MachineInstr.cpp revision e837dead3c8dc3445ef6a0e2322179c57e264a13
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Metadata.h"
19#include "llvm/Type.h"
20#include "llvm/Value.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/MC/MCInstrDesc.h"
28#include "llvm/MC/MCSymbol.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/LeakDetector.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/FoldingSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43// MachineOperand Implementation
44//===----------------------------------------------------------------------===//
45
46/// AddRegOperandToRegInfo - Add this register operand to the specified
47/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
48/// explicitly nulled out.
49void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50  assert(isReg() && "Can only add reg operand to use lists");
51
52  // If the reginfo pointer is null, just explicitly null out or next/prev
53  // pointers, to ensure they are not garbage.
54  if (RegInfo == 0) {
55    Contents.Reg.Prev = 0;
56    Contents.Reg.Next = 0;
57    return;
58  }
59
60  // Otherwise, add this operand to the head of the registers use/def list.
61  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
62
63  // For SSA values, we prefer to keep the definition at the start of the list.
64  // we do this by skipping over the definition if it is at the head of the
65  // list.
66  if (*Head && (*Head)->isDef())
67    Head = &(*Head)->Contents.Reg.Next;
68
69  Contents.Reg.Next = *Head;
70  if (Contents.Reg.Next) {
71    assert(getReg() == Contents.Reg.Next->getReg() &&
72           "Different regs on the same list!");
73    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
74  }
75
76  Contents.Reg.Prev = Head;
77  *Head = this;
78}
79
80/// RemoveRegOperandFromRegInfo - Remove this register operand from the
81/// MachineRegisterInfo it is linked with.
82void MachineOperand::RemoveRegOperandFromRegInfo() {
83  assert(isOnRegUseList() && "Reg operand is not on a use list");
84  // Unlink this from the doubly linked list of operands.
85  MachineOperand *NextOp = Contents.Reg.Next;
86  *Contents.Reg.Prev = NextOp;
87  if (NextOp) {
88    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
90  }
91  Contents.Reg.Prev = 0;
92  Contents.Reg.Next = 0;
93}
94
95void MachineOperand::setReg(unsigned Reg) {
96  if (getReg() == Reg) return; // No change.
97
98  // Otherwise, we have to change the register.  If this operand is embedded
99  // into a machine function, we need to update the old and new register's
100  // use/def lists.
101  if (MachineInstr *MI = getParent())
102    if (MachineBasicBlock *MBB = MI->getParent())
103      if (MachineFunction *MF = MBB->getParent()) {
104        RemoveRegOperandFromRegInfo();
105        SmallContents.RegNo = Reg;
106        AddRegOperandToRegInfo(&MF->getRegInfo());
107        return;
108      }
109
110  // Otherwise, just change the register, no problem.  :)
111  SmallContents.RegNo = Reg;
112}
113
114void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
115                                  const TargetRegisterInfo &TRI) {
116  assert(TargetRegisterInfo::isVirtualRegister(Reg));
117  if (SubIdx && getSubReg())
118    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
119  setReg(Reg);
120  if (SubIdx)
121    setSubReg(SubIdx);
122}
123
124void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
125  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
126  if (getSubReg()) {
127    Reg = TRI.getSubReg(Reg, getSubReg());
128    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
129    // That won't happen in legal code.
130    setSubReg(0);
131  }
132  setReg(Reg);
133}
134
135/// ChangeToImmediate - Replace this operand with a new immediate operand of
136/// the specified value.  If an operand is known to be an immediate already,
137/// the setImm method should be used.
138void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
139  // If this operand is currently a register operand, and if this is in a
140  // function, deregister the operand from the register's use/def list.
141  if (isReg() && getParent() && getParent()->getParent() &&
142      getParent()->getParent()->getParent())
143    RemoveRegOperandFromRegInfo();
144
145  OpKind = MO_Immediate;
146  Contents.ImmVal = ImmVal;
147}
148
149/// ChangeToRegister - Replace this operand with a new register operand of
150/// the specified value.  If an operand is known to be an register already,
151/// the setReg method should be used.
152void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
153                                      bool isKill, bool isDead, bool isUndef,
154                                      bool isDebug) {
155  // If this operand is already a register operand, use setReg to update the
156  // register's use/def lists.
157  if (isReg()) {
158    assert(!isEarlyClobber());
159    setReg(Reg);
160  } else {
161    // Otherwise, change this to a register and set the reg#.
162    OpKind = MO_Register;
163    SmallContents.RegNo = Reg;
164
165    // If this operand is embedded in a function, add the operand to the
166    // register's use/def list.
167    if (MachineInstr *MI = getParent())
168      if (MachineBasicBlock *MBB = MI->getParent())
169        if (MachineFunction *MF = MBB->getParent())
170          AddRegOperandToRegInfo(&MF->getRegInfo());
171  }
172
173  IsDef = isDef;
174  IsImp = isImp;
175  IsKill = isKill;
176  IsDead = isDead;
177  IsUndef = isUndef;
178  IsEarlyClobber = false;
179  IsDebug = isDebug;
180  SubReg = 0;
181}
182
183/// isIdenticalTo - Return true if this operand is identical to the specified
184/// operand.
185bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
186  if (getType() != Other.getType() ||
187      getTargetFlags() != Other.getTargetFlags())
188    return false;
189
190  switch (getType()) {
191  default: llvm_unreachable("Unrecognized operand type");
192  case MachineOperand::MO_Register:
193    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
194           getSubReg() == Other.getSubReg();
195  case MachineOperand::MO_Immediate:
196    return getImm() == Other.getImm();
197  case MachineOperand::MO_FPImmediate:
198    return getFPImm() == Other.getFPImm();
199  case MachineOperand::MO_MachineBasicBlock:
200    return getMBB() == Other.getMBB();
201  case MachineOperand::MO_FrameIndex:
202    return getIndex() == Other.getIndex();
203  case MachineOperand::MO_ConstantPoolIndex:
204    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
205  case MachineOperand::MO_JumpTableIndex:
206    return getIndex() == Other.getIndex();
207  case MachineOperand::MO_GlobalAddress:
208    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
209  case MachineOperand::MO_ExternalSymbol:
210    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
211           getOffset() == Other.getOffset();
212  case MachineOperand::MO_BlockAddress:
213    return getBlockAddress() == Other.getBlockAddress();
214  case MachineOperand::MO_MCSymbol:
215    return getMCSymbol() == Other.getMCSymbol();
216  case MachineOperand::MO_Metadata:
217    return getMetadata() == Other.getMetadata();
218  }
219}
220
221/// print - Print the specified machine operand.
222///
223void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
224  // If the instruction is embedded into a basic block, we can find the
225  // target info for the instruction.
226  if (!TM)
227    if (const MachineInstr *MI = getParent())
228      if (const MachineBasicBlock *MBB = MI->getParent())
229        if (const MachineFunction *MF = MBB->getParent())
230          TM = &MF->getTarget();
231  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
232
233  switch (getType()) {
234  case MachineOperand::MO_Register:
235    OS << PrintReg(getReg(), TRI, getSubReg());
236
237    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
238        isEarlyClobber()) {
239      OS << '<';
240      bool NeedComma = false;
241      if (isDef()) {
242        if (NeedComma) OS << ',';
243        if (isEarlyClobber())
244          OS << "earlyclobber,";
245        if (isImplicit())
246          OS << "imp-";
247        OS << "def";
248        NeedComma = true;
249      } else if (isImplicit()) {
250          OS << "imp-use";
251          NeedComma = true;
252      }
253
254      if (isKill() || isDead() || isUndef()) {
255        if (NeedComma) OS << ',';
256        if (isKill())  OS << "kill";
257        if (isDead())  OS << "dead";
258        if (isUndef()) {
259          if (isKill() || isDead())
260            OS << ',';
261          OS << "undef";
262        }
263      }
264      OS << '>';
265    }
266    break;
267  case MachineOperand::MO_Immediate:
268    OS << getImm();
269    break;
270  case MachineOperand::MO_CImmediate:
271    getCImm()->getValue().print(OS, false);
272    break;
273  case MachineOperand::MO_FPImmediate:
274    if (getFPImm()->getType()->isFloatTy())
275      OS << getFPImm()->getValueAPF().convertToFloat();
276    else
277      OS << getFPImm()->getValueAPF().convertToDouble();
278    break;
279  case MachineOperand::MO_MachineBasicBlock:
280    OS << "<BB#" << getMBB()->getNumber() << ">";
281    break;
282  case MachineOperand::MO_FrameIndex:
283    OS << "<fi#" << getIndex() << '>';
284    break;
285  case MachineOperand::MO_ConstantPoolIndex:
286    OS << "<cp#" << getIndex();
287    if (getOffset()) OS << "+" << getOffset();
288    OS << '>';
289    break;
290  case MachineOperand::MO_JumpTableIndex:
291    OS << "<jt#" << getIndex() << '>';
292    break;
293  case MachineOperand::MO_GlobalAddress:
294    OS << "<ga:";
295    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
296    if (getOffset()) OS << "+" << getOffset();
297    OS << '>';
298    break;
299  case MachineOperand::MO_ExternalSymbol:
300    OS << "<es:" << getSymbolName();
301    if (getOffset()) OS << "+" << getOffset();
302    OS << '>';
303    break;
304  case MachineOperand::MO_BlockAddress:
305    OS << '<';
306    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
307    OS << '>';
308    break;
309  case MachineOperand::MO_Metadata:
310    OS << '<';
311    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
312    OS << '>';
313    break;
314  case MachineOperand::MO_MCSymbol:
315    OS << "<MCSym=" << *getMCSymbol() << '>';
316    break;
317  default:
318    llvm_unreachable("Unrecognized operand type");
319  }
320
321  if (unsigned TF = getTargetFlags())
322    OS << "[TF=" << TF << ']';
323}
324
325//===----------------------------------------------------------------------===//
326// MachineMemOperand Implementation
327//===----------------------------------------------------------------------===//
328
329/// getAddrSpace - Return the LLVM IR address space number that this pointer
330/// points into.
331unsigned MachinePointerInfo::getAddrSpace() const {
332  if (V == 0) return 0;
333  return cast<PointerType>(V->getType())->getAddressSpace();
334}
335
336/// getConstantPool - Return a MachinePointerInfo record that refers to the
337/// constant pool.
338MachinePointerInfo MachinePointerInfo::getConstantPool() {
339  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
340}
341
342/// getFixedStack - Return a MachinePointerInfo record that refers to the
343/// the specified FrameIndex.
344MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
345  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
346}
347
348MachinePointerInfo MachinePointerInfo::getJumpTable() {
349  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
350}
351
352MachinePointerInfo MachinePointerInfo::getGOT() {
353  return MachinePointerInfo(PseudoSourceValue::getGOT());
354}
355
356MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
357  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
358}
359
360MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
361                                     uint64_t s, unsigned int a,
362                                     const MDNode *TBAAInfo)
363  : PtrInfo(ptrinfo), Size(s),
364    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
365    TBAAInfo(TBAAInfo) {
366  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
367         "invalid pointer value");
368  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
369  assert((isLoad() || isStore()) && "Not a load/store!");
370}
371
372/// Profile - Gather unique data for the object.
373///
374void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
375  ID.AddInteger(getOffset());
376  ID.AddInteger(Size);
377  ID.AddPointer(getValue());
378  ID.AddInteger(Flags);
379}
380
381void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
382  // The Value and Offset may differ due to CSE. But the flags and size
383  // should be the same.
384  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
385  assert(MMO->getSize() == getSize() && "Size mismatch!");
386
387  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
388    // Update the alignment value.
389    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
390      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
391    // Also update the base and offset, because the new alignment may
392    // not be applicable with the old ones.
393    PtrInfo = MMO->PtrInfo;
394  }
395}
396
397/// getAlignment - Return the minimum known alignment in bytes of the
398/// actual memory reference.
399uint64_t MachineMemOperand::getAlignment() const {
400  return MinAlign(getBaseAlignment(), getOffset());
401}
402
403raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
404  assert((MMO.isLoad() || MMO.isStore()) &&
405         "SV has to be a load, store or both.");
406
407  if (MMO.isVolatile())
408    OS << "Volatile ";
409
410  if (MMO.isLoad())
411    OS << "LD";
412  if (MMO.isStore())
413    OS << "ST";
414  OS << MMO.getSize();
415
416  // Print the address information.
417  OS << "[";
418  if (!MMO.getValue())
419    OS << "<unknown>";
420  else
421    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
422
423  // If the alignment of the memory reference itself differs from the alignment
424  // of the base pointer, print the base alignment explicitly, next to the base
425  // pointer.
426  if (MMO.getBaseAlignment() != MMO.getAlignment())
427    OS << "(align=" << MMO.getBaseAlignment() << ")";
428
429  if (MMO.getOffset() != 0)
430    OS << "+" << MMO.getOffset();
431  OS << "]";
432
433  // Print the alignment of the reference.
434  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
435      MMO.getBaseAlignment() != MMO.getSize())
436    OS << "(align=" << MMO.getAlignment() << ")";
437
438  // Print TBAA info.
439  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
440    OS << "(tbaa=";
441    if (TBAAInfo->getNumOperands() > 0)
442      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
443    else
444      OS << "<unknown>";
445    OS << ")";
446  }
447
448  // Print nontemporal info.
449  if (MMO.isNonTemporal())
450    OS << "(nontemporal)";
451
452  return OS;
453}
454
455//===----------------------------------------------------------------------===//
456// MachineInstr Implementation
457//===----------------------------------------------------------------------===//
458
459/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
460/// MCID NULL and no operands.
461MachineInstr::MachineInstr()
462  : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
463    MemRefs(0), MemRefsEnd(0),
464    Parent(0) {
465  // Make sure that we get added to a machine basicblock
466  LeakDetector::addGarbageObject(this);
467}
468
469void MachineInstr::addImplicitDefUseOperands() {
470  if (MCID->ImplicitDefs)
471    for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
472      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
473  if (MCID->ImplicitUses)
474    for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
475      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
476}
477
478/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
479/// implicit operands. It reserves space for the number of operands specified by
480/// the MCInstrDesc.
481MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
482  : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
483    MemRefs(0), MemRefsEnd(0), Parent(0) {
484  if (!NoImp)
485    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
486  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
487  if (!NoImp)
488    addImplicitDefUseOperands();
489  // Make sure that we get added to a machine basicblock
490  LeakDetector::addGarbageObject(this);
491}
492
493/// MachineInstr ctor - As above, but with a DebugLoc.
494MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
495                           bool NoImp)
496  : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
497    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
498  if (!NoImp)
499    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
500  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
501  if (!NoImp)
502    addImplicitDefUseOperands();
503  // Make sure that we get added to a machine basicblock
504  LeakDetector::addGarbageObject(this);
505}
506
507/// MachineInstr ctor - Work exactly the same as the ctor two above, except
508/// that the MachineInstr is created and added to the end of the specified
509/// basic block.
510MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
511  : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
512    MemRefs(0), MemRefsEnd(0), Parent(0) {
513  assert(MBB && "Cannot use inserting ctor with null basic block!");
514  NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
515  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
516  addImplicitDefUseOperands();
517  // Make sure that we get added to a machine basicblock
518  LeakDetector::addGarbageObject(this);
519  MBB->push_back(this);  // Add instruction to end of basic block!
520}
521
522/// MachineInstr ctor - As above, but with a DebugLoc.
523///
524MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
525                           const MCInstrDesc &tid)
526  : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
527    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
528  assert(MBB && "Cannot use inserting ctor with null basic block!");
529  NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
530  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
531  addImplicitDefUseOperands();
532  // Make sure that we get added to a machine basicblock
533  LeakDetector::addGarbageObject(this);
534  MBB->push_back(this);  // Add instruction to end of basic block!
535}
536
537/// MachineInstr ctor - Copies MachineInstr arg exactly
538///
539MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
540  : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
541    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
542    Parent(0), debugLoc(MI.getDebugLoc()) {
543  Operands.reserve(MI.getNumOperands());
544
545  // Add operands
546  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
547    addOperand(MI.getOperand(i));
548  NumImplicitOps = MI.NumImplicitOps;
549
550  // Copy all the flags.
551  Flags = MI.Flags;
552
553  // Set parent to null.
554  Parent = 0;
555
556  LeakDetector::addGarbageObject(this);
557}
558
559MachineInstr::~MachineInstr() {
560  LeakDetector::removeGarbageObject(this);
561#ifndef NDEBUG
562  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
563    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
564    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
565           "Reg operand def/use list corrupted");
566  }
567#endif
568}
569
570/// getRegInfo - If this instruction is embedded into a MachineFunction,
571/// return the MachineRegisterInfo object for the current function, otherwise
572/// return null.
573MachineRegisterInfo *MachineInstr::getRegInfo() {
574  if (MachineBasicBlock *MBB = getParent())
575    return &MBB->getParent()->getRegInfo();
576  return 0;
577}
578
579/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
580/// this instruction from their respective use lists.  This requires that the
581/// operands already be on their use lists.
582void MachineInstr::RemoveRegOperandsFromUseLists() {
583  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
584    if (Operands[i].isReg())
585      Operands[i].RemoveRegOperandFromRegInfo();
586  }
587}
588
589/// AddRegOperandsToUseLists - Add all of the register operands in
590/// this instruction from their respective use lists.  This requires that the
591/// operands not be on their use lists yet.
592void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
593  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
594    if (Operands[i].isReg())
595      Operands[i].AddRegOperandToRegInfo(&RegInfo);
596  }
597}
598
599
600/// addOperand - Add the specified operand to the instruction.  If it is an
601/// implicit operand, it is added to the end of the operand list.  If it is
602/// an explicit operand it is added at the end of the explicit operand list
603/// (before the first implicit operand).
604void MachineInstr::addOperand(const MachineOperand &Op) {
605  bool isImpReg = Op.isReg() && Op.isImplicit();
606  assert((isImpReg || !OperandsComplete()) &&
607         "Trying to add an operand to a machine instr that is already done!");
608
609  MachineRegisterInfo *RegInfo = getRegInfo();
610
611  // If we are adding the operand to the end of the list, our job is simpler.
612  // This is true most of the time, so this is a reasonable optimization.
613  if (isImpReg || NumImplicitOps == 0) {
614    // We can only do this optimization if we know that the operand list won't
615    // reallocate.
616    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
617      Operands.push_back(Op);
618
619      // Set the parent of the operand.
620      Operands.back().ParentMI = this;
621
622      // If the operand is a register, update the operand's use list.
623      if (Op.isReg()) {
624        Operands.back().AddRegOperandToRegInfo(RegInfo);
625        // If the register operand is flagged as early, mark the operand as such
626        unsigned OpNo = Operands.size() - 1;
627        if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
628          Operands[OpNo].setIsEarlyClobber(true);
629      }
630      return;
631    }
632  }
633
634  // Otherwise, we have to insert a real operand before any implicit ones.
635  unsigned OpNo = Operands.size()-NumImplicitOps;
636
637  // If this instruction isn't embedded into a function, then we don't need to
638  // update any operand lists.
639  if (RegInfo == 0) {
640    // Simple insertion, no reginfo update needed for other register operands.
641    Operands.insert(Operands.begin()+OpNo, Op);
642    Operands[OpNo].ParentMI = this;
643
644    // Do explicitly set the reginfo for this operand though, to ensure the
645    // next/prev fields are properly nulled out.
646    if (Operands[OpNo].isReg()) {
647      Operands[OpNo].AddRegOperandToRegInfo(0);
648      // If the register operand is flagged as early, mark the operand as such
649      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
650        Operands[OpNo].setIsEarlyClobber(true);
651    }
652
653  } else if (Operands.size()+1 <= Operands.capacity()) {
654    // Otherwise, we have to remove register operands from their register use
655    // list, add the operand, then add the register operands back to their use
656    // list.  This also must handle the case when the operand list reallocates
657    // to somewhere else.
658
659    // If insertion of this operand won't cause reallocation of the operand
660    // list, just remove the implicit operands, add the operand, then re-add all
661    // the rest of the operands.
662    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
663      assert(Operands[i].isReg() && "Should only be an implicit reg!");
664      Operands[i].RemoveRegOperandFromRegInfo();
665    }
666
667    // Add the operand.  If it is a register, add it to the reg list.
668    Operands.insert(Operands.begin()+OpNo, Op);
669    Operands[OpNo].ParentMI = this;
670
671    if (Operands[OpNo].isReg()) {
672      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
673      // If the register operand is flagged as early, mark the operand as such
674      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
675        Operands[OpNo].setIsEarlyClobber(true);
676    }
677
678    // Re-add all the implicit ops.
679    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
680      assert(Operands[i].isReg() && "Should only be an implicit reg!");
681      Operands[i].AddRegOperandToRegInfo(RegInfo);
682    }
683  } else {
684    // Otherwise, we will be reallocating the operand list.  Remove all reg
685    // operands from their list, then readd them after the operand list is
686    // reallocated.
687    RemoveRegOperandsFromUseLists();
688
689    Operands.insert(Operands.begin()+OpNo, Op);
690    Operands[OpNo].ParentMI = this;
691
692    // Re-add all the operands.
693    AddRegOperandsToUseLists(*RegInfo);
694
695      // If the register operand is flagged as early, mark the operand as such
696    if (Operands[OpNo].isReg()
697        && MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
698      Operands[OpNo].setIsEarlyClobber(true);
699  }
700}
701
702/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
703/// fewer operand than it started with.
704///
705void MachineInstr::RemoveOperand(unsigned OpNo) {
706  assert(OpNo < Operands.size() && "Invalid operand number");
707
708  // Special case removing the last one.
709  if (OpNo == Operands.size()-1) {
710    // If needed, remove from the reg def/use list.
711    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
712      Operands.back().RemoveRegOperandFromRegInfo();
713
714    Operands.pop_back();
715    return;
716  }
717
718  // Otherwise, we are removing an interior operand.  If we have reginfo to
719  // update, remove all operands that will be shifted down from their reg lists,
720  // move everything down, then re-add them.
721  MachineRegisterInfo *RegInfo = getRegInfo();
722  if (RegInfo) {
723    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
724      if (Operands[i].isReg())
725        Operands[i].RemoveRegOperandFromRegInfo();
726    }
727  }
728
729  Operands.erase(Operands.begin()+OpNo);
730
731  if (RegInfo) {
732    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
733      if (Operands[i].isReg())
734        Operands[i].AddRegOperandToRegInfo(RegInfo);
735    }
736  }
737}
738
739/// addMemOperand - Add a MachineMemOperand to the machine instruction.
740/// This function should be used only occasionally. The setMemRefs function
741/// is the primary method for setting up a MachineInstr's MemRefs list.
742void MachineInstr::addMemOperand(MachineFunction &MF,
743                                 MachineMemOperand *MO) {
744  mmo_iterator OldMemRefs = MemRefs;
745  mmo_iterator OldMemRefsEnd = MemRefsEnd;
746
747  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
748  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
749  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
750
751  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
752  NewMemRefs[NewNum - 1] = MO;
753
754  MemRefs = NewMemRefs;
755  MemRefsEnd = NewMemRefsEnd;
756}
757
758bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
759                                 MICheckType Check) const {
760  // If opcodes or number of operands are not the same then the two
761  // instructions are obviously not identical.
762  if (Other->getOpcode() != getOpcode() ||
763      Other->getNumOperands() != getNumOperands())
764    return false;
765
766  // Check operands to make sure they match.
767  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
768    const MachineOperand &MO = getOperand(i);
769    const MachineOperand &OMO = Other->getOperand(i);
770    if (!MO.isReg()) {
771      if (!MO.isIdenticalTo(OMO))
772        return false;
773      continue;
774    }
775
776    // Clients may or may not want to ignore defs when testing for equality.
777    // For example, machine CSE pass only cares about finding common
778    // subexpressions, so it's safe to ignore virtual register defs.
779    if (MO.isDef()) {
780      if (Check == IgnoreDefs)
781        continue;
782      else if (Check == IgnoreVRegDefs) {
783        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
784            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
785          if (MO.getReg() != OMO.getReg())
786            return false;
787      } else {
788        if (!MO.isIdenticalTo(OMO))
789          return false;
790        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
791          return false;
792      }
793    } else {
794      if (!MO.isIdenticalTo(OMO))
795        return false;
796      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
797        return false;
798    }
799  }
800  return true;
801}
802
803/// removeFromParent - This method unlinks 'this' from the containing basic
804/// block, and returns it, but does not delete it.
805MachineInstr *MachineInstr::removeFromParent() {
806  assert(getParent() && "Not embedded in a basic block!");
807  getParent()->remove(this);
808  return this;
809}
810
811
812/// eraseFromParent - This method unlinks 'this' from the containing basic
813/// block, and deletes it.
814void MachineInstr::eraseFromParent() {
815  assert(getParent() && "Not embedded in a basic block!");
816  getParent()->erase(this);
817}
818
819
820/// OperandComplete - Return true if it's illegal to add a new operand
821///
822bool MachineInstr::OperandsComplete() const {
823  unsigned short NumOperands = MCID->getNumOperands();
824  if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
825    return true;  // Broken: we have all the operands of this instruction!
826  return false;
827}
828
829/// getNumExplicitOperands - Returns the number of non-implicit operands.
830///
831unsigned MachineInstr::getNumExplicitOperands() const {
832  unsigned NumOperands = MCID->getNumOperands();
833  if (!MCID->isVariadic())
834    return NumOperands;
835
836  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
837    const MachineOperand &MO = getOperand(i);
838    if (!MO.isReg() || !MO.isImplicit())
839      NumOperands++;
840  }
841  return NumOperands;
842}
843
844bool MachineInstr::isStackAligningInlineAsm() const {
845  if (isInlineAsm()) {
846    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
847    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
848      return true;
849  }
850  return false;
851}
852
853/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
854/// the specific register or -1 if it is not found. It further tightens
855/// the search criteria to a use that kills the register if isKill is true.
856int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
857                                          const TargetRegisterInfo *TRI) const {
858  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
859    const MachineOperand &MO = getOperand(i);
860    if (!MO.isReg() || !MO.isUse())
861      continue;
862    unsigned MOReg = MO.getReg();
863    if (!MOReg)
864      continue;
865    if (MOReg == Reg ||
866        (TRI &&
867         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
868         TargetRegisterInfo::isPhysicalRegister(Reg) &&
869         TRI->isSubRegister(MOReg, Reg)))
870      if (!isKill || MO.isKill())
871        return i;
872  }
873  return -1;
874}
875
876/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
877/// indicating if this instruction reads or writes Reg. This also considers
878/// partial defines.
879std::pair<bool,bool>
880MachineInstr::readsWritesVirtualRegister(unsigned Reg,
881                                         SmallVectorImpl<unsigned> *Ops) const {
882  bool PartDef = false; // Partial redefine.
883  bool FullDef = false; // Full define.
884  bool Use = false;
885
886  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
887    const MachineOperand &MO = getOperand(i);
888    if (!MO.isReg() || MO.getReg() != Reg)
889      continue;
890    if (Ops)
891      Ops->push_back(i);
892    if (MO.isUse())
893      Use |= !MO.isUndef();
894    else if (MO.getSubReg())
895      PartDef = true;
896    else
897      FullDef = true;
898  }
899  // A partial redefine uses Reg unless there is also a full define.
900  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
901}
902
903/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
904/// the specified register or -1 if it is not found. If isDead is true, defs
905/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
906/// also checks if there is a def of a super-register.
907int
908MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
909                                        const TargetRegisterInfo *TRI) const {
910  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
911  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
912    const MachineOperand &MO = getOperand(i);
913    if (!MO.isReg() || !MO.isDef())
914      continue;
915    unsigned MOReg = MO.getReg();
916    bool Found = (MOReg == Reg);
917    if (!Found && TRI && isPhys &&
918        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
919      if (Overlap)
920        Found = TRI->regsOverlap(MOReg, Reg);
921      else
922        Found = TRI->isSubRegister(MOReg, Reg);
923    }
924    if (Found && (!isDead || MO.isDead()))
925      return i;
926  }
927  return -1;
928}
929
930/// findFirstPredOperandIdx() - Find the index of the first operand in the
931/// operand list that is used to represent the predicate. It returns -1 if
932/// none is found.
933int MachineInstr::findFirstPredOperandIdx() const {
934  const MCInstrDesc &MCID = getDesc();
935  if (MCID.isPredicable()) {
936    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
937      if (MCID.OpInfo[i].isPredicate())
938        return i;
939  }
940
941  return -1;
942}
943
944/// isRegTiedToUseOperand - Given the index of a register def operand,
945/// check if the register def is tied to a source operand, due to either
946/// two-address elimination or inline assembly constraints. Returns the
947/// first tied use operand index by reference is UseOpIdx is not null.
948bool MachineInstr::
949isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
950  if (isInlineAsm()) {
951    assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
952    const MachineOperand &MO = getOperand(DefOpIdx);
953    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
954      return false;
955    // Determine the actual operand index that corresponds to this index.
956    unsigned DefNo = 0;
957    unsigned DefPart = 0;
958    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
959         i < e; ) {
960      const MachineOperand &FMO = getOperand(i);
961      // After the normal asm operands there may be additional imp-def regs.
962      if (!FMO.isImm())
963        return false;
964      // Skip over this def.
965      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
966      unsigned PrevDef = i + 1;
967      i = PrevDef + NumOps;
968      if (i > DefOpIdx) {
969        DefPart = DefOpIdx - PrevDef;
970        break;
971      }
972      ++DefNo;
973    }
974    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
975         i != e; ++i) {
976      const MachineOperand &FMO = getOperand(i);
977      if (!FMO.isImm())
978        continue;
979      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
980        continue;
981      unsigned Idx;
982      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
983          Idx == DefNo) {
984        if (UseOpIdx)
985          *UseOpIdx = (unsigned)i + 1 + DefPart;
986        return true;
987      }
988    }
989    return false;
990  }
991
992  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
993  const MCInstrDesc &MCID = getDesc();
994  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
995    const MachineOperand &MO = getOperand(i);
996    if (MO.isReg() && MO.isUse() &&
997        MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
998      if (UseOpIdx)
999        *UseOpIdx = (unsigned)i;
1000      return true;
1001    }
1002  }
1003  return false;
1004}
1005
1006/// isRegTiedToDefOperand - Return true if the operand of the specified index
1007/// is a register use and it is tied to an def operand. It also returns the def
1008/// operand index by reference.
1009bool MachineInstr::
1010isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1011  if (isInlineAsm()) {
1012    const MachineOperand &MO = getOperand(UseOpIdx);
1013    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1014      return false;
1015
1016    // Find the flag operand corresponding to UseOpIdx
1017    unsigned FlagIdx, NumOps=0;
1018    for (FlagIdx = InlineAsm::MIOp_FirstOperand;
1019         FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
1020      const MachineOperand &UFMO = getOperand(FlagIdx);
1021      // After the normal asm operands there may be additional imp-def regs.
1022      if (!UFMO.isImm())
1023        return false;
1024      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
1025      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
1026      if (UseOpIdx < FlagIdx+NumOps+1)
1027        break;
1028    }
1029    if (FlagIdx >= UseOpIdx)
1030      return false;
1031    const MachineOperand &UFMO = getOperand(FlagIdx);
1032    unsigned DefNo;
1033    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1034      if (!DefOpIdx)
1035        return true;
1036
1037      unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1038      // Remember to adjust the index. First operand is asm string, second is
1039      // the HasSideEffects and AlignStack bits, then there is a flag for each.
1040      while (DefNo) {
1041        const MachineOperand &FMO = getOperand(DefIdx);
1042        assert(FMO.isImm());
1043        // Skip over this def.
1044        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1045        --DefNo;
1046      }
1047      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1048      return true;
1049    }
1050    return false;
1051  }
1052
1053  const MCInstrDesc &MCID = getDesc();
1054  if (UseOpIdx >= MCID.getNumOperands())
1055    return false;
1056  const MachineOperand &MO = getOperand(UseOpIdx);
1057  if (!MO.isReg() || !MO.isUse())
1058    return false;
1059  int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1060  if (DefIdx == -1)
1061    return false;
1062  if (DefOpIdx)
1063    *DefOpIdx = (unsigned)DefIdx;
1064  return true;
1065}
1066
1067/// clearKillInfo - Clears kill flags on all operands.
1068///
1069void MachineInstr::clearKillInfo() {
1070  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1071    MachineOperand &MO = getOperand(i);
1072    if (MO.isReg() && MO.isUse())
1073      MO.setIsKill(false);
1074  }
1075}
1076
1077/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1078///
1079void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1080  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1081    const MachineOperand &MO = MI->getOperand(i);
1082    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1083      continue;
1084    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1085      MachineOperand &MOp = getOperand(j);
1086      if (!MOp.isIdenticalTo(MO))
1087        continue;
1088      if (MO.isKill())
1089        MOp.setIsKill();
1090      else
1091        MOp.setIsDead();
1092      break;
1093    }
1094  }
1095}
1096
1097/// copyPredicates - Copies predicate operand(s) from MI.
1098void MachineInstr::copyPredicates(const MachineInstr *MI) {
1099  const MCInstrDesc &MCID = MI->getDesc();
1100  if (!MCID.isPredicable())
1101    return;
1102  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1103    if (MCID.OpInfo[i].isPredicate()) {
1104      // Predicated operands must be last operands.
1105      addOperand(MI->getOperand(i));
1106    }
1107  }
1108}
1109
1110void MachineInstr::substituteRegister(unsigned FromReg,
1111                                      unsigned ToReg,
1112                                      unsigned SubIdx,
1113                                      const TargetRegisterInfo &RegInfo) {
1114  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1115    if (SubIdx)
1116      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1117    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1118      MachineOperand &MO = getOperand(i);
1119      if (!MO.isReg() || MO.getReg() != FromReg)
1120        continue;
1121      MO.substPhysReg(ToReg, RegInfo);
1122    }
1123  } else {
1124    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1125      MachineOperand &MO = getOperand(i);
1126      if (!MO.isReg() || MO.getReg() != FromReg)
1127        continue;
1128      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1129    }
1130  }
1131}
1132
1133/// isSafeToMove - Return true if it is safe to move this instruction. If
1134/// SawStore is set to true, it means that there is a store (or call) between
1135/// the instruction's location and its intended destination.
1136bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1137                                AliasAnalysis *AA,
1138                                bool &SawStore) const {
1139  // Ignore stuff that we obviously can't move.
1140  if (MCID->mayStore() || MCID->isCall()) {
1141    SawStore = true;
1142    return false;
1143  }
1144
1145  if (isLabel() || isDebugValue() ||
1146      MCID->isTerminator() || hasUnmodeledSideEffects())
1147    return false;
1148
1149  // See if this instruction does a load.  If so, we have to guarantee that the
1150  // loaded value doesn't change between the load and the its intended
1151  // destination. The check for isInvariantLoad gives the targe the chance to
1152  // classify the load as always returning a constant, e.g. a constant pool
1153  // load.
1154  if (MCID->mayLoad() && !isInvariantLoad(AA))
1155    // Otherwise, this is a real load.  If there is a store between the load and
1156    // end of block, or if the load is volatile, we can't move it.
1157    return !SawStore && !hasVolatileMemoryRef();
1158
1159  return true;
1160}
1161
1162/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1163/// instruction which defined the specified register instead of copying it.
1164bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1165                                 AliasAnalysis *AA,
1166                                 unsigned DstReg) const {
1167  bool SawStore = false;
1168  if (!TII->isTriviallyReMaterializable(this, AA) ||
1169      !isSafeToMove(TII, AA, SawStore))
1170    return false;
1171  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1172    const MachineOperand &MO = getOperand(i);
1173    if (!MO.isReg())
1174      continue;
1175    // FIXME: For now, do not remat any instruction with register operands.
1176    // Later on, we can loosen the restriction is the register operands have
1177    // not been modified between the def and use. Note, this is different from
1178    // MachineSink because the code is no longer in two-address form (at least
1179    // partially).
1180    if (MO.isUse())
1181      return false;
1182    else if (!MO.isDead() && MO.getReg() != DstReg)
1183      return false;
1184  }
1185  return true;
1186}
1187
1188/// hasVolatileMemoryRef - Return true if this instruction may have a
1189/// volatile memory reference, or if the information describing the
1190/// memory reference is not available. Return false if it is known to
1191/// have no volatile memory references.
1192bool MachineInstr::hasVolatileMemoryRef() const {
1193  // An instruction known never to access memory won't have a volatile access.
1194  if (!MCID->mayStore() &&
1195      !MCID->mayLoad() &&
1196      !MCID->isCall() &&
1197      !hasUnmodeledSideEffects())
1198    return false;
1199
1200  // Otherwise, if the instruction has no memory reference information,
1201  // conservatively assume it wasn't preserved.
1202  if (memoperands_empty())
1203    return true;
1204
1205  // Check the memory reference information for volatile references.
1206  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1207    if ((*I)->isVolatile())
1208      return true;
1209
1210  return false;
1211}
1212
1213/// isInvariantLoad - Return true if this instruction is loading from a
1214/// location whose value is invariant across the function.  For example,
1215/// loading a value from the constant pool or from the argument area
1216/// of a function if it does not change.  This should only return true of
1217/// *all* loads the instruction does are invariant (if it does multiple loads).
1218bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1219  // If the instruction doesn't load at all, it isn't an invariant load.
1220  if (!MCID->mayLoad())
1221    return false;
1222
1223  // If the instruction has lost its memoperands, conservatively assume that
1224  // it may not be an invariant load.
1225  if (memoperands_empty())
1226    return false;
1227
1228  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1229
1230  for (mmo_iterator I = memoperands_begin(),
1231       E = memoperands_end(); I != E; ++I) {
1232    if ((*I)->isVolatile()) return false;
1233    if ((*I)->isStore()) return false;
1234
1235    if (const Value *V = (*I)->getValue()) {
1236      // A load from a constant PseudoSourceValue is invariant.
1237      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1238        if (PSV->isConstant(MFI))
1239          continue;
1240      // If we have an AliasAnalysis, ask it whether the memory is constant.
1241      if (AA && AA->pointsToConstantMemory(
1242                      AliasAnalysis::Location(V, (*I)->getSize(),
1243                                              (*I)->getTBAAInfo())))
1244        continue;
1245    }
1246
1247    // Otherwise assume conservatively.
1248    return false;
1249  }
1250
1251  // Everything checks out.
1252  return true;
1253}
1254
1255/// isConstantValuePHI - If the specified instruction is a PHI that always
1256/// merges together the same virtual register, return the register, otherwise
1257/// return 0.
1258unsigned MachineInstr::isConstantValuePHI() const {
1259  if (!isPHI())
1260    return 0;
1261  assert(getNumOperands() >= 3 &&
1262         "It's illegal to have a PHI without source operands");
1263
1264  unsigned Reg = getOperand(1).getReg();
1265  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1266    if (getOperand(i).getReg() != Reg)
1267      return 0;
1268  return Reg;
1269}
1270
1271bool MachineInstr::hasUnmodeledSideEffects() const {
1272  if (getDesc().hasUnmodeledSideEffects())
1273    return true;
1274  if (isInlineAsm()) {
1275    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1276    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1277      return true;
1278  }
1279
1280  return false;
1281}
1282
1283/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1284///
1285bool MachineInstr::allDefsAreDead() const {
1286  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1287    const MachineOperand &MO = getOperand(i);
1288    if (!MO.isReg() || MO.isUse())
1289      continue;
1290    if (!MO.isDead())
1291      return false;
1292  }
1293  return true;
1294}
1295
1296/// copyImplicitOps - Copy implicit register operands from specified
1297/// instruction to this instruction.
1298void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1299  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1300       i != e; ++i) {
1301    const MachineOperand &MO = MI->getOperand(i);
1302    if (MO.isReg() && MO.isImplicit())
1303      addOperand(MO);
1304  }
1305}
1306
1307void MachineInstr::dump() const {
1308  dbgs() << "  " << *this;
1309}
1310
1311static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1312                         raw_ostream &CommentOS) {
1313  const LLVMContext &Ctx = MF->getFunction()->getContext();
1314  if (!DL.isUnknown()) {          // Print source line info.
1315    DIScope Scope(DL.getScope(Ctx));
1316    // Omit the directory, because it's likely to be long and uninteresting.
1317    if (Scope.Verify())
1318      CommentOS << Scope.getFilename();
1319    else
1320      CommentOS << "<unknown>";
1321    CommentOS << ':' << DL.getLine();
1322    if (DL.getCol() != 0)
1323      CommentOS << ':' << DL.getCol();
1324    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1325    if (!InlinedAtDL.isUnknown()) {
1326      CommentOS << " @[ ";
1327      printDebugLoc(InlinedAtDL, MF, CommentOS);
1328      CommentOS << " ]";
1329    }
1330  }
1331}
1332
1333void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1334  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1335  const MachineFunction *MF = 0;
1336  const MachineRegisterInfo *MRI = 0;
1337  if (const MachineBasicBlock *MBB = getParent()) {
1338    MF = MBB->getParent();
1339    if (!TM && MF)
1340      TM = &MF->getTarget();
1341    if (MF)
1342      MRI = &MF->getRegInfo();
1343  }
1344
1345  // Save a list of virtual registers.
1346  SmallVector<unsigned, 8> VirtRegs;
1347
1348  // Print explicitly defined operands on the left of an assignment syntax.
1349  unsigned StartOp = 0, e = getNumOperands();
1350  for (; StartOp < e && getOperand(StartOp).isReg() &&
1351         getOperand(StartOp).isDef() &&
1352         !getOperand(StartOp).isImplicit();
1353       ++StartOp) {
1354    if (StartOp != 0) OS << ", ";
1355    getOperand(StartOp).print(OS, TM);
1356    unsigned Reg = getOperand(StartOp).getReg();
1357    if (TargetRegisterInfo::isVirtualRegister(Reg))
1358      VirtRegs.push_back(Reg);
1359  }
1360
1361  if (StartOp != 0)
1362    OS << " = ";
1363
1364  // Print the opcode name.
1365  OS << getDesc().getName();
1366
1367  // Print the rest of the operands.
1368  bool OmittedAnyCallClobbers = false;
1369  bool FirstOp = true;
1370  unsigned AsmDescOp = ~0u;
1371  unsigned AsmOpCount = 0;
1372
1373  if (isInlineAsm()) {
1374    // Print asm string.
1375    OS << " ";
1376    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1377
1378    // Print HasSideEffects, IsAlignStack
1379    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1380    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1381      OS << " [sideeffect]";
1382    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1383      OS << " [alignstack]";
1384
1385    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1386    FirstOp = false;
1387  }
1388
1389
1390  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1391    const MachineOperand &MO = getOperand(i);
1392
1393    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1394      VirtRegs.push_back(MO.getReg());
1395
1396    // Omit call-clobbered registers which aren't used anywhere. This makes
1397    // call instructions much less noisy on targets where calls clobber lots
1398    // of registers. Don't rely on MO.isDead() because we may be called before
1399    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1400    if (MF && getDesc().isCall() &&
1401        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1402      unsigned Reg = MO.getReg();
1403      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1404        const MachineRegisterInfo &MRI = MF->getRegInfo();
1405        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1406          bool HasAliasLive = false;
1407          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1408               unsigned AliasReg = *Alias; ++Alias)
1409            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1410              HasAliasLive = true;
1411              break;
1412            }
1413          if (!HasAliasLive) {
1414            OmittedAnyCallClobbers = true;
1415            continue;
1416          }
1417        }
1418      }
1419    }
1420
1421    if (FirstOp) FirstOp = false; else OS << ",";
1422    OS << " ";
1423    if (i < getDesc().NumOperands) {
1424      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1425      if (MCOI.isPredicate())
1426        OS << "pred:";
1427      if (MCOI.isOptionalDef())
1428        OS << "opt:";
1429    }
1430    if (isDebugValue() && MO.isMetadata()) {
1431      // Pretty print DBG_VALUE instructions.
1432      const MDNode *MD = MO.getMetadata();
1433      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1434        OS << "!\"" << MDS->getString() << '\"';
1435      else
1436        MO.print(OS, TM);
1437    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1438      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1439    } else if (i == AsmDescOp && MO.isImm()) {
1440      // Pretty print the inline asm operand descriptor.
1441      OS << '$' << AsmOpCount++;
1442      unsigned Flag = MO.getImm();
1443      switch (InlineAsm::getKind(Flag)) {
1444      case InlineAsm::Kind_RegUse:             OS << ":[reguse]"; break;
1445      case InlineAsm::Kind_RegDef:             OS << ":[regdef]"; break;
1446      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break;
1447      case InlineAsm::Kind_Clobber:            OS << ":[clobber]"; break;
1448      case InlineAsm::Kind_Imm:                OS << ":[imm]"; break;
1449      case InlineAsm::Kind_Mem:                OS << ":[mem]"; break;
1450      default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break;
1451      }
1452
1453      unsigned TiedTo = 0;
1454      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1455        OS << " [tiedto:$" << TiedTo << ']';
1456
1457      // Compute the index of the next operand descriptor.
1458      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1459    } else
1460      MO.print(OS, TM);
1461  }
1462
1463  // Briefly indicate whether any call clobbers were omitted.
1464  if (OmittedAnyCallClobbers) {
1465    if (!FirstOp) OS << ",";
1466    OS << " ...";
1467  }
1468
1469  bool HaveSemi = false;
1470  if (Flags) {
1471    if (!HaveSemi) OS << ";"; HaveSemi = true;
1472    OS << " flags: ";
1473
1474    if (Flags & FrameSetup)
1475      OS << "FrameSetup";
1476  }
1477
1478  if (!memoperands_empty()) {
1479    if (!HaveSemi) OS << ";"; HaveSemi = true;
1480
1481    OS << " mem:";
1482    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1483         i != e; ++i) {
1484      OS << **i;
1485      if (llvm::next(i) != e)
1486        OS << " ";
1487    }
1488  }
1489
1490  // Print the regclass of any virtual registers encountered.
1491  if (MRI && !VirtRegs.empty()) {
1492    if (!HaveSemi) OS << ";"; HaveSemi = true;
1493    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1494      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1495      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1496      for (unsigned j = i+1; j != VirtRegs.size();) {
1497        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1498          ++j;
1499          continue;
1500        }
1501        if (VirtRegs[i] != VirtRegs[j])
1502          OS << "," << PrintReg(VirtRegs[j]);
1503        VirtRegs.erase(VirtRegs.begin()+j);
1504      }
1505    }
1506  }
1507
1508  // Print debug location information.
1509  if (!debugLoc.isUnknown() && MF) {
1510    if (!HaveSemi) OS << ";"; HaveSemi = true;
1511    OS << " dbg:";
1512    printDebugLoc(debugLoc, MF, OS);
1513  }
1514
1515  OS << '\n';
1516}
1517
1518bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1519                                     const TargetRegisterInfo *RegInfo,
1520                                     bool AddIfNotFound) {
1521  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1522  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1523  bool Found = false;
1524  SmallVector<unsigned,4> DeadOps;
1525  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1526    MachineOperand &MO = getOperand(i);
1527    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1528      continue;
1529    unsigned Reg = MO.getReg();
1530    if (!Reg)
1531      continue;
1532
1533    if (Reg == IncomingReg) {
1534      if (!Found) {
1535        if (MO.isKill())
1536          // The register is already marked kill.
1537          return true;
1538        if (isPhysReg && isRegTiedToDefOperand(i))
1539          // Two-address uses of physregs must not be marked kill.
1540          return true;
1541        MO.setIsKill();
1542        Found = true;
1543      }
1544    } else if (hasAliases && MO.isKill() &&
1545               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1546      // A super-register kill already exists.
1547      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1548        return true;
1549      if (RegInfo->isSubRegister(IncomingReg, Reg))
1550        DeadOps.push_back(i);
1551    }
1552  }
1553
1554  // Trim unneeded kill operands.
1555  while (!DeadOps.empty()) {
1556    unsigned OpIdx = DeadOps.back();
1557    if (getOperand(OpIdx).isImplicit())
1558      RemoveOperand(OpIdx);
1559    else
1560      getOperand(OpIdx).setIsKill(false);
1561    DeadOps.pop_back();
1562  }
1563
1564  // If not found, this means an alias of one of the operands is killed. Add a
1565  // new implicit operand if required.
1566  if (!Found && AddIfNotFound) {
1567    addOperand(MachineOperand::CreateReg(IncomingReg,
1568                                         false /*IsDef*/,
1569                                         true  /*IsImp*/,
1570                                         true  /*IsKill*/));
1571    return true;
1572  }
1573  return Found;
1574}
1575
1576bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1577                                   const TargetRegisterInfo *RegInfo,
1578                                   bool AddIfNotFound) {
1579  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1580  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1581  bool Found = false;
1582  SmallVector<unsigned,4> DeadOps;
1583  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1584    MachineOperand &MO = getOperand(i);
1585    if (!MO.isReg() || !MO.isDef())
1586      continue;
1587    unsigned Reg = MO.getReg();
1588    if (!Reg)
1589      continue;
1590
1591    if (Reg == IncomingReg) {
1592      MO.setIsDead();
1593      Found = true;
1594    } else if (hasAliases && MO.isDead() &&
1595               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1596      // There exists a super-register that's marked dead.
1597      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1598        return true;
1599      if (RegInfo->getSubRegisters(IncomingReg) &&
1600          RegInfo->getSuperRegisters(Reg) &&
1601          RegInfo->isSubRegister(IncomingReg, Reg))
1602        DeadOps.push_back(i);
1603    }
1604  }
1605
1606  // Trim unneeded dead operands.
1607  while (!DeadOps.empty()) {
1608    unsigned OpIdx = DeadOps.back();
1609    if (getOperand(OpIdx).isImplicit())
1610      RemoveOperand(OpIdx);
1611    else
1612      getOperand(OpIdx).setIsDead(false);
1613    DeadOps.pop_back();
1614  }
1615
1616  // If not found, this means an alias of one of the operands is dead. Add a
1617  // new implicit operand if required.
1618  if (Found || !AddIfNotFound)
1619    return Found;
1620
1621  addOperand(MachineOperand::CreateReg(IncomingReg,
1622                                       true  /*IsDef*/,
1623                                       true  /*IsImp*/,
1624                                       false /*IsKill*/,
1625                                       true  /*IsDead*/));
1626  return true;
1627}
1628
1629void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1630                                      const TargetRegisterInfo *RegInfo) {
1631  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1632    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1633    if (MO)
1634      return;
1635  } else {
1636    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1637      const MachineOperand &MO = getOperand(i);
1638      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1639          MO.getSubReg() == 0)
1640        return;
1641    }
1642  }
1643  addOperand(MachineOperand::CreateReg(IncomingReg,
1644                                       true  /*IsDef*/,
1645                                       true  /*IsImp*/));
1646}
1647
1648void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1649                                         const TargetRegisterInfo &TRI) {
1650  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1651    MachineOperand &MO = getOperand(i);
1652    if (!MO.isReg() || !MO.isDef()) continue;
1653    unsigned Reg = MO.getReg();
1654    if (Reg == 0) continue;
1655    bool Dead = true;
1656    for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1657         E = UsedRegs.end(); I != E; ++I)
1658      if (TRI.regsOverlap(*I, Reg)) {
1659        Dead = false;
1660        break;
1661      }
1662    // If there are no uses, including partial uses, the def is dead.
1663    if (Dead) MO.setIsDead();
1664  }
1665}
1666
1667unsigned
1668MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1669  unsigned Hash = MI->getOpcode() * 37;
1670  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1671    const MachineOperand &MO = MI->getOperand(i);
1672    uint64_t Key = (uint64_t)MO.getType() << 32;
1673    switch (MO.getType()) {
1674    default: break;
1675    case MachineOperand::MO_Register:
1676      if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1677        continue;  // Skip virtual register defs.
1678      Key |= MO.getReg();
1679      break;
1680    case MachineOperand::MO_Immediate:
1681      Key |= MO.getImm();
1682      break;
1683    case MachineOperand::MO_FrameIndex:
1684    case MachineOperand::MO_ConstantPoolIndex:
1685    case MachineOperand::MO_JumpTableIndex:
1686      Key |= MO.getIndex();
1687      break;
1688    case MachineOperand::MO_MachineBasicBlock:
1689      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1690      break;
1691    case MachineOperand::MO_GlobalAddress:
1692      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1693      break;
1694    case MachineOperand::MO_BlockAddress:
1695      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1696      break;
1697    case MachineOperand::MO_MCSymbol:
1698      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1699      break;
1700    }
1701    Key += ~(Key << 32);
1702    Key ^= (Key >> 22);
1703    Key += ~(Key << 13);
1704    Key ^= (Key >> 8);
1705    Key += (Key << 3);
1706    Key ^= (Key >> 15);
1707    Key += ~(Key << 27);
1708    Key ^= (Key >> 31);
1709    Hash = (unsigned)Key + Hash * 37;
1710  }
1711  return Hash;
1712}
1713