty()) {
1628    if (!HaveSemi) OS << ";"; HaveSemi = true;
1629
1630    OS << " mem:";
1631    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1632         i != e; ++i) {
1633      OS << **i;
1634      if (llvm::next(i) != e)
1635        OS << " ";
1636    }
1637  }
1638
1639  // Print the regclass of any virtual registers encountered.
1640  if (MRI && !VirtRegs.empty()) {
1641    if (!HaveSemi) OS << ";"; HaveSemi = true;
1642    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1643      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1644      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1645      for (unsigned j = i+1; j != VirtRegs.size();) {
1646        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1647          ++j;
1648          continue;
1649        }
1650        if (VirtRegs[i] != VirtRegs[j])
1651          OS << "," << PrintReg(VirtRegs[j]);
1652        VirtRegs.erase(VirtRegs.begin()+j);
1653      }
1654    }
1655  }
1656
1657  // Print debug location information.
1658  if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1659    if (!HaveSemi) OS << ";"; HaveSemi = true;
1660    DIVariable DV(getOperand(e - 1).getMetadata());
1661    OS << " line no:" <<  DV.getLineNumber();
1662    if (MDNode *InlinedAt = DV.getInlinedAt()) {
1663      DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1664      if (!InlinedAtDL.isUnknown()) {
1665        OS << " inlined @[ ";
1666        printDebugLoc(InlinedAtDL, MF, OS);
1667        OS << " ]";
1668      }
1669    }
1670  } else if (!debugLoc.isUnknown() && MF) {
1671    if (!HaveSemi) OS << ";"; HaveSemi = true;
1672    OS << " dbg:";
1673    printDebugLoc(debugLoc, MF, OS);
1674  }
1675
1676  OS << '\n';
1677}
1678
1679bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1680                                     const TargetRegisterInfo *RegInfo,
1681                                     bool AddIfNotFound) {
1682  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1683  bool hasAliases = isPhysReg &&
1684    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1685  bool Found = false;
1686  SmallVector<unsigned,4> DeadOps;
1687  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1688    MachineOperand &MO = getOperand(i);
1689    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1690      continue;
1691    unsigned Reg = MO.getReg();
1692    if (!Reg)
1693      continue;
1694
1695    if (Reg == IncomingReg) {
1696      if (!Found) {
1697        if (MO.isKill())
1698          // The register is already marked kill.
1699          return true;
1700        if (isPhysReg && isRegTiedToDefOperand(i))
1701          // Two-address uses of physregs must not be marked kill.
1702          return true;
1703        MO.setIsKill();
1704        Found = true;
1705      }
1706    } else if (hasAliases && MO.isKill() &&
1707               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1708      // A super-register kill already exists.
1709      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1710        return true;
1711      if (RegInfo->isSubRegister(IncomingReg, Reg))
1712        DeadOps.push_back(i);
1713    }
1714  }
1715
1716  // Trim unneeded kill operands.
1717  while (!DeadOps.empty()) {
1718    unsigned OpIdx = DeadOps.back();
1719    if (getOperand(OpIdx).isImplicit())
1720      RemoveOperand(OpIdx);
1721    else
1722      getOperand(OpIdx).setIsKill(false);
1723    DeadOps.pop_back();
1724  }
1725
1726  // If not found, this means an alias of one of the operands is killed. Add a
1727  // new implicit operand if required.
1728  if (!Found && AddIfNotFound) {
1729    addOperand(MachineOperand::CreateReg(IncomingReg,
1730                                         false /*IsDef*/,
1731                                         true  /*IsImp*/,
1732                                         true  /*IsKill*/));
1733    return true;
1734  }
1735  return Found;
1736}
1737
1738void MachineInstr::clearRegisterKills(unsigned Reg,
1739                                      const TargetRegisterInfo *RegInfo) {
1740  if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1741    RegInfo = 0;
1742  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1743    MachineOperand &MO = getOperand(i);
1744    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1745      continue;
1746    unsigned OpReg = MO.getReg();
1747    if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1748      MO.setIsKill(false);
1749  }
1750}
1751
1752bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1753                                   const TargetRegisterInfo *RegInfo,
1754                                   bool AddIfNotFound) {
1755  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1756  bool hasAliases = isPhysReg &&
1757    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1758  bool Found = false;
1759  SmallVector<unsigned,4> DeadOps;
1760  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1761    MachineOperand &MO = getOperand(i);
1762    if (!MO.isReg() || !MO.isDef())
1763      continue;
1764    unsigned Reg = MO.getReg();
1765    if (!Reg)
1766      continue;
1767
1768    if (Reg == IncomingReg) {
1769      MO.setIsDead();
1770      Found = true;
1771    } else if (hasAliases && MO.isDead() &&
1772               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1773      // There exists a super-register that's marked dead.
1774      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1775        return true;
1776      if (RegInfo->isSubRegister(IncomingReg, Reg))
1777        DeadOps.push_back(i);
1778    }
1779  }
1780
1781  // Trim unneeded dead operands.
1782  while (!DeadOps.empty()) {
1783    unsigned OpIdx = DeadOps.back();
1784    if (getOperand(OpIdx).isImplicit())
1785      RemoveOperand(OpIdx);
1786    else
1787      getOperand(OpIdx).setIsDead(false);
1788    DeadOps.pop_back();
1789  }
1790
1791  // If not found, this means an alias of one of the operands is dead. Add a
1792  // new implicit operand if required.
1793  if (Found || !AddIfNotFound)
1794    return Found;
1795
1796  addOperand(MachineOperand::CreateReg(IncomingReg,
1797                                       true  /*IsDef*/,
1798                                       true  /*IsImp*/,
1799                                       false /*IsKill*/,
1800                                       true  /*IsDead*/));
1801  return true;
1802}
1803
1804void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1805                                      const TargetRegisterInfo *RegInfo) {
1806  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1807    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1808    if (MO)
1809      return;
1810  } else {
1811    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1812      const MachineOperand &MO = getOperand(i);
1813      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1814          MO.getSubReg() == 0)
1815        return;
1816    }
1817  }
1818  addOperand(MachineOperand::CreateReg(IncomingReg,
1819                                       true  /*IsDef*/,
1820                                       true  /*IsImp*/));
1821}
1822
1823void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1824                                         const TargetRegisterInfo &TRI) {
1825  bool HasRegMask = false;
1826  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1827    MachineOperand &MO = getOperand(i);
1828    if (MO.isRegMask()) {
1829      HasRegMask = true;
1830      continue;
1831    }
1832    if (!MO.isReg() || !MO.isDef()) continue;
1833    unsigned Reg = MO.getReg();
1834    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1835    bool Dead = true;
1836    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1837         I != E; ++I)
1838      if (TRI.regsOverlap(*I, Reg)) {
1839        Dead = false;
1840        break;
1841      }
1842    // If there are no uses, including partial uses, the def is dead.
1843    if (Dead) MO.setIsDead();
1844  }
1845
1846  // This is a call with a register mask operand.
1847  // Mask clobbers are always dead, so add defs for the non-dead defines.
1848  if (HasRegMask)
1849    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1850         I != E; ++I)
1851      addRegisterDefined(*I, &TRI);
1852}
1853
1854unsigned
1855MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1856  // Build up a buffer of hash code components.
1857  //
1858  // FIXME: This is a total hack. We should have a hash_value overload for
1859  // MachineOperand, but currently that doesn't work because there are many
1860  // different ideas of "equality" and thus different sets of information that
1861  // contribute to the hash code. This one happens to want to take a specific
1862  // subset. And it's still not clear that this routine uses the *correct*
1863  // subset of information when computing the hash code. The goal is to use the
1864  // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to
1865  // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would
1866  // be very useful to factor the selection of relevant inputs out of the two
1867  // functions and into a common routine, but it's not clear how that can be
1868  // done.
1869  SmallVector<size_t, 8> HashComponents;
1870  HashComponents.reserve(MI->getNumOperands() + 1);
1871  HashComponents.push_back(MI->getOpcode());
1872  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1873    const MachineOperand &MO = MI->getOperand(i);
1874    switch (MO.getType()) {
1875    default: break;
1876    case MachineOperand::MO_Register:
1877      if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1878        continue;  // Skip virtual register defs.
1879      HashComponents.push_back(hash_combine(MO.getType(), MO.getReg()));
1880      break;
1881    case MachineOperand::MO_Immediate:
1882      HashComponents.push_back(hash_combine(MO.getType(), MO.getImm()));
1883      break;
1884    case MachineOperand::MO_FrameIndex:
1885    case MachineOperand::MO_JumpTableIndex:
1886      HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex()));
1887      break;
1888    case MachineOperand::MO_ConstantPoolIndex:
1889      HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex(),
1890                                            MO.getOffset()));
1891      break;
1892    case MachineOperand::MO_MachineBasicBlock:
1893      HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB()));
1894      break;
1895    case MachineOperand::MO_GlobalAddress:
1896      HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal(),
1897                                            MO.getOffset()));
1898      break;
1899    case MachineOperand::MO_BlockAddress:
1900      HashComponents.push_back(hash_combine(MO.getType(),
1901                                            MO.getBlockAddress(),
1902                                            MO.getOffset()));
1903      break;
1904    case MachineOperand::MO_MCSymbol:
1905      HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol()));
1906      break;
1907    }
1908  }
1909  return hash_combine_range(HashComponents.begin(), HashComponents.end());
1910}
1911
1912void MachineInstr::emitError(StringRef Msg) const {
1913  // Find the source location cookie.
1914  unsigned LocCookie = 0;
1915  const MDNode *LocMD = 0;
1916  for (unsigned i = getNumOperands(); i != 0; --i) {
1917    if (getOperand(i-1).isMetadata() &&
1918        (LocMD = getOperand(i-1).getMetadata()) &&
1919        LocMD->getNumOperands() != 0) {
1920      if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1921        LocCookie = CI->getZExtValue();
1922        break;
1923      }
1924    }
1925  }
1926
1927  if (const MachineBasicBlock *MBB = getParent())
1928    if (const MachineFunction *MF = MBB->getParent())
1929      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1930  report_fatal_error(Msg);
1931}
1932