MachineInstr.cpp revision f9ca50e3dce88b2f9e2f2f0cac2d3ed78afda841
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/InlineAsm.h"
17#include "llvm/Value.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetMachine.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetInstrDesc.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/LeakDetector.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/FoldingSet.h"
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34// MachineOperand Implementation
35//===----------------------------------------------------------------------===//
36
37/// AddRegOperandToRegInfo - Add this register operand to the specified
38/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
39/// explicitly nulled out.
40void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
41  assert(isReg() && "Can only add reg operand to use lists");
42
43  // If the reginfo pointer is null, just explicitly null out or next/prev
44  // pointers, to ensure they are not garbage.
45  if (RegInfo == 0) {
46    Contents.Reg.Prev = 0;
47    Contents.Reg.Next = 0;
48    return;
49  }
50
51  // Otherwise, add this operand to the head of the registers use/def list.
52  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
53
54  // For SSA values, we prefer to keep the definition at the start of the list.
55  // we do this by skipping over the definition if it is at the head of the
56  // list.
57  if (*Head && (*Head)->isDef())
58    Head = &(*Head)->Contents.Reg.Next;
59
60  Contents.Reg.Next = *Head;
61  if (Contents.Reg.Next) {
62    assert(getReg() == Contents.Reg.Next->getReg() &&
63           "Different regs on the same list!");
64    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
65  }
66
67  Contents.Reg.Prev = Head;
68  *Head = this;
69}
70
71/// RemoveRegOperandFromRegInfo - Remove this register operand from the
72/// MachineRegisterInfo it is linked with.
73void MachineOperand::RemoveRegOperandFromRegInfo() {
74  assert(isOnRegUseList() && "Reg operand is not on a use list");
75  // Unlink this from the doubly linked list of operands.
76  MachineOperand *NextOp = Contents.Reg.Next;
77  *Contents.Reg.Prev = NextOp;
78  if (NextOp) {
79    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
80    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
81  }
82  Contents.Reg.Prev = 0;
83  Contents.Reg.Next = 0;
84}
85
86void MachineOperand::setReg(unsigned Reg) {
87  if (getReg() == Reg) return; // No change.
88
89  // Otherwise, we have to change the register.  If this operand is embedded
90  // into a machine function, we need to update the old and new register's
91  // use/def lists.
92  if (MachineInstr *MI = getParent())
93    if (MachineBasicBlock *MBB = MI->getParent())
94      if (MachineFunction *MF = MBB->getParent()) {
95        RemoveRegOperandFromRegInfo();
96        Contents.Reg.RegNo = Reg;
97        AddRegOperandToRegInfo(&MF->getRegInfo());
98        return;
99      }
100
101  // Otherwise, just change the register, no problem.  :)
102  Contents.Reg.RegNo = Reg;
103}
104
105/// ChangeToImmediate - Replace this operand with a new immediate operand of
106/// the specified value.  If an operand is known to be an immediate already,
107/// the setImm method should be used.
108void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
109  // If this operand is currently a register operand, and if this is in a
110  // function, deregister the operand from the register's use/def list.
111  if (isReg() && getParent() && getParent()->getParent() &&
112      getParent()->getParent()->getParent())
113    RemoveRegOperandFromRegInfo();
114
115  OpKind = MO_Immediate;
116  Contents.ImmVal = ImmVal;
117}
118
119/// ChangeToRegister - Replace this operand with a new register operand of
120/// the specified value.  If an operand is known to be an register already,
121/// the setReg method should be used.
122void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
123                                      bool isKill, bool isDead, bool isUndef) {
124  // If this operand is already a register operand, use setReg to update the
125  // register's use/def lists.
126  if (isReg()) {
127    assert(!isEarlyClobber());
128    setReg(Reg);
129  } else {
130    // Otherwise, change this to a register and set the reg#.
131    OpKind = MO_Register;
132    Contents.Reg.RegNo = Reg;
133
134    // If this operand is embedded in a function, add the operand to the
135    // register's use/def list.
136    if (MachineInstr *MI = getParent())
137      if (MachineBasicBlock *MBB = MI->getParent())
138        if (MachineFunction *MF = MBB->getParent())
139          AddRegOperandToRegInfo(&MF->getRegInfo());
140  }
141
142  IsDef = isDef;
143  IsImp = isImp;
144  IsKill = isKill;
145  IsDead = isDead;
146  IsUndef = isUndef;
147  IsEarlyClobber = false;
148  SubReg = 0;
149}
150
151/// isIdenticalTo - Return true if this operand is identical to the specified
152/// operand.
153bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
154  if (getType() != Other.getType() ||
155      getTargetFlags() != Other.getTargetFlags())
156    return false;
157
158  switch (getType()) {
159  default: llvm_unreachable("Unrecognized operand type");
160  case MachineOperand::MO_Register:
161    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
162           getSubReg() == Other.getSubReg();
163  case MachineOperand::MO_Immediate:
164    return getImm() == Other.getImm();
165  case MachineOperand::MO_FPImmediate:
166    return getFPImm() == Other.getFPImm();
167  case MachineOperand::MO_MachineBasicBlock:
168    return getMBB() == Other.getMBB();
169  case MachineOperand::MO_FrameIndex:
170    return getIndex() == Other.getIndex();
171  case MachineOperand::MO_ConstantPoolIndex:
172    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
173  case MachineOperand::MO_JumpTableIndex:
174    return getIndex() == Other.getIndex();
175  case MachineOperand::MO_GlobalAddress:
176    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
177  case MachineOperand::MO_ExternalSymbol:
178    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
179           getOffset() == Other.getOffset();
180  }
181}
182
183/// print - Print the specified machine operand.
184///
185void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
186  switch (getType()) {
187  case MachineOperand::MO_Register:
188    if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
189      OS << "%reg" << getReg();
190    } else {
191      // If the instruction is embedded into a basic block, we can find the
192      // target info for the instruction.
193      if (TM == 0)
194        if (const MachineInstr *MI = getParent())
195          if (const MachineBasicBlock *MBB = MI->getParent())
196            if (const MachineFunction *MF = MBB->getParent())
197              TM = &MF->getTarget();
198
199      if (TM)
200        OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
201      else
202        OS << "%mreg" << getReg();
203    }
204
205    if (getSubReg() != 0)
206      OS << ':' << getSubReg();
207
208    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
209        isEarlyClobber()) {
210      OS << '<';
211      bool NeedComma = false;
212      if (isImplicit()) {
213        if (NeedComma) OS << ',';
214        OS << (isDef() ? "imp-def" : "imp-use");
215        NeedComma = true;
216      } else if (isDef()) {
217        if (NeedComma) OS << ',';
218        if (isEarlyClobber())
219          OS << "earlyclobber,";
220        OS << "def";
221        NeedComma = true;
222      }
223      if (isKill() || isDead() || isUndef()) {
224        if (NeedComma) OS << ',';
225        if (isKill())  OS << "kill";
226        if (isDead())  OS << "dead";
227        if (isUndef()) {
228          if (isKill() || isDead())
229            OS << ',';
230          OS << "undef";
231        }
232      }
233      OS << '>';
234    }
235    break;
236  case MachineOperand::MO_Immediate:
237    OS << getImm();
238    break;
239  case MachineOperand::MO_FPImmediate:
240    if (getFPImm()->getType() == Type::getFloatTy(getFPImm()->getContext()))
241      OS << getFPImm()->getValueAPF().convertToFloat();
242    else
243      OS << getFPImm()->getValueAPF().convertToDouble();
244    break;
245  case MachineOperand::MO_MachineBasicBlock:
246    OS << "mbb<"
247       << ((Value*)getMBB()->getBasicBlock())->getName()
248       << "," << (void*)getMBB() << '>';
249    break;
250  case MachineOperand::MO_FrameIndex:
251    OS << "<fi#" << getIndex() << '>';
252    break;
253  case MachineOperand::MO_ConstantPoolIndex:
254    OS << "<cp#" << getIndex();
255    if (getOffset()) OS << "+" << getOffset();
256    OS << '>';
257    break;
258  case MachineOperand::MO_JumpTableIndex:
259    OS << "<jt#" << getIndex() << '>';
260    break;
261  case MachineOperand::MO_GlobalAddress:
262    OS << "<ga:" << ((Value*)getGlobal())->getName();
263    if (getOffset()) OS << "+" << getOffset();
264    OS << '>';
265    break;
266  case MachineOperand::MO_ExternalSymbol:
267    OS << "<es:" << getSymbolName();
268    if (getOffset()) OS << "+" << getOffset();
269    OS << '>';
270    break;
271  default:
272    llvm_unreachable("Unrecognized operand type");
273  }
274
275  if (unsigned TF = getTargetFlags())
276    OS << "[TF=" << TF << ']';
277}
278
279//===----------------------------------------------------------------------===//
280// MachineMemOperand Implementation
281//===----------------------------------------------------------------------===//
282
283MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
284                                     int64_t o, uint64_t s, unsigned int a)
285  : Offset(o), Size(s), V(v),
286    Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
287  assert(isPowerOf2_32(a) && "Alignment is not a power of 2!");
288  assert((isLoad() || isStore()) && "Not a load/store!");
289}
290
291/// Profile - Gather unique data for the object.
292///
293void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
294  ID.AddInteger(Offset);
295  ID.AddInteger(Size);
296  ID.AddPointer(V);
297  ID.AddInteger(Flags);
298}
299
300//===----------------------------------------------------------------------===//
301// MachineInstr Implementation
302//===----------------------------------------------------------------------===//
303
304/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
305/// TID NULL and no operands.
306MachineInstr::MachineInstr()
307  : TID(0), NumImplicitOps(0), Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
308  // Make sure that we get added to a machine basicblock
309  LeakDetector::addGarbageObject(this);
310}
311
312void MachineInstr::addImplicitDefUseOperands() {
313  if (TID->ImplicitDefs)
314    for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
315      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
316  if (TID->ImplicitUses)
317    for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
318      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
319}
320
321/// MachineInstr ctor - This constructor create a MachineInstr and add the
322/// implicit operands. It reserves space for number of operands specified by
323/// TargetInstrDesc or the numOperands if it is not zero. (for
324/// instructions with variable number of operands).
325MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
326  : TID(&tid), NumImplicitOps(0), Parent(0),
327    debugLoc(DebugLoc::getUnknownLoc()) {
328  if (!NoImp && TID->getImplicitDefs())
329    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
330      NumImplicitOps++;
331  if (!NoImp && TID->getImplicitUses())
332    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
333      NumImplicitOps++;
334  Operands.reserve(NumImplicitOps + TID->getNumOperands());
335  if (!NoImp)
336    addImplicitDefUseOperands();
337  // Make sure that we get added to a machine basicblock
338  LeakDetector::addGarbageObject(this);
339}
340
341/// MachineInstr ctor - As above, but with a DebugLoc.
342MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
343                           bool NoImp)
344  : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
345  if (!NoImp && TID->getImplicitDefs())
346    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
347      NumImplicitOps++;
348  if (!NoImp && TID->getImplicitUses())
349    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
350      NumImplicitOps++;
351  Operands.reserve(NumImplicitOps + TID->getNumOperands());
352  if (!NoImp)
353    addImplicitDefUseOperands();
354  // Make sure that we get added to a machine basicblock
355  LeakDetector::addGarbageObject(this);
356}
357
358/// MachineInstr ctor - Work exactly the same as the ctor two above, except
359/// that the MachineInstr is created and added to the end of the specified
360/// basic block.
361///
362MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
363  : TID(&tid), NumImplicitOps(0), Parent(0),
364    debugLoc(DebugLoc::getUnknownLoc()) {
365  assert(MBB && "Cannot use inserting ctor with null basic block!");
366  if (TID->ImplicitDefs)
367    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
368      NumImplicitOps++;
369  if (TID->ImplicitUses)
370    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
371      NumImplicitOps++;
372  Operands.reserve(NumImplicitOps + TID->getNumOperands());
373  addImplicitDefUseOperands();
374  // Make sure that we get added to a machine basicblock
375  LeakDetector::addGarbageObject(this);
376  MBB->push_back(this);  // Add instruction to end of basic block!
377}
378
379/// MachineInstr ctor - As above, but with a DebugLoc.
380///
381MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
382                           const TargetInstrDesc &tid)
383  : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
384  assert(MBB && "Cannot use inserting ctor with null basic block!");
385  if (TID->ImplicitDefs)
386    for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
387      NumImplicitOps++;
388  if (TID->ImplicitUses)
389    for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
390      NumImplicitOps++;
391  Operands.reserve(NumImplicitOps + TID->getNumOperands());
392  addImplicitDefUseOperands();
393  // Make sure that we get added to a machine basicblock
394  LeakDetector::addGarbageObject(this);
395  MBB->push_back(this);  // Add instruction to end of basic block!
396}
397
398/// MachineInstr ctor - Copies MachineInstr arg exactly
399///
400MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
401  : TID(&MI.getDesc()), NumImplicitOps(0), Parent(0),
402        debugLoc(MI.getDebugLoc()) {
403  Operands.reserve(MI.getNumOperands());
404
405  // Add operands
406  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
407    addOperand(MI.getOperand(i));
408  NumImplicitOps = MI.NumImplicitOps;
409
410  // Add memory operands.
411  for (std::list<MachineMemOperand>::const_iterator i = MI.memoperands_begin(),
412       j = MI.memoperands_end(); i != j; ++i)
413    addMemOperand(MF, *i);
414
415  // Set parent to null.
416  Parent = 0;
417
418  LeakDetector::addGarbageObject(this);
419}
420
421MachineInstr::~MachineInstr() {
422  LeakDetector::removeGarbageObject(this);
423  assert(MemOperands.empty() &&
424         "MachineInstr being deleted with live memoperands!");
425#ifndef NDEBUG
426  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
427    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
428    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
429           "Reg operand def/use list corrupted");
430  }
431#endif
432}
433
434/// getRegInfo - If this instruction is embedded into a MachineFunction,
435/// return the MachineRegisterInfo object for the current function, otherwise
436/// return null.
437MachineRegisterInfo *MachineInstr::getRegInfo() {
438  if (MachineBasicBlock *MBB = getParent())
439    return &MBB->getParent()->getRegInfo();
440  return 0;
441}
442
443/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
444/// this instruction from their respective use lists.  This requires that the
445/// operands already be on their use lists.
446void MachineInstr::RemoveRegOperandsFromUseLists() {
447  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
448    if (Operands[i].isReg())
449      Operands[i].RemoveRegOperandFromRegInfo();
450  }
451}
452
453/// AddRegOperandsToUseLists - Add all of the register operands in
454/// this instruction from their respective use lists.  This requires that the
455/// operands not be on their use lists yet.
456void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
457  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
458    if (Operands[i].isReg())
459      Operands[i].AddRegOperandToRegInfo(&RegInfo);
460  }
461}
462
463
464/// addOperand - Add the specified operand to the instruction.  If it is an
465/// implicit operand, it is added to the end of the operand list.  If it is
466/// an explicit operand it is added at the end of the explicit operand list
467/// (before the first implicit operand).
468void MachineInstr::addOperand(const MachineOperand &Op) {
469  bool isImpReg = Op.isReg() && Op.isImplicit();
470  assert((isImpReg || !OperandsComplete()) &&
471         "Trying to add an operand to a machine instr that is already done!");
472
473  MachineRegisterInfo *RegInfo = getRegInfo();
474
475  // If we are adding the operand to the end of the list, our job is simpler.
476  // This is true most of the time, so this is a reasonable optimization.
477  if (isImpReg || NumImplicitOps == 0) {
478    // We can only do this optimization if we know that the operand list won't
479    // reallocate.
480    if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
481      Operands.push_back(Op);
482
483      // Set the parent of the operand.
484      Operands.back().ParentMI = this;
485
486      // If the operand is a register, update the operand's use list.
487      if (Op.isReg())
488        Operands.back().AddRegOperandToRegInfo(RegInfo);
489      return;
490    }
491  }
492
493  // Otherwise, we have to insert a real operand before any implicit ones.
494  unsigned OpNo = Operands.size()-NumImplicitOps;
495
496  // If this instruction isn't embedded into a function, then we don't need to
497  // update any operand lists.
498  if (RegInfo == 0) {
499    // Simple insertion, no reginfo update needed for other register operands.
500    Operands.insert(Operands.begin()+OpNo, Op);
501    Operands[OpNo].ParentMI = this;
502
503    // Do explicitly set the reginfo for this operand though, to ensure the
504    // next/prev fields are properly nulled out.
505    if (Operands[OpNo].isReg())
506      Operands[OpNo].AddRegOperandToRegInfo(0);
507
508  } else if (Operands.size()+1 <= Operands.capacity()) {
509    // Otherwise, we have to remove register operands from their register use
510    // list, add the operand, then add the register operands back to their use
511    // list.  This also must handle the case when the operand list reallocates
512    // to somewhere else.
513
514    // If insertion of this operand won't cause reallocation of the operand
515    // list, just remove the implicit operands, add the operand, then re-add all
516    // the rest of the operands.
517    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
518      assert(Operands[i].isReg() && "Should only be an implicit reg!");
519      Operands[i].RemoveRegOperandFromRegInfo();
520    }
521
522    // Add the operand.  If it is a register, add it to the reg list.
523    Operands.insert(Operands.begin()+OpNo, Op);
524    Operands[OpNo].ParentMI = this;
525
526    if (Operands[OpNo].isReg())
527      Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
528
529    // Re-add all the implicit ops.
530    for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
531      assert(Operands[i].isReg() && "Should only be an implicit reg!");
532      Operands[i].AddRegOperandToRegInfo(RegInfo);
533    }
534  } else {
535    // Otherwise, we will be reallocating the operand list.  Remove all reg
536    // operands from their list, then readd them after the operand list is
537    // reallocated.
538    RemoveRegOperandsFromUseLists();
539
540    Operands.insert(Operands.begin()+OpNo, Op);
541    Operands[OpNo].ParentMI = this;
542
543    // Re-add all the operands.
544    AddRegOperandsToUseLists(*RegInfo);
545  }
546}
547
548/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
549/// fewer operand than it started with.
550///
551void MachineInstr::RemoveOperand(unsigned OpNo) {
552  assert(OpNo < Operands.size() && "Invalid operand number");
553
554  // Special case removing the last one.
555  if (OpNo == Operands.size()-1) {
556    // If needed, remove from the reg def/use list.
557    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
558      Operands.back().RemoveRegOperandFromRegInfo();
559
560    Operands.pop_back();
561    return;
562  }
563
564  // Otherwise, we are removing an interior operand.  If we have reginfo to
565  // update, remove all operands that will be shifted down from their reg lists,
566  // move everything down, then re-add them.
567  MachineRegisterInfo *RegInfo = getRegInfo();
568  if (RegInfo) {
569    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
570      if (Operands[i].isReg())
571        Operands[i].RemoveRegOperandFromRegInfo();
572    }
573  }
574
575  Operands.erase(Operands.begin()+OpNo);
576
577  if (RegInfo) {
578    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
579      if (Operands[i].isReg())
580        Operands[i].AddRegOperandToRegInfo(RegInfo);
581    }
582  }
583}
584
585/// addMemOperand - Add a MachineMemOperand to the machine instruction,
586/// referencing arbitrary storage.
587void MachineInstr::addMemOperand(MachineFunction &MF,
588                                 const MachineMemOperand &MO) {
589  MemOperands.push_back(MO);
590}
591
592/// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands.
593void MachineInstr::clearMemOperands(MachineFunction &MF) {
594  MemOperands.clear();
595}
596
597
598/// removeFromParent - This method unlinks 'this' from the containing basic
599/// block, and returns it, but does not delete it.
600MachineInstr *MachineInstr::removeFromParent() {
601  assert(getParent() && "Not embedded in a basic block!");
602  getParent()->remove(this);
603  return this;
604}
605
606
607/// eraseFromParent - This method unlinks 'this' from the containing basic
608/// block, and deletes it.
609void MachineInstr::eraseFromParent() {
610  assert(getParent() && "Not embedded in a basic block!");
611  getParent()->erase(this);
612}
613
614
615/// OperandComplete - Return true if it's illegal to add a new operand
616///
617bool MachineInstr::OperandsComplete() const {
618  unsigned short NumOperands = TID->getNumOperands();
619  if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
620    return true;  // Broken: we have all the operands of this instruction!
621  return false;
622}
623
624/// getNumExplicitOperands - Returns the number of non-implicit operands.
625///
626unsigned MachineInstr::getNumExplicitOperands() const {
627  unsigned NumOperands = TID->getNumOperands();
628  if (!TID->isVariadic())
629    return NumOperands;
630
631  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
632    const MachineOperand &MO = getOperand(i);
633    if (!MO.isReg() || !MO.isImplicit())
634      NumOperands++;
635  }
636  return NumOperands;
637}
638
639
640/// isLabel - Returns true if the MachineInstr represents a label.
641///
642bool MachineInstr::isLabel() const {
643  return getOpcode() == TargetInstrInfo::DBG_LABEL ||
644         getOpcode() == TargetInstrInfo::EH_LABEL ||
645         getOpcode() == TargetInstrInfo::GC_LABEL;
646}
647
648/// isDebugLabel - Returns true if the MachineInstr represents a debug label.
649///
650bool MachineInstr::isDebugLabel() const {
651  return getOpcode() == TargetInstrInfo::DBG_LABEL;
652}
653
654/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
655/// the specific register or -1 if it is not found. It further tightens
656/// the search criteria to a use that kills the register if isKill is true.
657int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
658                                          const TargetRegisterInfo *TRI) const {
659  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
660    const MachineOperand &MO = getOperand(i);
661    if (!MO.isReg() || !MO.isUse())
662      continue;
663    unsigned MOReg = MO.getReg();
664    if (!MOReg)
665      continue;
666    if (MOReg == Reg ||
667        (TRI &&
668         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
669         TargetRegisterInfo::isPhysicalRegister(Reg) &&
670         TRI->isSubRegister(MOReg, Reg)))
671      if (!isKill || MO.isKill())
672        return i;
673  }
674  return -1;
675}
676
677/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
678/// the specified register or -1 if it is not found. If isDead is true, defs
679/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
680/// also checks if there is a def of a super-register.
681int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
682                                          const TargetRegisterInfo *TRI) const {
683  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
684    const MachineOperand &MO = getOperand(i);
685    if (!MO.isReg() || !MO.isDef())
686      continue;
687    unsigned MOReg = MO.getReg();
688    if (MOReg == Reg ||
689        (TRI &&
690         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
691         TargetRegisterInfo::isPhysicalRegister(Reg) &&
692         TRI->isSubRegister(MOReg, Reg)))
693      if (!isDead || MO.isDead())
694        return i;
695  }
696  return -1;
697}
698
699/// findFirstPredOperandIdx() - Find the index of the first operand in the
700/// operand list that is used to represent the predicate. It returns -1 if
701/// none is found.
702int MachineInstr::findFirstPredOperandIdx() const {
703  const TargetInstrDesc &TID = getDesc();
704  if (TID.isPredicable()) {
705    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
706      if (TID.OpInfo[i].isPredicate())
707        return i;
708  }
709
710  return -1;
711}
712
713/// isRegTiedToUseOperand - Given the index of a register def operand,
714/// check if the register def is tied to a source operand, due to either
715/// two-address elimination or inline assembly constraints. Returns the
716/// first tied use operand index by reference is UseOpIdx is not null.
717bool MachineInstr::
718isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
719  if (getOpcode() == TargetInstrInfo::INLINEASM) {
720    assert(DefOpIdx >= 2);
721    const MachineOperand &MO = getOperand(DefOpIdx);
722    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
723      return false;
724    // Determine the actual operand index that corresponds to this index.
725    unsigned DefNo = 0;
726    unsigned DefPart = 0;
727    for (unsigned i = 1, e = getNumOperands(); i < e; ) {
728      const MachineOperand &FMO = getOperand(i);
729      // After the normal asm operands there may be additional imp-def regs.
730      if (!FMO.isImm())
731        return false;
732      // Skip over this def.
733      unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
734      unsigned PrevDef = i + 1;
735      i = PrevDef + NumOps;
736      if (i > DefOpIdx) {
737        DefPart = DefOpIdx - PrevDef;
738        break;
739      }
740      ++DefNo;
741    }
742    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
743      const MachineOperand &FMO = getOperand(i);
744      if (!FMO.isImm())
745        continue;
746      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
747        continue;
748      unsigned Idx;
749      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
750          Idx == DefNo) {
751        if (UseOpIdx)
752          *UseOpIdx = (unsigned)i + 1 + DefPart;
753        return true;
754      }
755    }
756    return false;
757  }
758
759  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
760  const TargetInstrDesc &TID = getDesc();
761  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
762    const MachineOperand &MO = getOperand(i);
763    if (MO.isReg() && MO.isUse() &&
764        TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
765      if (UseOpIdx)
766        *UseOpIdx = (unsigned)i;
767      return true;
768    }
769  }
770  return false;
771}
772
773/// isRegTiedToDefOperand - Return true if the operand of the specified index
774/// is a register use and it is tied to an def operand. It also returns the def
775/// operand index by reference.
776bool MachineInstr::
777isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
778  if (getOpcode() == TargetInstrInfo::INLINEASM) {
779    const MachineOperand &MO = getOperand(UseOpIdx);
780    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
781      return false;
782
783    // Find the flag operand corresponding to UseOpIdx
784    unsigned FlagIdx, NumOps=0;
785    for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
786      const MachineOperand &UFMO = getOperand(FlagIdx);
787      // After the normal asm operands there may be additional imp-def regs.
788      if (!UFMO.isImm())
789        return false;
790      NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
791      assert(NumOps < getNumOperands() && "Invalid inline asm flag");
792      if (UseOpIdx < FlagIdx+NumOps+1)
793        break;
794    }
795    if (FlagIdx >= UseOpIdx)
796      return false;
797    const MachineOperand &UFMO = getOperand(FlagIdx);
798    unsigned DefNo;
799    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
800      if (!DefOpIdx)
801        return true;
802
803      unsigned DefIdx = 1;
804      // Remember to adjust the index. First operand is asm string, then there
805      // is a flag for each.
806      while (DefNo) {
807        const MachineOperand &FMO = getOperand(DefIdx);
808        assert(FMO.isImm());
809        // Skip over this def.
810        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
811        --DefNo;
812      }
813      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
814      return true;
815    }
816    return false;
817  }
818
819  const TargetInstrDesc &TID = getDesc();
820  if (UseOpIdx >= TID.getNumOperands())
821    return false;
822  const MachineOperand &MO = getOperand(UseOpIdx);
823  if (!MO.isReg() || !MO.isUse())
824    return false;
825  int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
826  if (DefIdx == -1)
827    return false;
828  if (DefOpIdx)
829    *DefOpIdx = (unsigned)DefIdx;
830  return true;
831}
832
833/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
834///
835void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
836  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
837    const MachineOperand &MO = MI->getOperand(i);
838    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
839      continue;
840    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
841      MachineOperand &MOp = getOperand(j);
842      if (!MOp.isIdenticalTo(MO))
843        continue;
844      if (MO.isKill())
845        MOp.setIsKill();
846      else
847        MOp.setIsDead();
848      break;
849    }
850  }
851}
852
853/// copyPredicates - Copies predicate operand(s) from MI.
854void MachineInstr::copyPredicates(const MachineInstr *MI) {
855  const TargetInstrDesc &TID = MI->getDesc();
856  if (!TID.isPredicable())
857    return;
858  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
859    if (TID.OpInfo[i].isPredicate()) {
860      // Predicated operands must be last operands.
861      addOperand(MI->getOperand(i));
862    }
863  }
864}
865
866/// isSafeToMove - Return true if it is safe to move this instruction. If
867/// SawStore is set to true, it means that there is a store (or call) between
868/// the instruction's location and its intended destination.
869bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
870                                bool &SawStore) const {
871  // Ignore stuff that we obviously can't move.
872  if (TID->mayStore() || TID->isCall()) {
873    SawStore = true;
874    return false;
875  }
876  if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
877    return false;
878
879  // See if this instruction does a load.  If so, we have to guarantee that the
880  // loaded value doesn't change between the load and the its intended
881  // destination. The check for isInvariantLoad gives the targe the chance to
882  // classify the load as always returning a constant, e.g. a constant pool
883  // load.
884  if (TID->mayLoad() && !TII->isInvariantLoad(this))
885    // Otherwise, this is a real load.  If there is a store between the load and
886    // end of block, or if the load is volatile, we can't move it.
887    return !SawStore && !hasVolatileMemoryRef();
888
889  return true;
890}
891
892/// isSafeToReMat - Return true if it's safe to rematerialize the specified
893/// instruction which defined the specified register instead of copying it.
894bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
895                                 unsigned DstReg) const {
896  bool SawStore = false;
897  if (!getDesc().isRematerializable() ||
898      !TII->isTriviallyReMaterializable(this) ||
899      !isSafeToMove(TII, SawStore))
900    return false;
901  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
902    const MachineOperand &MO = getOperand(i);
903    if (!MO.isReg())
904      continue;
905    // FIXME: For now, do not remat any instruction with register operands.
906    // Later on, we can loosen the restriction is the register operands have
907    // not been modified between the def and use. Note, this is different from
908    // MachineSink because the code is no longer in two-address form (at least
909    // partially).
910    if (MO.isUse())
911      return false;
912    else if (!MO.isDead() && MO.getReg() != DstReg)
913      return false;
914  }
915  return true;
916}
917
918/// hasVolatileMemoryRef - Return true if this instruction may have a
919/// volatile memory reference, or if the information describing the
920/// memory reference is not available. Return false if it is known to
921/// have no volatile memory references.
922bool MachineInstr::hasVolatileMemoryRef() const {
923  // An instruction known never to access memory won't have a volatile access.
924  if (!TID->mayStore() &&
925      !TID->mayLoad() &&
926      !TID->isCall() &&
927      !TID->hasUnmodeledSideEffects())
928    return false;
929
930  // Otherwise, if the instruction has no memory reference information,
931  // conservatively assume it wasn't preserved.
932  if (memoperands_empty())
933    return true;
934
935  // Check the memory reference information for volatile references.
936  for (std::list<MachineMemOperand>::const_iterator I = memoperands_begin(),
937       E = memoperands_end(); I != E; ++I)
938    if (I->isVolatile())
939      return true;
940
941  return false;
942}
943
944void MachineInstr::dump() const {
945  errs() << "  " << *this;
946}
947
948void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
949  // Specialize printing if op#0 is definition
950  unsigned StartOp = 0;
951  if (getNumOperands() && getOperand(0).isReg() && getOperand(0).isDef()) {
952    getOperand(0).print(OS, TM);
953    OS << " = ";
954    ++StartOp;   // Don't print this operand again!
955  }
956
957  OS << getDesc().getName();
958
959  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
960    if (i != StartOp)
961      OS << ",";
962    OS << " ";
963    getOperand(i).print(OS, TM);
964  }
965
966  if (!memoperands_empty()) {
967    OS << ", Mem:";
968    for (std::list<MachineMemOperand>::const_iterator i = memoperands_begin(),
969         e = memoperands_end(); i != e; ++i) {
970      const MachineMemOperand &MRO = *i;
971      const Value *V = MRO.getValue();
972
973      assert((MRO.isLoad() || MRO.isStore()) &&
974             "SV has to be a load, store or both.");
975
976      if (MRO.isVolatile())
977        OS << "Volatile ";
978
979      if (MRO.isLoad())
980        OS << "LD";
981      if (MRO.isStore())
982        OS << "ST";
983
984      OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") [";
985
986      if (!V)
987        OS << "<unknown>";
988      else if (!V->getName().empty())
989        OS << V->getName();
990      else if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
991        PSV->print(OS);
992      } else
993        OS << V;
994
995      OS << " + " << MRO.getOffset() << "]";
996    }
997  }
998
999  if (!debugLoc.isUnknown()) {
1000    const MachineFunction *MF = getParent()->getParent();
1001    DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
1002    DICompileUnit CU(DLT.CompileUnit);
1003    std::string Dir, Fn;
1004    OS << " [dbg: "
1005       << CU.getDirectory(Dir) << '/' << CU.getFilename(Fn) << ","
1006       << DLT.Line << ","
1007       << DLT.Col  << "]";
1008  }
1009
1010  OS << "\n";
1011}
1012
1013bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1014                                     const TargetRegisterInfo *RegInfo,
1015                                     bool AddIfNotFound) {
1016  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1017  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1018  bool Found = false;
1019  SmallVector<unsigned,4> DeadOps;
1020  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1021    MachineOperand &MO = getOperand(i);
1022    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1023      continue;
1024    unsigned Reg = MO.getReg();
1025    if (!Reg)
1026      continue;
1027
1028    if (Reg == IncomingReg) {
1029      if (!Found) {
1030        if (MO.isKill())
1031          // The register is already marked kill.
1032          return true;
1033        if (isPhysReg && isRegTiedToDefOperand(i))
1034          // Two-address uses of physregs must not be marked kill.
1035          return true;
1036        MO.setIsKill();
1037        Found = true;
1038      }
1039    } else if (hasAliases && MO.isKill() &&
1040               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1041      // A super-register kill already exists.
1042      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1043        return true;
1044      if (RegInfo->isSubRegister(IncomingReg, Reg))
1045        DeadOps.push_back(i);
1046    }
1047  }
1048
1049  // Trim unneeded kill operands.
1050  while (!DeadOps.empty()) {
1051    unsigned OpIdx = DeadOps.back();
1052    if (getOperand(OpIdx).isImplicit())
1053      RemoveOperand(OpIdx);
1054    else
1055      getOperand(OpIdx).setIsKill(false);
1056    DeadOps.pop_back();
1057  }
1058
1059  // If not found, this means an alias of one of the operands is killed. Add a
1060  // new implicit operand if required.
1061  if (!Found && AddIfNotFound) {
1062    addOperand(MachineOperand::CreateReg(IncomingReg,
1063                                         false /*IsDef*/,
1064                                         true  /*IsImp*/,
1065                                         true  /*IsKill*/));
1066    return true;
1067  }
1068  return Found;
1069}
1070
1071bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1072                                   const TargetRegisterInfo *RegInfo,
1073                                   bool AddIfNotFound) {
1074  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1075  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1076  bool Found = false;
1077  SmallVector<unsigned,4> DeadOps;
1078  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1079    MachineOperand &MO = getOperand(i);
1080    if (!MO.isReg() || !MO.isDef())
1081      continue;
1082    unsigned Reg = MO.getReg();
1083    if (!Reg)
1084      continue;
1085
1086    if (Reg == IncomingReg) {
1087      if (!Found) {
1088        if (MO.isDead())
1089          // The register is already marked dead.
1090          return true;
1091        MO.setIsDead();
1092        Found = true;
1093      }
1094    } else if (hasAliases && MO.isDead() &&
1095               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1096      // There exists a super-register that's marked dead.
1097      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1098        return true;
1099      if (RegInfo->getSubRegisters(IncomingReg) &&
1100          RegInfo->getSuperRegisters(Reg) &&
1101          RegInfo->isSubRegister(IncomingReg, Reg))
1102        DeadOps.push_back(i);
1103    }
1104  }
1105
1106  // Trim unneeded dead operands.
1107  while (!DeadOps.empty()) {
1108    unsigned OpIdx = DeadOps.back();
1109    if (getOperand(OpIdx).isImplicit())
1110      RemoveOperand(OpIdx);
1111    else
1112      getOperand(OpIdx).setIsDead(false);
1113    DeadOps.pop_back();
1114  }
1115
1116  // If not found, this means an alias of one of the operands is dead. Add a
1117  // new implicit operand if required.
1118  if (Found || !AddIfNotFound)
1119    return Found;
1120
1121  addOperand(MachineOperand::CreateReg(IncomingReg,
1122                                       true  /*IsDef*/,
1123                                       true  /*IsImp*/,
1124                                       false /*IsKill*/,
1125                                       true  /*IsDead*/));
1126  return true;
1127}
1128