MachineInstr.cpp revision c6952b35a44a5a367f43a7b90d5cff395a32a2d5
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Metadata.h"
19#include "llvm/Type.h"
20#include "llvm/Value.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetInstrDesc.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/LeakDetector.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/FoldingSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43// MachineOperand Implementation
44//===----------------------------------------------------------------------===//
45
46/// AddRegOperandToRegInfo - Add this register operand to the specified
47/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
48/// explicitly nulled out.
49void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50  assert(isReg() && "Can only add reg operand to use lists");
51
52  // If the reginfo pointer is null, just explicitly null out or next/prev
53  // pointers, to ensure they are not garbage.
54  if (RegInfo == 0) {
55    Contents.Reg.Prev = 0;
56    Contents.Reg.Next = 0;
57    return;
58  }
59
60  // Otherwise, add this operand to the head of the registers use/def list.
61  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
62
63  // For SSA values, we prefer to keep the definition at the start of the list.
64  // we do this by skipping over the definition if it is at the head of the
65  // list.
66  if (*Head && (*Head)->isDef())
67    Head = &(*Head)->Contents.Reg.Next;
68
69  Contents.Reg.Next = *Head;
70  if (Contents.Reg.Next) {
71    assert(getReg() == Contents.Reg.Next->getReg() &&
72           "Different regs on the same list!");
73    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
74  }
75
76  Contents.Reg.Prev = Head;
77  *Head = this;
78}
79
80/// RemoveRegOperandFromRegInfo - Remove this register operand from the
81/// MachineRegisterInfo it is linked with.
82void MachineOperand::RemoveRegOperandFromRegInfo() {
83  assert(isOnRegUseList() && "Reg operand is not on a use list");
84  // Unlink this from the doubly linked list of operands.
85  MachineOperand *NextOp = Contents.Reg.Next;
86  *Contents.Reg.Prev = NextOp;
87  if (NextOp) {
88    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
90  }
91  Contents.Reg.Prev = 0;
92  Contents.Reg.Next = 0;
93}
94
95void MachineOperand::setReg(unsigned Reg) {
96  if (getReg() == Reg) return; // No change.
97
98  // Otherwise, we have to change the register.  If this operand is embedded
99  // into a machine function, we need to update the old and new register's
100  // use/def lists.
101  if (MachineInstr *MI = getParent())
102    if (MachineBasicBlock *MBB = MI->getParent())
103      if (MachineFunction *MF = MBB->getParent()) {
104        RemoveRegOperandFromRegInfo();
105        Contents.Reg.RegNo = Reg;
106        AddRegOperandToRegInfo(&MF->getRegInfo());
107        return;
108      }
109
110  // Otherwise, just change the register, no problem.  :)
111  Contents.Reg.RegNo = Reg;
112}
113
114void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
115                                  const TargetRegisterInfo &TRI) {
116  assert(TargetRegisterInfo::isVirtualRegister(Reg));
117  if (SubIdx && getSubReg())
118    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
119  setReg(Reg);
120  if (SubIdx)
121    setSubReg(SubIdx);
122}
123
124void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
125  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
126  if (getSubReg()) {
127    Reg = TRI.getSubReg(Reg, getSubReg());
128    assert(Reg && "Invalid SubReg for physical register");
129    setSubReg(0);
130  }
131  setReg(Reg);
132}
133
134/// ChangeToImmediate - Replace this operand with a new immediate operand of
135/// the specified value.  If an operand is known to be an immediate already,
136/// the setImm method should be used.
137void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
138  // If this operand is currently a register operand, and if this is in a
139  // function, deregister the operand from the register's use/def list.
140  if (isReg() && getParent() && getParent()->getParent() &&
141      getParent()->getParent()->getParent())
142    RemoveRegOperandFromRegInfo();
143
144  OpKind = MO_Immediate;
145  Contents.ImmVal = ImmVal;
146}
147
148/// ChangeToRegister - Replace this operand with a new register operand of
149/// the specified value.  If an operand is known to be an register already,
150/// the setReg method should be used.
151void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
152                                      bool isKill, bool isDead, bool isUndef,
153                                      bool isDebug) {
154  // If this operand is already a register operand, use setReg to update the
155  // register's use/def lists.
156  if (isReg()) {
157    assert(!isEarlyClobber());
158    setReg(Reg);
159  } else {
160    // Otherwise, change this to a register and set the reg#.
161    OpKind = MO_Register;
162    Contents.Reg.RegNo = Reg;
163
164    // If this operand is embedded in a function, add the operand to the
165    // register's use/def list.
166    if (MachineInstr *MI = getParent())
167      if (MachineBasicBlock *MBB = MI->getParent())
168        if (MachineFunction *MF = MBB->getParent())
169          AddRegOperandToRegInfo(&MF->getRegInfo());
170  }
171
172  IsDef = isDef;
173  IsImp = isImp;
174  IsKill = isKill;
175  IsDead = isDead;
176  IsUndef = isUndef;
177  IsEarlyClobber = false;
178  IsDebug = isDebug;
179  SubReg = 0;
180}
181
182/// isIdenticalTo - Return true if this operand is identical to the specified
183/// operand.
184bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
185  if (getType() != Other.getType() ||
186      getTargetFlags() != Other.getTargetFlags())
187    return false;
188
189  switch (getType()) {
190  default: llvm_unreachable("Unrecognized operand type");
191  case MachineOperand::MO_Register:
192    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
193           getSubReg() == Other.getSubReg();
194  case MachineOperand::MO_Immediate:
195    return getImm() == Other.getImm();
196  case MachineOperand::MO_FPImmediate:
197    return getFPImm() == Other.getFPImm();
198  case MachineOperand::MO_MachineBasicBlock:
199    return getMBB() == Other.getMBB();
200  case MachineOperand::MO_FrameIndex:
201    return getIndex() == Other.getIndex();
202  case MachineOperand::MO_ConstantPoolIndex:
203    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
204  case MachineOperand::MO_JumpTableIndex:
205    return getIndex() == Other.getIndex();
206  case MachineOperand::MO_GlobalAddress:
207    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
208  case MachineOperand::MO_ExternalSymbol:
209    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
210           getOffset() == Other.getOffset();
211  case MachineOperand::MO_BlockAddress:
212    return getBlockAddress() == Other.getBlockAddress();
213  case MachineOperand::MO_MCSymbol:
214    return getMCSymbol() == Other.getMCSymbol();
215  case MachineOperand::MO_Metadata:
216    return getMetadata() == Other.getMetadata();
217  }
218}
219
220/// print - Print the specified machine operand.
221///
222void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
223  // If the instruction is embedded into a basic block, we can find the
224  // target info for the instruction.
225  if (!TM)
226    if (const MachineInstr *MI = getParent())
227      if (const MachineBasicBlock *MBB = MI->getParent())
228        if (const MachineFunction *MF = MBB->getParent())
229          TM = &MF->getTarget();
230
231  switch (getType()) {
232  case MachineOperand::MO_Register:
233    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
234      OS << "%reg" << getReg();
235    } else {
236      if (TM)
237        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
238      else
239        OS << "%physreg" << getReg();
240    }
241
242    if (getSubReg() != 0) {
243      if (TM)
244        OS << ':' << TM->getRegisterInfo()->getSubRegIndexName(getSubReg());
245      else
246        OS << ':' << getSubReg();
247    }
248
249    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
250        isEarlyClobber()) {
251      OS << '<';
252      bool NeedComma = false;
253      if (isDef()) {
254        if (NeedComma) OS << ',';
255        if (isEarlyClobber())
256          OS << "earlyclobber,";
257        if (isImplicit())
258          OS << "imp-";
259        OS << "def";
260        NeedComma = true;
261      } else if (isImplicit()) {
262          OS << "imp-use";
263          NeedComma = true;
264      }
265
266      if (isKill() || isDead() || isUndef()) {
267        if (NeedComma) OS << ',';
268        if (isKill())  OS << "kill";
269        if (isDead())  OS << "dead";
270        if (isUndef()) {
271          if (isKill() || isDead())
272            OS << ',';
273          OS << "undef";
274        }
275      }
276      OS << '>';
277    }
278    break;
279  case MachineOperand::MO_Immediate:
280    OS << getImm();
281    break;
282  case MachineOperand::MO_FPImmediate:
283    if (getFPImm()->getType()->isFloatTy())
284      OS << getFPImm()->getValueAPF().convertToFloat();
285    else
286      OS << getFPImm()->getValueAPF().convertToDouble();
287    break;
288  case MachineOperand::MO_MachineBasicBlock:
289    OS << "<BB#" << getMBB()->getNumber() << ">";
290    break;
291  case MachineOperand::MO_FrameIndex:
292    OS << "<fi#" << getIndex() << '>';
293    break;
294  case MachineOperand::MO_ConstantPoolIndex:
295    OS << "<cp#" << getIndex();
296    if (getOffset()) OS << "+" << getOffset();
297    OS << '>';
298    break;
299  case MachineOperand::MO_JumpTableIndex:
300    OS << "<jt#" << getIndex() << '>';
301    break;
302  case MachineOperand::MO_GlobalAddress:
303    OS << "<ga:";
304    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
305    if (getOffset()) OS << "+" << getOffset();
306    OS << '>';
307    break;
308  case MachineOperand::MO_ExternalSymbol:
309    OS << "<es:" << getSymbolName();
310    if (getOffset()) OS << "+" << getOffset();
311    OS << '>';
312    break;
313  case MachineOperand::MO_BlockAddress:
314    OS << '<';
315    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
316    OS << '>';
317    break;
318  case MachineOperand::MO_Metadata:
319    OS << '<';
320    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
321    OS << '>';
322    break;
323  case MachineOperand::MO_MCSymbol:
324    OS << "<MCSym=" << *getMCSymbol() << '>';
325    break;
326  default:
327    llvm_unreachable("Unrecognized operand type");
328  }
329
330  if (unsigned TF = getTargetFlags())
331    OS << "[TF=" << TF << ']';
332}
333
334//===----------------------------------------------------------------------===//
335// MachineMemOperand Implementation
336//===----------------------------------------------------------------------===//
337
338MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
339                                     uint64_t s, unsigned int a)
340  : PtrInfo(ptrinfo), Size(s),
341    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) {
342  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
343         "invalid pointer value");
344  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
345  assert((isLoad() || isStore()) && "Not a load/store!");
346}
347
348/// Profile - Gather unique data for the object.
349///
350void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
351  ID.AddInteger(getOffset());
352  ID.AddInteger(Size);
353  ID.AddPointer(getValue());
354  ID.AddInteger(Flags);
355}
356
357void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
358  // The Value and Offset may differ due to CSE. But the flags and size
359  // should be the same.
360  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
361  assert(MMO->getSize() == getSize() && "Size mismatch!");
362
363  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
364    // Update the alignment value.
365    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
366      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
367    // Also update the base and offset, because the new alignment may
368    // not be applicable with the old ones.
369    PtrInfo = MMO->PtrInfo;
370  }
371}
372
373/// getAlignment - Return the minimum known alignment in bytes of the
374/// actual memory reference.
375uint64_t MachineMemOperand::getAlignment() const {
376  return MinAlign(getBaseAlignment(), getOffset());
377}
378
379raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
380  assert((MMO.isLoad() || MMO.isStore()) &&
381         "SV has to be a load, store or both.");
382
383  if (MMO.isVolatile())
384    OS << "Volatile ";
385
386  if (MMO.isLoad())
387    OS << "LD";
388  if (MMO.isStore())
389    OS << "ST";
390  OS << MMO.getSize();
391
392  // Print the address information.
393  OS << "[";
394  if (!MMO.getValue())
395    OS << "<unknown>";
396  else
397    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
398
399  // If the alignment of the memory reference itself differs from the alignment
400  // of the base pointer, print the base alignment explicitly, next to the base
401  // pointer.
402  if (MMO.getBaseAlignment() != MMO.getAlignment())
403    OS << "(align=" << MMO.getBaseAlignment() << ")";
404
405  if (MMO.getOffset() != 0)
406    OS << "+" << MMO.getOffset();
407  OS << "]";
408
409  // Print the alignment of the reference.
410  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
411      MMO.getBaseAlignment() != MMO.getSize())
412    OS << "(align=" << MMO.getAlignment() << ")";
413
414  return OS;
415}
416
417//===----------------------------------------------------------------------===//
418// MachineInstr Implementation
419//===----------------------------------------------------------------------===//
420
421/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
422/// TID NULL and no operands.
423MachineInstr::MachineInstr()
424  : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
425    Parent(0) {
426  // Make sure that we get added to a machine basicblock
427  LeakDetector::addGarbageObject(this);
428}
429
430void MachineInstr::addImplicitDefUseOperands() {
431  if (TID->ImplicitDefs)
432    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
433      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
434  if (TID->ImplicitUses)
435    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
436      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
437}
438
439/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
440/// implicit operands. It reserves space for the number of operands specified by
441/// the TargetInstrDesc.
442MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
443  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
444    MemRefs(0), MemRefsEnd(0), Parent(0) {
445  if (!NoImp)
446    NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
447  Operands.reserve(NumImplicitOps + TID->getNumOperands());
448  if (!NoImp)
449    addImplicitDefUseOperands();
450  // Make sure that we get added to a machine basicblock
451  LeakDetector::addGarbageObject(this);
452}
453
454/// MachineInstr ctor - As above, but with a DebugLoc.
455MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
456                           bool NoImp)
457  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
458    Parent(0), debugLoc(dl) {
459  if (!NoImp)
460    NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
461  Operands.reserve(NumImplicitOps + TID->getNumOperands());
462  if (!NoImp)
463    addImplicitDefUseOperands();
464  // Make sure that we get added to a machine basicblock
465  LeakDetector::addGarbageObject(this);
466}
467
468/// MachineInstr ctor - Work exactly the same as the ctor two above, except
469/// that the MachineInstr is created and added to the end of the specified
470/// basic block.
471MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
472  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
473    MemRefs(0), MemRefsEnd(0), Parent(0) {
474  assert(MBB && "Cannot use inserting ctor with null basic block!");
475  NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
476  Operands.reserve(NumImplicitOps + TID->getNumOperands());
477  addImplicitDefUseOperands();
478  // Make sure that we get added to a machine basicblock
479  LeakDetector::addGarbageObject(this);
480  MBB->push_back(this);  // Add instruction to end of basic block!
481}
482
483/// MachineInstr ctor - As above, but with a DebugLoc.
484///
485MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
486                           const TargetInstrDesc &tid)
487  : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
488    Parent(0), debugLoc(dl) {
489  assert(MBB && "Cannot use inserting ctor with null basic block!");
490  NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
491  Operands.reserve(NumImplicitOps + TID->getNumOperands());
492  addImplicitDefUseOperands();
493  // Make sure that we get added to a machine basicblock
494  LeakDetector::addGarbageObject(this);
495  MBB->push_back(this);  // Add instruction to end of basic block!
496}
497
498/// MachineInstr ctor - Copies MachineInstr arg exactly
499///
500MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
501  : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
502    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
503    Parent(0), debugLoc(MI.getDebugLoc()) {
504  Operands.reserve(MI.getNumOperands());
505
506  // Add operands
507  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
508    addOperand(MI.getOperand(i));
509  NumImplicitOps = MI.NumImplicitOps;
510
511  // Set parent to null.
512  Parent = 0;
513
514  LeakDetector::addGarbageObject(this);
515}
516
517MachineInstr::~MachineInstr() {
518  LeakDetector::removeGarbageObject(this);
519#ifndef NDEBUG
520  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
521    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
522    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
523           "Reg operand def/use list corrupted");
524  }
525#endif
526}
527
528/// getRegInfo - If this instruction is embedded into a MachineFunction,
529/// return the MachineRegisterInfo object for the current function, otherwise
530/// return null.
531MachineRegisterInfo *MachineInstr::getRegInfo() {
532  if (MachineBasicBlock *MBB = getParent())
533    return &MBB->getParent()->getRegInfo();
534  return 0;
535}
536
537/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
538/// this instruction from their respective use lists.  This requires that the
539/// operands already be on their use lists.
540void MachineInstr::RemoveRegOperandsFromUseLists() {
541  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
542    if (Operands[i].isReg())
543      Operands[i].RemoveRegOperandFromRegInfo();
544  }
545}
546
547/// AddRegOperandsToUseLists - Add all of the register operands in
548/// this instruction from their respective use lists.  This requires that the
549/// operands not be on their use lists yet.
550void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
551  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
552    if (Operands[i].isReg())
553      Operands[i].AddRegOperandToRegInfo(&RegInfo);
554  }
555}
556
557
558/// addOperand - Add the specified operand to the instruction.  If it is an
559/// implicit operand, it is added to the end of the operand list.  If it is
560/// an explicit operand it is added at the end of the explicit operand list
561/// (before the first implicit operand).
562void MachineInstr::addOperand(const MachineOperand &Op) {
563  bool isImpReg = Op.isReg() && Op.isImplicit();
564  assert((isImpReg || !OperandsComplete()) &&
565         "Trying to add an operand to a machine instr that is already done!");
566
567  MachineRegisterInfo *RegInfo = getRegInfo();
568
569  // If we are adding the operand to the end of the list, our job is simpler.
570  // This is true most of the time, so this is a reasonable optimization.
571  if (isImpReg || NumImplicitOps == 0) {
572    // We can only do this optimization if we know that the operand list won't
573    // reallocate.
574    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
575      Operands.push_back(Op);
576
577      // Set the parent of the operand.
578      Operands.back().ParentMI = this;
579
580      // If the operand is a register, update the operand's use list.
581      if (Op.isReg()) {
582        Operands.back().AddRegOperandToRegInfo(RegInfo);
583        // If the register operand is flagged as early, mark the operand as such
584        unsigned OpNo = Operands.size() - 1;
585        if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
586          Operands[OpNo].setIsEarlyClobber(true);
587      }
588      return;
589    }
590  }
591
592  // Otherwise, we have to insert a real operand before any implicit ones.
593  unsigned OpNo = Operands.size()-NumImplicitOps;
594
595  // If this instruction isn't embedded into a function, then we don't need to
596  // update any operand lists.
597  if (RegInfo == 0) {
598    // Simple insertion, no reginfo update needed for other register operands.
599    Operands.insert(Operands.begin()+OpNo, Op);
600    Operands[OpNo].ParentMI = this;
601
602    // Do explicitly set the reginfo for this operand though, to ensure the
603    // next/prev fields are properly nulled out.
604    if (Operands[OpNo].isReg()) {
605      Operands[OpNo].AddRegOperandToRegInfo(0);
606      // If the register operand is flagged as early, mark the operand as such
607      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
608        Operands[OpNo].setIsEarlyClobber(true);
609    }
610
611  } else if (Operands.size()+1 <= Operands.capacity()) {
612    // Otherwise, we have to remove register operands from their register use
613    // list, add the operand, then add the register operands back to their use
614    // list.  This also must handle the case when the operand list reallocates
615    // to somewhere else.
616
617    // If insertion of this operand won't cause reallocation of the operand
618    // list, just remove the implicit operands, add the operand, then re-add all
619    // the rest of the operands.
620    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
621      assert(Operands[i].isReg() && "Should only be an implicit reg!");
622      Operands[i].RemoveRegOperandFromRegInfo();
623    }
624
625    // Add the operand.  If it is a register, add it to the reg list.
626    Operands.insert(Operands.begin()+OpNo, Op);
627    Operands[OpNo].ParentMI = this;
628
629    if (Operands[OpNo].isReg()) {
630      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
631      // If the register operand is flagged as early, mark the operand as such
632      if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
633        Operands[OpNo].setIsEarlyClobber(true);
634    }
635
636    // Re-add all the implicit ops.
637    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
638      assert(Operands[i].isReg() && "Should only be an implicit reg!");
639      Operands[i].AddRegOperandToRegInfo(RegInfo);
640    }
641  } else {
642    // Otherwise, we will be reallocating the operand list.  Remove all reg
643    // operands from their list, then readd them after the operand list is
644    // reallocated.
645    RemoveRegOperandsFromUseLists();
646
647    Operands.insert(Operands.begin()+OpNo, Op);
648    Operands[OpNo].ParentMI = this;
649
650    // Re-add all the operands.
651    AddRegOperandsToUseLists(*RegInfo);
652
653      // If the register operand is flagged as early, mark the operand as such
654    if (Operands[OpNo].isReg()
655        && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
656      Operands[OpNo].setIsEarlyClobber(true);
657  }
658}
659
660/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
661/// fewer operand than it started with.
662///
663void MachineInstr::RemoveOperand(unsigned OpNo) {
664  assert(OpNo < Operands.size() && "Invalid operand number");
665
666  // Special case removing the last one.
667  if (OpNo == Operands.size()-1) {
668    // If needed, remove from the reg def/use list.
669    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
670      Operands.back().RemoveRegOperandFromRegInfo();
671
672    Operands.pop_back();
673    return;
674  }
675
676  // Otherwise, we are removing an interior operand.  If we have reginfo to
677  // update, remove all operands that will be shifted down from their reg lists,
678  // move everything down, then re-add them.
679  MachineRegisterInfo *RegInfo = getRegInfo();
680  if (RegInfo) {
681    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
682      if (Operands[i].isReg())
683        Operands[i].RemoveRegOperandFromRegInfo();
684    }
685  }
686
687  Operands.erase(Operands.begin()+OpNo);
688
689  if (RegInfo) {
690    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
691      if (Operands[i].isReg())
692        Operands[i].AddRegOperandToRegInfo(RegInfo);
693    }
694  }
695}
696
697/// addMemOperand - Add a MachineMemOperand to the machine instruction.
698/// This function should be used only occasionally. The setMemRefs function
699/// is the primary method for setting up a MachineInstr's MemRefs list.
700void MachineInstr::addMemOperand(MachineFunction &MF,
701                                 MachineMemOperand *MO) {
702  mmo_iterator OldMemRefs = MemRefs;
703  mmo_iterator OldMemRefsEnd = MemRefsEnd;
704
705  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
706  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
707  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
708
709  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
710  NewMemRefs[NewNum - 1] = MO;
711
712  MemRefs = NewMemRefs;
713  MemRefsEnd = NewMemRefsEnd;
714}
715
716bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
717                                 MICheckType Check) const {
718  // If opcodes or number of operands are not the same then the two
719  // instructions are obviously not identical.
720  if (Other->getOpcode() != getOpcode() ||
721      Other->getNumOperands() != getNumOperands())
722    return false;
723
724  // Check operands to make sure they match.
725  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
726    const MachineOperand &MO = getOperand(i);
727    const MachineOperand &OMO = Other->getOperand(i);
728    // Clients may or may not want to ignore defs when testing for equality.
729    // For example, machine CSE pass only cares about finding common
730    // subexpressions, so it's safe to ignore virtual register defs.
731    if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
732      if (Check == IgnoreDefs)
733        continue;
734      // Check == IgnoreVRegDefs
735      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
736          TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
737        if (MO.getReg() != OMO.getReg())
738          return false;
739    } else if (!MO.isIdenticalTo(OMO))
740      return false;
741  }
742  return true;
743}
744
745/// removeFromParent - This method unlinks 'this' from the containing basic
746/// block, and returns it, but does not delete it.
747MachineInstr *MachineInstr::removeFromParent() {
748  assert(getParent() && "Not embedded in a basic block!");
749  getParent()->remove(this);
750  return this;
751}
752
753
754/// eraseFromParent - This method unlinks 'this' from the containing basic
755/// block, and deletes it.
756void MachineInstr::eraseFromParent() {
757  assert(getParent() && "Not embedded in a basic block!");
758  getParent()->erase(this);
759}
760
761
762/// OperandComplete - Return true if it's illegal to add a new operand
763///
764bool MachineInstr::OperandsComplete() const {
765  unsigned short NumOperands = TID->getNumOperands();
766  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
767    return true;  // Broken: we have all the operands of this instruction!
768  return false;
769}
770
771/// getNumExplicitOperands - Returns the number of non-implicit operands.
772///
773unsigned MachineInstr::getNumExplicitOperands() const {
774  unsigned NumOperands = TID->getNumOperands();
775  if (!TID->isVariadic())
776    return NumOperands;
777
778  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
779    const MachineOperand &MO = getOperand(i);
780    if (!MO.isReg() || !MO.isImplicit())
781      NumOperands++;
782  }
783  return NumOperands;
784}
785
786
787/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
788/// the specific register or -1 if it is not found. It further tightens
789/// the search criteria to a use that kills the register if isKill is true.
790int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
791                                          const TargetRegisterInfo *TRI) const {
792  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
793    const MachineOperand &MO = getOperand(i);
794    if (!MO.isReg() || !MO.isUse())
795      continue;
796    unsigned MOReg = MO.getReg();
797    if (!MOReg)
798      continue;
799    if (MOReg == Reg ||
800        (TRI &&
801         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
802         TargetRegisterInfo::isPhysicalRegister(Reg) &&
803         TRI->isSubRegister(MOReg, Reg)))
804      if (!isKill || MO.isKill())
805        return i;
806  }
807  return -1;
808}
809
810/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
811/// indicating if this instruction reads or writes Reg. This also considers
812/// partial defines.
813std::pair<bool,bool>
814MachineInstr::readsWritesVirtualRegister(unsigned Reg,
815                                         SmallVectorImpl<unsigned> *Ops) const {
816  bool PartDef = false; // Partial redefine.
817  bool FullDef = false; // Full define.
818  bool Use = false;
819
820  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
821    const MachineOperand &MO = getOperand(i);
822    if (!MO.isReg() || MO.getReg() != Reg)
823      continue;
824    if (Ops)
825      Ops->push_back(i);
826    if (MO.isUse())
827      Use |= !MO.isUndef();
828    else if (MO.getSubReg())
829      PartDef = true;
830    else
831      FullDef = true;
832  }
833  // A partial redefine uses Reg unless there is also a full define.
834  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
835}
836
837/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
838/// the specified register or -1 if it is not found. If isDead is true, defs
839/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
840/// also checks if there is a def of a super-register.
841int
842MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
843                                        const TargetRegisterInfo *TRI) const {
844  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
845  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
846    const MachineOperand &MO = getOperand(i);
847    if (!MO.isReg() || !MO.isDef())
848      continue;
849    unsigned MOReg = MO.getReg();
850    bool Found = (MOReg == Reg);
851    if (!Found && TRI && isPhys &&
852        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
853      if (Overlap)
854        Found = TRI->regsOverlap(MOReg, Reg);
855      else
856        Found = TRI->isSubRegister(MOReg, Reg);
857    }
858    if (Found && (!isDead || MO.isDead()))
859      return i;
860  }
861  return -1;
862}
863
864/// findFirstPredOperandIdx() - Find the index of the first operand in the
865/// operand list that is used to represent the predicate. It returns -1 if
866/// none is found.
867int MachineInstr::findFirstPredOperandIdx() const {
868  const TargetInstrDesc &TID = getDesc();
869  if (TID.isPredicable()) {
870    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
871      if (TID.OpInfo[i].isPredicate())
872        return i;
873  }
874
875  return -1;
876}
877
878/// isRegTiedToUseOperand - Given the index of a register def operand,
879/// check if the register def is tied to a source operand, due to either
880/// two-address elimination or inline assembly constraints. Returns the
881/// first tied use operand index by reference is UseOpIdx is not null.
882bool MachineInstr::
883isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
884  if (isInlineAsm()) {
885    assert(DefOpIdx >= 3);
886    const MachineOperand &MO = getOperand(DefOpIdx);
887    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
888      return false;
889    // Determine the actual operand index that corresponds to this index.
890    unsigned DefNo = 0;
891    unsigned DefPart = 0;
892    for (unsigned i = 2, e = getNumOperands(); i < e; ) {
893      const MachineOperand &FMO = getOperand(i);
894      // After the normal asm operands there may be additional imp-def regs.
895      if (!FMO.isImm())
896        return false;
897      // Skip over this def.
898      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
899      unsigned PrevDef = i + 1;
900      i = PrevDef + NumOps;
901      if (i > DefOpIdx) {
902        DefPart = DefOpIdx - PrevDef;
903        break;
904      }
905      ++DefNo;
906    }
907    for (unsigned i = 2, e = getNumOperands(); i != e; ++i) {
908      const MachineOperand &FMO = getOperand(i);
909      if (!FMO.isImm())
910        continue;
911      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
912        continue;
913      unsigned Idx;
914      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
915          Idx == DefNo) {
916        if (UseOpIdx)
917          *UseOpIdx = (unsigned)i + 1 + DefPart;
918        return true;
919      }
920    }
921    return false;
922  }
923
924  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
925  const TargetInstrDesc &TID = getDesc();
926  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
927    const MachineOperand &MO = getOperand(i);
928    if (MO.isReg() && MO.isUse() &&
929        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
930      if (UseOpIdx)
931        *UseOpIdx = (unsigned)i;
932      return true;
933    }
934  }
935  return false;
936}
937
938/// isRegTiedToDefOperand - Return true if the operand of the specified index
939/// is a register use and it is tied to an def operand. It also returns the def
940/// operand index by reference.
941bool MachineInstr::
942isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
943  if (isInlineAsm()) {
944    const MachineOperand &MO = getOperand(UseOpIdx);
945    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
946      return false;
947
948    // Find the flag operand corresponding to UseOpIdx
949    unsigned FlagIdx, NumOps=0;
950    for (FlagIdx = 2; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
951      const MachineOperand &UFMO = getOperand(FlagIdx);
952      // After the normal asm operands there may be additional imp-def regs.
953      if (!UFMO.isImm())
954        return false;
955      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
956      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
957      if (UseOpIdx < FlagIdx+NumOps+1)
958        break;
959    }
960    if (FlagIdx >= UseOpIdx)
961      return false;
962    const MachineOperand &UFMO = getOperand(FlagIdx);
963    unsigned DefNo;
964    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
965      if (!DefOpIdx)
966        return true;
967
968      unsigned DefIdx = 2;
969      // Remember to adjust the index. First operand is asm string, second is
970      // the AlignStack bit, then there is a flag for each.
971      while (DefNo) {
972        const MachineOperand &FMO = getOperand(DefIdx);
973        assert(FMO.isImm());
974        // Skip over this def.
975        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
976        --DefNo;
977      }
978      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
979      return true;
980    }
981    return false;
982  }
983
984  const TargetInstrDesc &TID = getDesc();
985  if (UseOpIdx >= TID.getNumOperands())
986    return false;
987  const MachineOperand &MO = getOperand(UseOpIdx);
988  if (!MO.isReg() || !MO.isUse())
989    return false;
990  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
991  if (DefIdx == -1)
992    return false;
993  if (DefOpIdx)
994    *DefOpIdx = (unsigned)DefIdx;
995  return true;
996}
997
998/// clearKillInfo - Clears kill flags on all operands.
999///
1000void MachineInstr::clearKillInfo() {
1001  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1002    MachineOperand &MO = getOperand(i);
1003    if (MO.isReg() && MO.isUse())
1004      MO.setIsKill(false);
1005  }
1006}
1007
1008/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1009///
1010void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1011  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1012    const MachineOperand &MO = MI->getOperand(i);
1013    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1014      continue;
1015    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1016      MachineOperand &MOp = getOperand(j);
1017      if (!MOp.isIdenticalTo(MO))
1018        continue;
1019      if (MO.isKill())
1020        MOp.setIsKill();
1021      else
1022        MOp.setIsDead();
1023      break;
1024    }
1025  }
1026}
1027
1028/// copyPredicates - Copies predicate operand(s) from MI.
1029void MachineInstr::copyPredicates(const MachineInstr *MI) {
1030  const TargetInstrDesc &TID = MI->getDesc();
1031  if (!TID.isPredicable())
1032    return;
1033  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1034    if (TID.OpInfo[i].isPredicate()) {
1035      // Predicated operands must be last operands.
1036      addOperand(MI->getOperand(i));
1037    }
1038  }
1039}
1040
1041void MachineInstr::substituteRegister(unsigned FromReg,
1042                                      unsigned ToReg,
1043                                      unsigned SubIdx,
1044                                      const TargetRegisterInfo &RegInfo) {
1045  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1046    if (SubIdx)
1047      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1048    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1049      MachineOperand &MO = getOperand(i);
1050      if (!MO.isReg() || MO.getReg() != FromReg)
1051        continue;
1052      MO.substPhysReg(ToReg, RegInfo);
1053    }
1054  } else {
1055    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1056      MachineOperand &MO = getOperand(i);
1057      if (!MO.isReg() || MO.getReg() != FromReg)
1058        continue;
1059      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1060    }
1061  }
1062}
1063
1064/// isSafeToMove - Return true if it is safe to move this instruction. If
1065/// SawStore is set to true, it means that there is a store (or call) between
1066/// the instruction's location and its intended destination.
1067bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1068                                AliasAnalysis *AA,
1069                                bool &SawStore) const {
1070  // Ignore stuff that we obviously can't move.
1071  if (TID->mayStore() || TID->isCall()) {
1072    SawStore = true;
1073    return false;
1074  }
1075  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
1076    return false;
1077
1078  // See if this instruction does a load.  If so, we have to guarantee that the
1079  // loaded value doesn't change between the load and the its intended
1080  // destination. The check for isInvariantLoad gives the targe the chance to
1081  // classify the load as always returning a constant, e.g. a constant pool
1082  // load.
1083  if (TID->mayLoad() && !isInvariantLoad(AA))
1084    // Otherwise, this is a real load.  If there is a store between the load and
1085    // end of block, or if the load is volatile, we can't move it.
1086    return !SawStore && !hasVolatileMemoryRef();
1087
1088  return true;
1089}
1090
1091/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1092/// instruction which defined the specified register instead of copying it.
1093bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1094                                 AliasAnalysis *AA,
1095                                 unsigned DstReg) const {
1096  bool SawStore = false;
1097  if (!TII->isTriviallyReMaterializable(this, AA) ||
1098      !isSafeToMove(TII, AA, SawStore))
1099    return false;
1100  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1101    const MachineOperand &MO = getOperand(i);
1102    if (!MO.isReg())
1103      continue;
1104    // FIXME: For now, do not remat any instruction with register operands.
1105    // Later on, we can loosen the restriction is the register operands have
1106    // not been modified between the def and use. Note, this is different from
1107    // MachineSink because the code is no longer in two-address form (at least
1108    // partially).
1109    if (MO.isUse())
1110      return false;
1111    else if (!MO.isDead() && MO.getReg() != DstReg)
1112      return false;
1113  }
1114  return true;
1115}
1116
1117/// hasVolatileMemoryRef - Return true if this instruction may have a
1118/// volatile memory reference, or if the information describing the
1119/// memory reference is not available. Return false if it is known to
1120/// have no volatile memory references.
1121bool MachineInstr::hasVolatileMemoryRef() const {
1122  // An instruction known never to access memory won't have a volatile access.
1123  if (!TID->mayStore() &&
1124      !TID->mayLoad() &&
1125      !TID->isCall() &&
1126      !TID->hasUnmodeledSideEffects())
1127    return false;
1128
1129  // Otherwise, if the instruction has no memory reference information,
1130  // conservatively assume it wasn't preserved.
1131  if (memoperands_empty())
1132    return true;
1133
1134  // Check the memory reference information for volatile references.
1135  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1136    if ((*I)->isVolatile())
1137      return true;
1138
1139  return false;
1140}
1141
1142/// isInvariantLoad - Return true if this instruction is loading from a
1143/// location whose value is invariant across the function.  For example,
1144/// loading a value from the constant pool or from the argument area
1145/// of a function if it does not change.  This should only return true of
1146/// *all* loads the instruction does are invariant (if it does multiple loads).
1147bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1148  // If the instruction doesn't load at all, it isn't an invariant load.
1149  if (!TID->mayLoad())
1150    return false;
1151
1152  // If the instruction has lost its memoperands, conservatively assume that
1153  // it may not be an invariant load.
1154  if (memoperands_empty())
1155    return false;
1156
1157  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1158
1159  for (mmo_iterator I = memoperands_begin(),
1160       E = memoperands_end(); I != E; ++I) {
1161    if ((*I)->isVolatile()) return false;
1162    if ((*I)->isStore()) return false;
1163
1164    if (const Value *V = (*I)->getValue()) {
1165      // A load from a constant PseudoSourceValue is invariant.
1166      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1167        if (PSV->isConstant(MFI))
1168          continue;
1169      // If we have an AliasAnalysis, ask it whether the memory is constant.
1170      if (AA && AA->pointsToConstantMemory(V))
1171        continue;
1172    }
1173
1174    // Otherwise assume conservatively.
1175    return false;
1176  }
1177
1178  // Everything checks out.
1179  return true;
1180}
1181
1182/// isConstantValuePHI - If the specified instruction is a PHI that always
1183/// merges together the same virtual register, return the register, otherwise
1184/// return 0.
1185unsigned MachineInstr::isConstantValuePHI() const {
1186  if (!isPHI())
1187    return 0;
1188  assert(getNumOperands() >= 3 &&
1189         "It's illegal to have a PHI without source operands");
1190
1191  unsigned Reg = getOperand(1).getReg();
1192  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1193    if (getOperand(i).getReg() != Reg)
1194      return 0;
1195  return Reg;
1196}
1197
1198/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1199///
1200bool MachineInstr::allDefsAreDead() const {
1201  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1202    const MachineOperand &MO = getOperand(i);
1203    if (!MO.isReg() || MO.isUse())
1204      continue;
1205    if (!MO.isDead())
1206      return false;
1207  }
1208  return true;
1209}
1210
1211void MachineInstr::dump() const {
1212  dbgs() << "  " << *this;
1213}
1214
1215static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1216                         raw_ostream &CommentOS) {
1217  const LLVMContext &Ctx = MF->getFunction()->getContext();
1218  if (!DL.isUnknown()) {          // Print source line info.
1219    DIScope Scope(DL.getScope(Ctx));
1220    // Omit the directory, because it's likely to be long and uninteresting.
1221    if (Scope.Verify())
1222      CommentOS << Scope.getFilename();
1223    else
1224      CommentOS << "<unknown>";
1225    CommentOS << ':' << DL.getLine();
1226    if (DL.getCol() != 0)
1227      CommentOS << ':' << DL.getCol();
1228    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1229    if (!InlinedAtDL.isUnknown()) {
1230      CommentOS << " @[ ";
1231      printDebugLoc(InlinedAtDL, MF, CommentOS);
1232      CommentOS << " ]";
1233    }
1234  }
1235}
1236
1237void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1238  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1239  const MachineFunction *MF = 0;
1240  const MachineRegisterInfo *MRI = 0;
1241  if (const MachineBasicBlock *MBB = getParent()) {
1242    MF = MBB->getParent();
1243    if (!TM && MF)
1244      TM = &MF->getTarget();
1245    if (MF)
1246      MRI = &MF->getRegInfo();
1247  }
1248
1249  // Save a list of virtual registers.
1250  SmallVector<unsigned, 8> VirtRegs;
1251
1252  // Print explicitly defined operands on the left of an assignment syntax.
1253  unsigned StartOp = 0, e = getNumOperands();
1254  for (; StartOp < e && getOperand(StartOp).isReg() &&
1255         getOperand(StartOp).isDef() &&
1256         !getOperand(StartOp).isImplicit();
1257       ++StartOp) {
1258    if (StartOp != 0) OS << ", ";
1259    getOperand(StartOp).print(OS, TM);
1260    unsigned Reg = getOperand(StartOp).getReg();
1261    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg))
1262      VirtRegs.push_back(Reg);
1263  }
1264
1265  if (StartOp != 0)
1266    OS << " = ";
1267
1268  // Print the opcode name.
1269  OS << getDesc().getName();
1270
1271  // Print the rest of the operands.
1272  bool OmittedAnyCallClobbers = false;
1273  bool FirstOp = true;
1274  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1275    const MachineOperand &MO = getOperand(i);
1276
1277    if (MO.isReg() && MO.getReg() &&
1278        TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1279      VirtRegs.push_back(MO.getReg());
1280
1281    // Omit call-clobbered registers which aren't used anywhere. This makes
1282    // call instructions much less noisy on targets where calls clobber lots
1283    // of registers. Don't rely on MO.isDead() because we may be called before
1284    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1285    if (MF && getDesc().isCall() &&
1286        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1287      unsigned Reg = MO.getReg();
1288      if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1289        const MachineRegisterInfo &MRI = MF->getRegInfo();
1290        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1291          bool HasAliasLive = false;
1292          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1293               unsigned AliasReg = *Alias; ++Alias)
1294            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1295              HasAliasLive = true;
1296              break;
1297            }
1298          if (!HasAliasLive) {
1299            OmittedAnyCallClobbers = true;
1300            continue;
1301          }
1302        }
1303      }
1304    }
1305
1306    if (FirstOp) FirstOp = false; else OS << ",";
1307    OS << " ";
1308    if (i < getDesc().NumOperands) {
1309      const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1310      if (TOI.isPredicate())
1311        OS << "pred:";
1312      if (TOI.isOptionalDef())
1313        OS << "opt:";
1314    }
1315    if (isDebugValue() && MO.isMetadata()) {
1316      // Pretty print DBG_VALUE instructions.
1317      const MDNode *MD = MO.getMetadata();
1318      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1319        OS << "!\"" << MDS->getString() << '\"';
1320      else
1321        MO.print(OS, TM);
1322    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1323      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1324    } else
1325      MO.print(OS, TM);
1326  }
1327
1328  // Briefly indicate whether any call clobbers were omitted.
1329  if (OmittedAnyCallClobbers) {
1330    if (!FirstOp) OS << ",";
1331    OS << " ...";
1332  }
1333
1334  bool HaveSemi = false;
1335  if (!memoperands_empty()) {
1336    if (!HaveSemi) OS << ";"; HaveSemi = true;
1337
1338    OS << " mem:";
1339    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1340         i != e; ++i) {
1341      OS << **i;
1342      if (llvm::next(i) != e)
1343        OS << " ";
1344    }
1345  }
1346
1347  // Print the regclass of any virtual registers encountered.
1348  if (MRI && !VirtRegs.empty()) {
1349    if (!HaveSemi) OS << ";"; HaveSemi = true;
1350    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1351      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1352      OS << " " << RC->getName() << ":%reg" << VirtRegs[i];
1353      for (unsigned j = i+1; j != VirtRegs.size();) {
1354        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1355          ++j;
1356          continue;
1357        }
1358        if (VirtRegs[i] != VirtRegs[j])
1359          OS << "," << VirtRegs[j];
1360        VirtRegs.erase(VirtRegs.begin()+j);
1361      }
1362    }
1363  }
1364
1365  if (!debugLoc.isUnknown() && MF) {
1366    if (!HaveSemi) OS << ";";
1367    OS << " dbg:";
1368    printDebugLoc(debugLoc, MF, OS);
1369  }
1370
1371  OS << "\n";
1372}
1373
1374bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1375                                     const TargetRegisterInfo *RegInfo,
1376                                     bool AddIfNotFound) {
1377  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1378  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1379  bool Found = false;
1380  SmallVector<unsigned,4> DeadOps;
1381  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1382    MachineOperand &MO = getOperand(i);
1383    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1384      continue;
1385    unsigned Reg = MO.getReg();
1386    if (!Reg)
1387      continue;
1388
1389    if (Reg == IncomingReg) {
1390      if (!Found) {
1391        if (MO.isKill())
1392          // The register is already marked kill.
1393          return true;
1394        if (isPhysReg && isRegTiedToDefOperand(i))
1395          // Two-address uses of physregs must not be marked kill.
1396          return true;
1397        MO.setIsKill();
1398        Found = true;
1399      }
1400    } else if (hasAliases && MO.isKill() &&
1401               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1402      // A super-register kill already exists.
1403      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1404        return true;
1405      if (RegInfo->isSubRegister(IncomingReg, Reg))
1406        DeadOps.push_back(i);
1407    }
1408  }
1409
1410  // Trim unneeded kill operands.
1411  while (!DeadOps.empty()) {
1412    unsigned OpIdx = DeadOps.back();
1413    if (getOperand(OpIdx).isImplicit())
1414      RemoveOperand(OpIdx);
1415    else
1416      getOperand(OpIdx).setIsKill(false);
1417    DeadOps.pop_back();
1418  }
1419
1420  // If not found, this means an alias of one of the operands is killed. Add a
1421  // new implicit operand if required.
1422  if (!Found && AddIfNotFound) {
1423    addOperand(MachineOperand::CreateReg(IncomingReg,
1424                                         false /*IsDef*/,
1425                                         true  /*IsImp*/,
1426                                         true  /*IsKill*/));
1427    return true;
1428  }
1429  return Found;
1430}
1431
1432bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1433                                   const TargetRegisterInfo *RegInfo,
1434                                   bool AddIfNotFound) {
1435  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1436  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1437  bool Found = false;
1438  SmallVector<unsigned,4> DeadOps;
1439  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1440    MachineOperand &MO = getOperand(i);
1441    if (!MO.isReg() || !MO.isDef())
1442      continue;
1443    unsigned Reg = MO.getReg();
1444    if (!Reg)
1445      continue;
1446
1447    if (Reg == IncomingReg) {
1448      if (!Found) {
1449        if (MO.isDead())
1450          // The register is already marked dead.
1451          return true;
1452        MO.setIsDead();
1453        Found = true;
1454      }
1455    } else if (hasAliases && MO.isDead() &&
1456               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1457      // There exists a super-register that's marked dead.
1458      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1459        return true;
1460      if (RegInfo->getSubRegisters(IncomingReg) &&
1461          RegInfo->getSuperRegisters(Reg) &&
1462          RegInfo->isSubRegister(IncomingReg, Reg))
1463        DeadOps.push_back(i);
1464    }
1465  }
1466
1467  // Trim unneeded dead operands.
1468  while (!DeadOps.empty()) {
1469    unsigned OpIdx = DeadOps.back();
1470    if (getOperand(OpIdx).isImplicit())
1471      RemoveOperand(OpIdx);
1472    else
1473      getOperand(OpIdx).setIsDead(false);
1474    DeadOps.pop_back();
1475  }
1476
1477  // If not found, this means an alias of one of the operands is dead. Add a
1478  // new implicit operand if required.
1479  if (Found || !AddIfNotFound)
1480    return Found;
1481
1482  addOperand(MachineOperand::CreateReg(IncomingReg,
1483                                       true  /*IsDef*/,
1484                                       true  /*IsImp*/,
1485                                       false /*IsKill*/,
1486                                       true  /*IsDead*/));
1487  return true;
1488}
1489
1490void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1491                                      const TargetRegisterInfo *RegInfo) {
1492  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1493    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1494    if (MO)
1495      return;
1496  } else {
1497    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1498      const MachineOperand &MO = getOperand(i);
1499      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1500          MO.getSubReg() == 0)
1501        return;
1502    }
1503  }
1504  addOperand(MachineOperand::CreateReg(IncomingReg,
1505                                       true  /*IsDef*/,
1506                                       true  /*IsImp*/));
1507}
1508
1509void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1510                                         const TargetRegisterInfo &TRI) {
1511  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1512    MachineOperand &MO = getOperand(i);
1513    if (!MO.isReg() || !MO.isDef()) continue;
1514    unsigned Reg = MO.getReg();
1515    if (Reg == 0) continue;
1516    bool Dead = true;
1517    for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1518         E = UsedRegs.end(); I != E; ++I)
1519      if (TRI.regsOverlap(*I, Reg)) {
1520        Dead = false;
1521        break;
1522      }
1523    // If there are no uses, including partial uses, the def is dead.
1524    if (Dead) MO.setIsDead();
1525  }
1526}
1527
1528unsigned
1529MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1530  unsigned Hash = MI->getOpcode() * 37;
1531  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1532    const MachineOperand &MO = MI->getOperand(i);
1533    uint64_t Key = (uint64_t)MO.getType() << 32;
1534    switch (MO.getType()) {
1535    default: break;
1536    case MachineOperand::MO_Register:
1537      if (MO.isDef() && MO.getReg() &&
1538          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1539        continue;  // Skip virtual register defs.
1540      Key |= MO.getReg();
1541      break;
1542    case MachineOperand::MO_Immediate:
1543      Key |= MO.getImm();
1544      break;
1545    case MachineOperand::MO_FrameIndex:
1546    case MachineOperand::MO_ConstantPoolIndex:
1547    case MachineOperand::MO_JumpTableIndex:
1548      Key |= MO.getIndex();
1549      break;
1550    case MachineOperand::MO_MachineBasicBlock:
1551      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1552      break;
1553    case MachineOperand::MO_GlobalAddress:
1554      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1555      break;
1556    case MachineOperand::MO_BlockAddress:
1557      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1558      break;
1559    case MachineOperand::MO_MCSymbol:
1560      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1561      break;
1562    }
1563    Key += ~(Key << 32);
1564    Key ^= (Key >> 22);
1565    Key += ~(Key << 13);
1566    Key ^= (Key >> 8);
1567    Key += (Key << 3);
1568    Key ^= (Key >> 15);
1569    Key += ~(Key << 27);
1570    Key ^= (Key >> 31);
1571    Hash = (unsigned)Key + Hash * 37;
1572  }
1573  return Hash;
1574}
1575