MachineInstr.cpp revision be149874dbf1f1a139afb106da91d617025964eb
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Type.h"
19#include "llvm/Value.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetInstrDesc.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/LeakDetector.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/FoldingSet.h"
38#include "llvm/Metadata.h"
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// MachineOperand Implementation
43//===----------------------------------------------------------------------===//
44
45/// AddRegOperandToRegInfo - Add this register operand to the specified
46/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
47/// explicitly nulled out.
48void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
49  assert(isReg() && "Can only add reg operand to use lists");
50
51  // If the reginfo pointer is null, just explicitly null out or next/prev
52  // pointers, to ensure they are not garbage.
53  if (RegInfo == 0) {
54    Contents.Reg.Prev = 0;
55    Contents.Reg.Next = 0;
56    return;
57  }
58
59  // Otherwise, add this operand to the head of the registers use/def list.
60  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
61
62  // For SSA values, we prefer to keep the definition at the start of the list.
63  // we do this by skipping over the definition if it is at the head of the
64  // list.
65  if (*Head && (*Head)->isDef())
66    Head = &(*Head)->Contents.Reg.Next;
67
68  Contents.Reg.Next = *Head;
69  if (Contents.Reg.Next) {
70    assert(getReg() == Contents.Reg.Next->getReg() &&
71           "Different regs on the same list!");
72    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
73  }
74
75  Contents.Reg.Prev = Head;
76  *Head = this;
77}
78
79/// RemoveRegOperandFromRegInfo - Remove this register operand from the
80/// MachineRegisterInfo it is linked with.
81void MachineOperand::RemoveRegOperandFromRegInfo() {
82  assert(isOnRegUseList() && "Reg operand is not on a use list");
83  // Unlink this from the doubly linked list of operands.
84  MachineOperand *NextOp = Contents.Reg.Next;
85  *Contents.Reg.Prev = NextOp;
86  if (NextOp) {
87    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
88    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
89  }
90  Contents.Reg.Prev = 0;
91  Contents.Reg.Next = 0;
92}
93
94void MachineOperand::setReg(unsigned Reg) {
95  if (getReg() == Reg) return; // No change.
96
97  // Otherwise, we have to change the register.  If this operand is embedded
98  // into a machine function, we need to update the old and new register's
99  // use/def lists.
100  if (MachineInstr *MI = getParent())
101    if (MachineBasicBlock *MBB = MI->getParent())
102      if (MachineFunction *MF = MBB->getParent()) {
103        RemoveRegOperandFromRegInfo();
104        Contents.Reg.RegNo = Reg;
105        AddRegOperandToRegInfo(&MF->getRegInfo());
106        return;
107      }
108
109  // Otherwise, just change the register, no problem.  :)
110  Contents.Reg.RegNo = Reg;
111}
112
113/// ChangeToImmediate - Replace this operand with a new immediate operand of
114/// the specified value.  If an operand is known to be an immediate already,
115/// the setImm method should be used.
116void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
117  // If this operand is currently a register operand, and if this is in a
118  // function, deregister the operand from the register's use/def list.
119  if (isReg() && getParent() && getParent()->getParent() &&
120      getParent()->getParent()->getParent())
121    RemoveRegOperandFromRegInfo();
122
123  OpKind = MO_Immediate;
124  Contents.ImmVal = ImmVal;
125}
126
127/// ChangeToRegister - Replace this operand with a new register operand of
128/// the specified value.  If an operand is known to be an register already,
129/// the setReg method should be used.
130void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
131                                      bool isKill, bool isDead, bool isUndef,
132                                      bool isDebug) {
133  // If this operand is already a register operand, use setReg to update the
134  // register's use/def lists.
135  if (isReg()) {
136    assert(!isEarlyClobber());
137    setReg(Reg);
138  } else {
139    // Otherwise, change this to a register and set the reg#.
140    OpKind = MO_Register;
141    Contents.Reg.RegNo = Reg;
142
143    // If this operand is embedded in a function, add the operand to the
144    // register's use/def list.
145    if (MachineInstr *MI = getParent())
146      if (MachineBasicBlock *MBB = MI->getParent())
147        if (MachineFunction *MF = MBB->getParent())
148          AddRegOperandToRegInfo(&MF->getRegInfo());
149  }
150
151  IsDef = isDef;
152  IsImp = isImp;
153  IsKill = isKill;
154  IsDead = isDead;
155  IsUndef = isUndef;
156  IsEarlyClobber = false;
157  IsDebug = isDebug;
158  SubReg = 0;
159}
160
161/// isIdenticalTo - Return true if this operand is identical to the specified
162/// operand.
163bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
164  if (getType() != Other.getType() ||
165      getTargetFlags() != Other.getTargetFlags())
166    return false;
167
168  switch (getType()) {
169  default: llvm_unreachable("Unrecognized operand type");
170  case MachineOperand::MO_Register:
171    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
172           getSubReg() == Other.getSubReg();
173  case MachineOperand::MO_Immediate:
174    return getImm() == Other.getImm();
175  case MachineOperand::MO_FPImmediate:
176    return getFPImm() == Other.getFPImm();
177  case MachineOperand::MO_MachineBasicBlock:
178    return getMBB() == Other.getMBB();
179  case MachineOperand::MO_FrameIndex:
180    return getIndex() == Other.getIndex();
181  case MachineOperand::MO_ConstantPoolIndex:
182    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
183  case MachineOperand::MO_JumpTableIndex:
184    return getIndex() == Other.getIndex();
185  case MachineOperand::MO_GlobalAddress:
186    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
187  case MachineOperand::MO_ExternalSymbol:
188    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
189           getOffset() == Other.getOffset();
190  case MachineOperand::MO_BlockAddress:
191    return getBlockAddress() == Other.getBlockAddress();
192  }
193}
194
195/// print - Print the specified machine operand.
196///
197void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
198  // If the instruction is embedded into a basic block, we can find the
199  // target info for the instruction.
200  if (!TM)
201    if (const MachineInstr *MI = getParent())
202      if (const MachineBasicBlock *MBB = MI->getParent())
203        if (const MachineFunction *MF = MBB->getParent())
204          TM = &MF->getTarget();
205
206  switch (getType()) {
207  case MachineOperand::MO_Register:
208    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
209      OS << "%reg" << getReg();
210    } else {
211      if (TM)
212        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
213      else
214        OS << "%physreg" << getReg();
215    }
216
217    if (getSubReg() != 0)
218      OS << ':' << getSubReg();
219
220    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
221        isEarlyClobber()) {
222      OS << '<';
223      bool NeedComma = false;
224      if (isDef()) {
225        if (NeedComma) OS << ',';
226        if (isEarlyClobber())
227          OS << "earlyclobber,";
228        if (isImplicit())
229          OS << "imp-";
230        OS << "def";
231        NeedComma = true;
232      } else if (isImplicit()) {
233          OS << "imp-use";
234          NeedComma = true;
235      }
236
237      if (isKill() || isDead() || isUndef()) {
238        if (NeedComma) OS << ',';
239        if (isKill())  OS << "kill";
240        if (isDead())  OS << "dead";
241        if (isUndef()) {
242          if (isKill() || isDead())
243            OS << ',';
244          OS << "undef";
245        }
246      }
247      OS << '>';
248    }
249    break;
250  case MachineOperand::MO_Immediate:
251    OS << getImm();
252    break;
253  case MachineOperand::MO_FPImmediate:
254    if (getFPImm()->getType()->isFloatTy())
255      OS << getFPImm()->getValueAPF().convertToFloat();
256    else
257      OS << getFPImm()->getValueAPF().convertToDouble();
258    break;
259  case MachineOperand::MO_MachineBasicBlock:
260    OS << "<BB#" << getMBB()->getNumber() << ">";
261    break;
262  case MachineOperand::MO_FrameIndex:
263    OS << "<fi#" << getIndex() << '>';
264    break;
265  case MachineOperand::MO_ConstantPoolIndex:
266    OS << "<cp#" << getIndex();
267    if (getOffset()) OS << "+" << getOffset();
268    OS << '>';
269    break;
270  case MachineOperand::MO_JumpTableIndex:
271    OS << "<jt#" << getIndex() << '>';
272    break;
273  case MachineOperand::MO_GlobalAddress:
274    OS << "<ga:";
275    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
276    if (getOffset()) OS << "+" << getOffset();
277    OS << '>';
278    break;
279  case MachineOperand::MO_ExternalSymbol:
280    OS << "<es:" << getSymbolName();
281    if (getOffset()) OS << "+" << getOffset();
282    OS << '>';
283    break;
284  case MachineOperand::MO_BlockAddress:
285    OS << '<';
286    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
287    OS << '>';
288    break;
289  case MachineOperand::MO_Metadata:
290    OS << '<';
291    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
292    OS << '>';
293    break;
294  default:
295    llvm_unreachable("Unrecognized operand type");
296  }
297
298  if (unsigned TF = getTargetFlags())
299    OS << "[TF=" << TF << ']';
300}
301
302//===----------------------------------------------------------------------===//
303// MachineMemOperand Implementation
304//===----------------------------------------------------------------------===//
305
306MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
307                                     int64_t o, uint64_t s, unsigned int a)
308  : Offset(o), Size(s), V(v),
309    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) {
310  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
311  assert((isLoad() || isStore()) && "Not a load/store!");
312}
313
314/// Profile - Gather unique data for the object.
315///
316void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
317  ID.AddInteger(Offset);
318  ID.AddInteger(Size);
319  ID.AddPointer(V);
320  ID.AddInteger(Flags);
321}
322
323void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
324  // The Value and Offset may differ due to CSE. But the flags and size
325  // should be the same.
326  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
327  assert(MMO->getSize() == getSize() && "Size mismatch!");
328
329  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
330    // Update the alignment value.
331    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
332      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
333    // Also update the base and offset, because the new alignment may
334    // not be applicable with the old ones.
335    V = MMO->getValue();
336    Offset = MMO->getOffset();
337  }
338}
339
340/// getAlignment - Return the minimum known alignment in bytes of the
341/// actual memory reference.
342uint64_t MachineMemOperand::getAlignment() const {
343  return MinAlign(getBaseAlignment(), getOffset());
344}
345
346raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
347  assert((MMO.isLoad() || MMO.isStore()) &&
348         "SV has to be a load, store or both.");
349
350  if (MMO.isVolatile())
351    OS << "Volatile ";
352
353  if (MMO.isLoad())
354    OS << "LD";
355  if (MMO.isStore())
356    OS << "ST";
357  OS << MMO.getSize();
358
359  // Print the address information.
360  OS << "[";
361  if (!MMO.getValue())
362    OS << "<unknown>";
363  else
364    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
365
366  // If the alignment of the memory reference itself differs from the alignment
367  // of the base pointer, print the base alignment explicitly, next to the base
368  // pointer.
369  if (MMO.getBaseAlignment() != MMO.getAlignment())
370    OS << "(align=" << MMO.getBaseAlignment() << ")";
371
372  if (MMO.getOffset() != 0)
373    OS << "+" << MMO.getOffset();
374  OS << "]";
375
376  // Print the alignment of the reference.
377  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
378      MMO.getBaseAlignment() != MMO.getSize())
379    OS << "(align=" << MMO.getAlignment() << ")";
380
381  return OS;
382}
383
384//===----------------------------------------------------------------------===//
385// MachineInstr Implementation
386//===----------------------------------------------------------------------===//
387
388/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
389/// TID NULL and no operands.
390MachineInstr::MachineInstr()
391  : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
392    Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
393  // Make sure that we get added to a machine basicblock
394  LeakDetector::addGarbageObject(this);
395}
396
397void MachineInstr::addImplicitDefUseOperands() {
398  if (TID->ImplicitDefs)
399    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
400      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
401  if (TID->ImplicitUses)
402    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
403      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
404}
405
406/// MachineInstr ctor - This constructor create a MachineInstr and add the
407/// implicit operands. It reserves space for number of operands specified by
408/// TargetInstrDesc or the numOperands if it is not zero. (for
409/// instructions with variable number of operands).
410MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
411  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
412    MemRefs(0), MemRefsEnd(0), Parent(0),
413    debugLoc(DebugLoc::getUnknownLoc()) {
414  if (!NoImp && TID->getImplicitDefs())
415    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
416      NumImplicitOps++;
417  if (!NoImp && TID->getImplicitUses())
418    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
419      NumImplicitOps++;
420  Operands.reserve(NumImplicitOps + TID->getNumOperands());
421  if (!NoImp)
422    addImplicitDefUseOperands();
423  // Make sure that we get added to a machine basicblock
424  LeakDetector::addGarbageObject(this);
425}
426
427/// MachineInstr ctor - As above, but with a DebugLoc.
428MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
429                           bool NoImp)
430  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
431    Parent(0), debugLoc(dl) {
432  if (!NoImp && TID->getImplicitDefs())
433    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
434      NumImplicitOps++;
435  if (!NoImp && TID->getImplicitUses())
436    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
437      NumImplicitOps++;
438  Operands.reserve(NumImplicitOps + TID->getNumOperands());
439  if (!NoImp)
440    addImplicitDefUseOperands();
441  // Make sure that we get added to a machine basicblock
442  LeakDetector::addGarbageObject(this);
443}
444
445/// MachineInstr ctor - Work exactly the same as the ctor two above, except
446/// that the MachineInstr is created and added to the end of the specified
447/// basic block.
448///
449MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
450  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
451    MemRefs(0), MemRefsEnd(0), Parent(0),
452    debugLoc(DebugLoc::getUnknownLoc()) {
453  assert(MBB && "Cannot use inserting ctor with null basic block!");
454  if (TID->ImplicitDefs)
455    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
456      NumImplicitOps++;
457  if (TID->ImplicitUses)
458    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
459      NumImplicitOps++;
460  Operands.reserve(NumImplicitOps + TID->getNumOperands());
461  addImplicitDefUseOperands();
462  // Make sure that we get added to a machine basicblock
463  LeakDetector::addGarbageObject(this);
464  MBB->push_back(this);  // Add instruction to end of basic block!
465}
466
467/// MachineInstr ctor - As above, but with a DebugLoc.
468///
469MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
470                           const TargetInstrDesc &tid)
471  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
472    Parent(0), debugLoc(dl) {
473  assert(MBB && "Cannot use inserting ctor with null basic block!");
474  if (TID->ImplicitDefs)
475    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
476      NumImplicitOps++;
477  if (TID->ImplicitUses)
478    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
479      NumImplicitOps++;
480  Operands.reserve(NumImplicitOps + TID->getNumOperands());
481  addImplicitDefUseOperands();
482  // Make sure that we get added to a machine basicblock
483  LeakDetector::addGarbageObject(this);
484  MBB->push_back(this);  // Add instruction to end of basic block!
485}
486
487/// MachineInstr ctor - Copies MachineInstr arg exactly
488///
489MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
490  : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
491    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
492    Parent(0), debugLoc(MI.getDebugLoc()) {
493  Operands.reserve(MI.getNumOperands());
494
495  // Add operands
496  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
497    addOperand(MI.getOperand(i));
498  NumImplicitOps = MI.NumImplicitOps;
499
500  // Set parent to null.
501  Parent = 0;
502
503  LeakDetector::addGarbageObject(this);
504}
505
506MachineInstr::~MachineInstr() {
507  LeakDetector::removeGarbageObject(this);
508#ifndef NDEBUG
509  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
510    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
511    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
512           "Reg operand def/use list corrupted");
513  }
514#endif
515}
516
517/// getRegInfo - If this instruction is embedded into a MachineFunction,
518/// return the MachineRegisterInfo object for the current function, otherwise
519/// return null.
520MachineRegisterInfo *MachineInstr::getRegInfo() {
521  if (MachineBasicBlock *MBB = getParent())
522    return &MBB->getParent()->getRegInfo();
523  return 0;
524}
525
526/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
527/// this instruction from their respective use lists.  This requires that the
528/// operands already be on their use lists.
529void MachineInstr::RemoveRegOperandsFromUseLists() {
530  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
531    if (Operands[i].isReg())
532      Operands[i].RemoveRegOperandFromRegInfo();
533  }
534}
535
536/// AddRegOperandsToUseLists - Add all of the register operands in
537/// this instruction from their respective use lists.  This requires that the
538/// operands not be on their use lists yet.
539void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
540  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
541    if (Operands[i].isReg())
542      Operands[i].AddRegOperandToRegInfo(&RegInfo);
543  }
544}
545
546
547/// addOperand - Add the specified operand to the instruction.  If it is an
548/// implicit operand, it is added to the end of the operand list.  If it is
549/// an explicit operand it is added at the end of the explicit operand list
550/// (before the first implicit operand).
551void MachineInstr::addOperand(const MachineOperand &Op) {
552  bool isImpReg = Op.isReg() && Op.isImplicit();
553  assert((isImpReg || !OperandsComplete()) &&
554         "Trying to add an operand to a machine instr that is already done!");
555
556  MachineRegisterInfo *RegInfo = getRegInfo();
557
558  // If we are adding the operand to the end of the list, our job is simpler.
559  // This is true most of the time, so this is a reasonable optimization.
560  if (isImpReg || NumImplicitOps == 0) {
561    // We can only do this optimization if we know that the operand list won't
562    // reallocate.
563    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
564      Operands.push_back(Op);
565
566      // Set the parent of the operand.
567      Operands.back().ParentMI = this;
568
569      // If the operand is a register, update the operand's use list.
570      if (Op.isReg()) {
571        Operands.back().AddRegOperandToRegInfo(RegInfo);
572        // If the register operand is flagged as early, mark the operand as such
573        unsigned OpNo = Operands.size() - 1;
574        if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
575          Operands[OpNo].setIsEarlyClobber(true);
576      }
577      return;
578    }
579  }
580
581  // Otherwise, we have to insert a real operand before any implicit ones.
582  unsigned OpNo = Operands.size()-NumImplicitOps;
583
584  // If this instruction isn't embedded into a function, then we don't need to
585  // update any operand lists.
586  if (RegInfo == 0) {
587    // Simple insertion, no reginfo update needed for other register operands.
588    Operands.insert(Operands.begin()+OpNo, Op);
589    Operands[OpNo].ParentMI = this;
590
591    // Do explicitly set the reginfo for this operand though, to ensure the
592    // next/prev fields are properly nulled out.
593    if (Operands[OpNo].isReg()) {
594      Operands[OpNo].AddRegOperandToRegInfo(0);
595      // If the register operand is flagged as early, mark the operand as such
596      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
597        Operands[OpNo].setIsEarlyClobber(true);
598    }
599
600  } else if (Operands.size()+1 <= Operands.capacity()) {
601    // Otherwise, we have to remove register operands from their register use
602    // list, add the operand, then add the register operands back to their use
603    // list.  This also must handle the case when the operand list reallocates
604    // to somewhere else.
605
606    // If insertion of this operand won't cause reallocation of the operand
607    // list, just remove the implicit operands, add the operand, then re-add all
608    // the rest of the operands.
609    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
610      assert(Operands[i].isReg() && "Should only be an implicit reg!");
611      Operands[i].RemoveRegOperandFromRegInfo();
612    }
613
614    // Add the operand.  If it is a register, add it to the reg list.
615    Operands.insert(Operands.begin()+OpNo, Op);
616    Operands[OpNo].ParentMI = this;
617
618    if (Operands[OpNo].isReg()) {
619      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
620      // If the register operand is flagged as early, mark the operand as such
621      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
622        Operands[OpNo].setIsEarlyClobber(true);
623    }
624
625    // Re-add all the implicit ops.
626    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
627      assert(Operands[i].isReg() && "Should only be an implicit reg!");
628      Operands[i].AddRegOperandToRegInfo(RegInfo);
629    }
630  } else {
631    // Otherwise, we will be reallocating the operand list.  Remove all reg
632    // operands from their list, then readd them after the operand list is
633    // reallocated.
634    RemoveRegOperandsFromUseLists();
635
636    Operands.insert(Operands.begin()+OpNo, Op);
637    Operands[OpNo].ParentMI = this;
638
639    // Re-add all the operands.
640    AddRegOperandsToUseLists(*RegInfo);
641
642      // If the register operand is flagged as early, mark the operand as such
643    if (Operands[OpNo].isReg()
644        && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
645      Operands[OpNo].setIsEarlyClobber(true);
646  }
647}
648
649/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
650/// fewer operand than it started with.
651///
652void MachineInstr::RemoveOperand(unsigned OpNo) {
653  assert(OpNo < Operands.size() && "Invalid operand number");
654
655  // Special case removing the last one.
656  if (OpNo == Operands.size()-1) {
657    // If needed, remove from the reg def/use list.
658    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
659      Operands.back().RemoveRegOperandFromRegInfo();
660
661    Operands.pop_back();
662    return;
663  }
664
665  // Otherwise, we are removing an interior operand.  If we have reginfo to
666  // update, remove all operands that will be shifted down from their reg lists,
667  // move everything down, then re-add them.
668  MachineRegisterInfo *RegInfo = getRegInfo();
669  if (RegInfo) {
670    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
671      if (Operands[i].isReg())
672        Operands[i].RemoveRegOperandFromRegInfo();
673    }
674  }
675
676  Operands.erase(Operands.begin()+OpNo);
677
678  if (RegInfo) {
679    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
680      if (Operands[i].isReg())
681        Operands[i].AddRegOperandToRegInfo(RegInfo);
682    }
683  }
684}
685
686/// addMemOperand - Add a MachineMemOperand to the machine instruction.
687/// This function should be used only occasionally. The setMemRefs function
688/// is the primary method for setting up a MachineInstr's MemRefs list.
689void MachineInstr::addMemOperand(MachineFunction &MF,
690                                 MachineMemOperand *MO) {
691  mmo_iterator OldMemRefs = MemRefs;
692  mmo_iterator OldMemRefsEnd = MemRefsEnd;
693
694  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
695  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
696  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
697
698  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
699  NewMemRefs[NewNum - 1] = MO;
700
701  MemRefs = NewMemRefs;
702  MemRefsEnd = NewMemRefsEnd;
703}
704
705bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
706                                 MICheckType Check) const {
707  // If opcodes or number of operands are not the same then the two
708  // instructions are obviously not identical.
709  if (Other->getOpcode() != getOpcode() ||
710      Other->getNumOperands() != getNumOperands())
711    return false;
712
713  // Check operands to make sure they match.
714  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
715    const MachineOperand &MO = getOperand(i);
716    const MachineOperand &OMO = Other->getOperand(i);
717    // Clients may or may not want to ignore defs when testing for equality.
718    // For example, machine CSE pass only cares about finding common
719    // subexpressions, so it's safe to ignore virtual register defs.
720    if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
721      if (Check == IgnoreDefs)
722        continue;
723      // Check == IgnoreVRegDefs
724      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
725          TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
726        if (MO.getReg() != OMO.getReg())
727          return false;
728    } else if (!MO.isIdenticalTo(OMO))
729      return false;
730  }
731  return true;
732}
733
734/// removeFromParent - This method unlinks 'this' from the containing basic
735/// block, and returns it, but does not delete it.
736MachineInstr *MachineInstr::removeFromParent() {
737  assert(getParent() && "Not embedded in a basic block!");
738  getParent()->remove(this);
739  return this;
740}
741
742
743/// eraseFromParent - This method unlinks 'this' from the containing basic
744/// block, and deletes it.
745void MachineInstr::eraseFromParent() {
746  assert(getParent() && "Not embedded in a basic block!");
747  getParent()->erase(this);
748}
749
750
751/// OperandComplete - Return true if it's illegal to add a new operand
752///
753bool MachineInstr::OperandsComplete() const {
754  unsigned short NumOperands = TID->getNumOperands();
755  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
756    return true;  // Broken: we have all the operands of this instruction!
757  return false;
758}
759
760/// getNumExplicitOperands - Returns the number of non-implicit operands.
761///
762unsigned MachineInstr::getNumExplicitOperands() const {
763  unsigned NumOperands = TID->getNumOperands();
764  if (!TID->isVariadic())
765    return NumOperands;
766
767  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
768    const MachineOperand &MO = getOperand(i);
769    if (!MO.isReg() || !MO.isImplicit())
770      NumOperands++;
771  }
772  return NumOperands;
773}
774
775
776/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
777/// the specific register or -1 if it is not found. It further tightens
778/// the search criteria to a use that kills the register if isKill is true.
779int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
780                                          const TargetRegisterInfo *TRI) const {
781  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
782    const MachineOperand &MO = getOperand(i);
783    if (!MO.isReg() || !MO.isUse())
784      continue;
785    unsigned MOReg = MO.getReg();
786    if (!MOReg)
787      continue;
788    if (MOReg == Reg ||
789        (TRI &&
790         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
791         TargetRegisterInfo::isPhysicalRegister(Reg) &&
792         TRI->isSubRegister(MOReg, Reg)))
793      if (!isKill || MO.isKill())
794        return i;
795  }
796  return -1;
797}
798
799/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
800/// the specified register or -1 if it is not found. If isDead is true, defs
801/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
802/// also checks if there is a def of a super-register.
803int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
804                                          const TargetRegisterInfo *TRI) const {
805  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
806    const MachineOperand &MO = getOperand(i);
807    if (!MO.isReg() || !MO.isDef())
808      continue;
809    unsigned MOReg = MO.getReg();
810    if (MOReg == Reg ||
811        (TRI &&
812         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
813         TargetRegisterInfo::isPhysicalRegister(Reg) &&
814         TRI->isSubRegister(MOReg, Reg)))
815      if (!isDead || MO.isDead())
816        return i;
817  }
818  return -1;
819}
820
821/// findFirstPredOperandIdx() - Find the index of the first operand in the
822/// operand list that is used to represent the predicate. It returns -1 if
823/// none is found.
824int MachineInstr::findFirstPredOperandIdx() const {
825  const TargetInstrDesc &TID = getDesc();
826  if (TID.isPredicable()) {
827    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
828      if (TID.OpInfo[i].isPredicate())
829        return i;
830  }
831
832  return -1;
833}
834
835/// isRegTiedToUseOperand - Given the index of a register def operand,
836/// check if the register def is tied to a source operand, due to either
837/// two-address elimination or inline assembly constraints. Returns the
838/// first tied use operand index by reference is UseOpIdx is not null.
839bool MachineInstr::
840isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
841  if (isInlineAsm()) {
842    assert(DefOpIdx >= 2);
843    const MachineOperand &MO = getOperand(DefOpIdx);
844    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
845      return false;
846    // Determine the actual operand index that corresponds to this index.
847    unsigned DefNo = 0;
848    unsigned DefPart = 0;
849    for (unsigned i = 1, e = getNumOperands(); i < e; ) {
850      const MachineOperand &FMO = getOperand(i);
851      // After the normal asm operands there may be additional imp-def regs.
852      if (!FMO.isImm())
853        return false;
854      // Skip over this def.
855      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
856      unsigned PrevDef = i + 1;
857      i = PrevDef + NumOps;
858      if (i > DefOpIdx) {
859        DefPart = DefOpIdx - PrevDef;
860        break;
861      }
862      ++DefNo;
863    }
864    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
865      const MachineOperand &FMO = getOperand(i);
866      if (!FMO.isImm())
867        continue;
868      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
869        continue;
870      unsigned Idx;
871      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
872          Idx == DefNo) {
873        if (UseOpIdx)
874          *UseOpIdx = (unsigned)i + 1 + DefPart;
875        return true;
876      }
877    }
878    return false;
879  }
880
881  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
882  const TargetInstrDesc &TID = getDesc();
883  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
884    const MachineOperand &MO = getOperand(i);
885    if (MO.isReg() && MO.isUse() &&
886        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
887      if (UseOpIdx)
888        *UseOpIdx = (unsigned)i;
889      return true;
890    }
891  }
892  return false;
893}
894
895/// isRegTiedToDefOperand - Return true if the operand of the specified index
896/// is a register use and it is tied to an def operand. It also returns the def
897/// operand index by reference.
898bool MachineInstr::
899isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
900  if (isInlineAsm()) {
901    const MachineOperand &MO = getOperand(UseOpIdx);
902    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
903      return false;
904
905    // Find the flag operand corresponding to UseOpIdx
906    unsigned FlagIdx, NumOps=0;
907    for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
908      const MachineOperand &UFMO = getOperand(FlagIdx);
909      // After the normal asm operands there may be additional imp-def regs.
910      if (!UFMO.isImm())
911        return false;
912      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
913      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
914      if (UseOpIdx < FlagIdx+NumOps+1)
915        break;
916    }
917    if (FlagIdx >= UseOpIdx)
918      return false;
919    const MachineOperand &UFMO = getOperand(FlagIdx);
920    unsigned DefNo;
921    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
922      if (!DefOpIdx)
923        return true;
924
925      unsigned DefIdx = 1;
926      // Remember to adjust the index. First operand is asm string, then there
927      // is a flag for each.
928      while (DefNo) {
929        const MachineOperand &FMO = getOperand(DefIdx);
930        assert(FMO.isImm());
931        // Skip over this def.
932        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
933        --DefNo;
934      }
935      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
936      return true;
937    }
938    return false;
939  }
940
941  const TargetInstrDesc &TID = getDesc();
942  if (UseOpIdx >= TID.getNumOperands())
943    return false;
944  const MachineOperand &MO = getOperand(UseOpIdx);
945  if (!MO.isReg() || !MO.isUse())
946    return false;
947  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
948  if (DefIdx == -1)
949    return false;
950  if (DefOpIdx)
951    *DefOpIdx = (unsigned)DefIdx;
952  return true;
953}
954
955/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
956///
957void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
958  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
959    const MachineOperand &MO = MI->getOperand(i);
960    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
961      continue;
962    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
963      MachineOperand &MOp = getOperand(j);
964      if (!MOp.isIdenticalTo(MO))
965        continue;
966      if (MO.isKill())
967        MOp.setIsKill();
968      else
969        MOp.setIsDead();
970      break;
971    }
972  }
973}
974
975/// copyPredicates - Copies predicate operand(s) from MI.
976void MachineInstr::copyPredicates(const MachineInstr *MI) {
977  const TargetInstrDesc &TID = MI->getDesc();
978  if (!TID.isPredicable())
979    return;
980  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
981    if (TID.OpInfo[i].isPredicate()) {
982      // Predicated operands must be last operands.
983      addOperand(MI->getOperand(i));
984    }
985  }
986}
987
988/// isSafeToMove - Return true if it is safe to move this instruction. If
989/// SawStore is set to true, it means that there is a store (or call) between
990/// the instruction's location and its intended destination.
991bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
992                                AliasAnalysis *AA,
993                                bool &SawStore) const {
994  // Ignore stuff that we obviously can't move.
995  if (TID->mayStore() || TID->isCall()) {
996    SawStore = true;
997    return false;
998  }
999  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
1000    return false;
1001
1002  // See if this instruction does a load.  If so, we have to guarantee that the
1003  // loaded value doesn't change between the load and the its intended
1004  // destination. The check for isInvariantLoad gives the targe the chance to
1005  // classify the load as always returning a constant, e.g. a constant pool
1006  // load.
1007  if (TID->mayLoad() && !isInvariantLoad(AA))
1008    // Otherwise, this is a real load.  If there is a store between the load and
1009    // end of block, or if the load is volatile, we can't move it.
1010    return !SawStore && !hasVolatileMemoryRef();
1011
1012  return true;
1013}
1014
1015/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1016/// instruction which defined the specified register instead of copying it.
1017bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1018                                 AliasAnalysis *AA,
1019                                 unsigned DstReg) const {
1020  bool SawStore = false;
1021  if (!TII->isTriviallyReMaterializable(this, AA) ||
1022      !isSafeToMove(TII, AA, SawStore))
1023    return false;
1024  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1025    const MachineOperand &MO = getOperand(i);
1026    if (!MO.isReg())
1027      continue;
1028    // FIXME: For now, do not remat any instruction with register operands.
1029    // Later on, we can loosen the restriction is the register operands have
1030    // not been modified between the def and use. Note, this is different from
1031    // MachineSink because the code is no longer in two-address form (at least
1032    // partially).
1033    if (MO.isUse())
1034      return false;
1035    else if (!MO.isDead() && MO.getReg() != DstReg)
1036      return false;
1037  }
1038  return true;
1039}
1040
1041/// hasVolatileMemoryRef - Return true if this instruction may have a
1042/// volatile memory reference, or if the information describing the
1043/// memory reference is not available. Return false if it is known to
1044/// have no volatile memory references.
1045bool MachineInstr::hasVolatileMemoryRef() const {
1046  // An instruction known never to access memory won't have a volatile access.
1047  if (!TID->mayStore() &&
1048      !TID->mayLoad() &&
1049      !TID->isCall() &&
1050      !TID->hasUnmodeledSideEffects())
1051    return false;
1052
1053  // Otherwise, if the instruction has no memory reference information,
1054  // conservatively assume it wasn't preserved.
1055  if (memoperands_empty())
1056    return true;
1057
1058  // Check the memory reference information for volatile references.
1059  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1060    if ((*I)->isVolatile())
1061      return true;
1062
1063  return false;
1064}
1065
1066/// isInvariantLoad - Return true if this instruction is loading from a
1067/// location whose value is invariant across the function.  For example,
1068/// loading a value from the constant pool or from the argument area
1069/// of a function if it does not change.  This should only return true of
1070/// *all* loads the instruction does are invariant (if it does multiple loads).
1071bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1072  // If the instruction doesn't load at all, it isn't an invariant load.
1073  if (!TID->mayLoad())
1074    return false;
1075
1076  // If the instruction has lost its memoperands, conservatively assume that
1077  // it may not be an invariant load.
1078  if (memoperands_empty())
1079    return false;
1080
1081  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1082
1083  for (mmo_iterator I = memoperands_begin(),
1084       E = memoperands_end(); I != E; ++I) {
1085    if ((*I)->isVolatile()) return false;
1086    if ((*I)->isStore()) return false;
1087
1088    if (const Value *V = (*I)->getValue()) {
1089      // A load from a constant PseudoSourceValue is invariant.
1090      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1091        if (PSV->isConstant(MFI))
1092          continue;
1093      // If we have an AliasAnalysis, ask it whether the memory is constant.
1094      if (AA && AA->pointsToConstantMemory(V))
1095        continue;
1096    }
1097
1098    // Otherwise assume conservatively.
1099    return false;
1100  }
1101
1102  // Everything checks out.
1103  return true;
1104}
1105
1106/// isConstantValuePHI - If the specified instruction is a PHI that always
1107/// merges together the same virtual register, return the register, otherwise
1108/// return 0.
1109unsigned MachineInstr::isConstantValuePHI() const {
1110  if (!isPHI())
1111    return 0;
1112  assert(getNumOperands() >= 3 &&
1113         "It's illegal to have a PHI without source operands");
1114
1115  unsigned Reg = getOperand(1).getReg();
1116  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1117    if (getOperand(i).getReg() != Reg)
1118      return 0;
1119  return Reg;
1120}
1121
1122void MachineInstr::dump() const {
1123  dbgs() << "  " << *this;
1124}
1125
1126void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1127  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1128  const MachineFunction *MF = 0;
1129  if (const MachineBasicBlock *MBB = getParent()) {
1130    MF = MBB->getParent();
1131    if (!TM && MF)
1132      TM = &MF->getTarget();
1133  }
1134
1135  // Print explicitly defined operands on the left of an assignment syntax.
1136  unsigned StartOp = 0, e = getNumOperands();
1137  for (; StartOp < e && getOperand(StartOp).isReg() &&
1138         getOperand(StartOp).isDef() &&
1139         !getOperand(StartOp).isImplicit();
1140       ++StartOp) {
1141    if (StartOp != 0) OS << ", ";
1142    getOperand(StartOp).print(OS, TM);
1143  }
1144
1145  if (StartOp != 0)
1146    OS << " = ";
1147
1148  // Print the opcode name.
1149  OS << getDesc().getName();
1150
1151  // Print the rest of the operands.
1152  bool OmittedAnyCallClobbers = false;
1153  bool FirstOp = true;
1154  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1155    const MachineOperand &MO = getOperand(i);
1156
1157    // Omit call-clobbered registers which aren't used anywhere. This makes
1158    // call instructions much less noisy on targets where calls clobber lots
1159    // of registers. Don't rely on MO.isDead() because we may be called before
1160    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1161    if (MF && getDesc().isCall() &&
1162        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1163      unsigned Reg = MO.getReg();
1164      if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1165        const MachineRegisterInfo &MRI = MF->getRegInfo();
1166        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1167          bool HasAliasLive = false;
1168          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1169               unsigned AliasReg = *Alias; ++Alias)
1170            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1171              HasAliasLive = true;
1172              break;
1173            }
1174          if (!HasAliasLive) {
1175            OmittedAnyCallClobbers = true;
1176            continue;
1177          }
1178        }
1179      }
1180    }
1181
1182    if (FirstOp) FirstOp = false; else OS << ",";
1183    OS << " ";
1184    if (i < getDesc().NumOperands) {
1185      const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1186      if (TOI.isPredicate())
1187        OS << "pred:";
1188      if (TOI.isOptionalDef())
1189        OS << "opt:";
1190    }
1191    MO.print(OS, TM);
1192  }
1193
1194  // Briefly indicate whether any call clobbers were omitted.
1195  if (OmittedAnyCallClobbers) {
1196    if (!FirstOp) OS << ",";
1197    OS << " ...";
1198  }
1199
1200  bool HaveSemi = false;
1201  if (!memoperands_empty()) {
1202    if (!HaveSemi) OS << ";"; HaveSemi = true;
1203
1204    OS << " mem:";
1205    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1206         i != e; ++i) {
1207      OS << **i;
1208      if (next(i) != e)
1209        OS << " ";
1210    }
1211  }
1212
1213  if (!debugLoc.isUnknown() && MF) {
1214    if (!HaveSemi) OS << ";";
1215
1216    // TODO: print InlinedAtLoc information
1217
1218    DILocation DLT = MF->getDILocation(debugLoc);
1219    DIScope Scope = DLT.getScope();
1220    OS << " dbg:";
1221    // Omit the directory, since it's usually long and uninteresting.
1222    if (!Scope.isNull())
1223      OS << Scope.getFilename();
1224    else
1225      OS << "<unknown>";
1226    OS << ':' << DLT.getLineNumber();
1227    if (DLT.getColumnNumber() != 0)
1228      OS << ':' << DLT.getColumnNumber();
1229  }
1230
1231  OS << "\n";
1232}
1233
1234bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1235                                     const TargetRegisterInfo *RegInfo,
1236                                     bool AddIfNotFound) {
1237  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1238  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1239  bool Found = false;
1240  SmallVector<unsigned,4> DeadOps;
1241  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1242    MachineOperand &MO = getOperand(i);
1243    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1244      continue;
1245    unsigned Reg = MO.getReg();
1246    if (!Reg)
1247      continue;
1248
1249    if (Reg == IncomingReg) {
1250      if (!Found) {
1251        if (MO.isKill())
1252          // The register is already marked kill.
1253          return true;
1254        if (isPhysReg && isRegTiedToDefOperand(i))
1255          // Two-address uses of physregs must not be marked kill.
1256          return true;
1257        MO.setIsKill();
1258        Found = true;
1259      }
1260    } else if (hasAliases && MO.isKill() &&
1261               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1262      // A super-register kill already exists.
1263      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1264        return true;
1265      if (RegInfo->isSubRegister(IncomingReg, Reg))
1266        DeadOps.push_back(i);
1267    }
1268  }
1269
1270  // Trim unneeded kill operands.
1271  while (!DeadOps.empty()) {
1272    unsigned OpIdx = DeadOps.back();
1273    if (getOperand(OpIdx).isImplicit())
1274      RemoveOperand(OpIdx);
1275    else
1276      getOperand(OpIdx).setIsKill(false);
1277    DeadOps.pop_back();
1278  }
1279
1280  // If not found, this means an alias of one of the operands is killed. Add a
1281  // new implicit operand if required.
1282  if (!Found && AddIfNotFound) {
1283    addOperand(MachineOperand::CreateReg(IncomingReg,
1284                                         false /*IsDef*/,
1285                                         true  /*IsImp*/,
1286                                         true  /*IsKill*/));
1287    return true;
1288  }
1289  return Found;
1290}
1291
1292bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1293                                   const TargetRegisterInfo *RegInfo,
1294                                   bool AddIfNotFound) {
1295  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1296  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1297  bool Found = false;
1298  SmallVector<unsigned,4> DeadOps;
1299  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1300    MachineOperand &MO = getOperand(i);
1301    if (!MO.isReg() || !MO.isDef())
1302      continue;
1303    unsigned Reg = MO.getReg();
1304    if (!Reg)
1305      continue;
1306
1307    if (Reg == IncomingReg) {
1308      if (!Found) {
1309        if (MO.isDead())
1310          // The register is already marked dead.
1311          return true;
1312        MO.setIsDead();
1313        Found = true;
1314      }
1315    } else if (hasAliases && MO.isDead() &&
1316               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1317      // There exists a super-register that's marked dead.
1318      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1319        return true;
1320      if (RegInfo->getSubRegisters(IncomingReg) &&
1321          RegInfo->getSuperRegisters(Reg) &&
1322          RegInfo->isSubRegister(IncomingReg, Reg))
1323        DeadOps.push_back(i);
1324    }
1325  }
1326
1327  // Trim unneeded dead operands.
1328  while (!DeadOps.empty()) {
1329    unsigned OpIdx = DeadOps.back();
1330    if (getOperand(OpIdx).isImplicit())
1331      RemoveOperand(OpIdx);
1332    else
1333      getOperand(OpIdx).setIsDead(false);
1334    DeadOps.pop_back();
1335  }
1336
1337  // If not found, this means an alias of one of the operands is dead. Add a
1338  // new implicit operand if required.
1339  if (Found || !AddIfNotFound)
1340    return Found;
1341
1342  addOperand(MachineOperand::CreateReg(IncomingReg,
1343                                       true  /*IsDef*/,
1344                                       true  /*IsImp*/,
1345                                       false /*IsKill*/,
1346                                       true  /*IsDead*/));
1347  return true;
1348}
1349
1350void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1351                                      const TargetRegisterInfo *RegInfo) {
1352  MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1353  if (!MO || MO->getSubReg())
1354    addOperand(MachineOperand::CreateReg(IncomingReg,
1355                                         true  /*IsDef*/,
1356                                         true  /*IsImp*/));
1357}
1358
1359unsigned
1360MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1361  unsigned Hash = MI->getOpcode() * 37;
1362  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1363    const MachineOperand &MO = MI->getOperand(i);
1364    uint64_t Key = (uint64_t)MO.getType() << 32;
1365    switch (MO.getType()) {
1366      default: break;
1367      case MachineOperand::MO_Register:
1368        if (MO.isDef() && MO.getReg() &&
1369            TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1370          continue;  // Skip virtual register defs.
1371        Key |= MO.getReg();
1372        break;
1373      case MachineOperand::MO_Immediate:
1374        Key |= MO.getImm();
1375        break;
1376      case MachineOperand::MO_FrameIndex:
1377      case MachineOperand::MO_ConstantPoolIndex:
1378      case MachineOperand::MO_JumpTableIndex:
1379        Key |= MO.getIndex();
1380        break;
1381      case MachineOperand::MO_MachineBasicBlock:
1382        Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1383        break;
1384      case MachineOperand::MO_GlobalAddress:
1385        Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1386        break;
1387      case MachineOperand::MO_BlockAddress:
1388        Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1389        break;
1390    }
1391    Key += ~(Key << 32);
1392    Key ^= (Key >> 22);
1393    Key += ~(Key << 13);
1394    Key ^= (Key >> 8);
1395    Key += (Key << 3);
1396    Key ^= (Key >> 15);
1397    Key += ~(Key << 27);
1398    Key ^= (Key >> 31);
1399    Hash = (unsigned)Key + Hash * 37;
1400  }
1401  return Hash;
1402}
1403