MachineLICM.cpp revision 34525f9ac098c1c6bc9002886d6da3039a284fd2
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/CodeGen/MachineDominators.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/MC/MCInstrItineraries.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetRegisterInfo.h"
43using namespace llvm;
44
45static cl::opt<bool>
46AvoidSpeculation("avoid-speculation",
47                 cl::desc("MachineLICM should avoid speculation"),
48                 cl::init(true), cl::Hidden);
49
50STATISTIC(NumHoisted,
51          "Number of machine instructions hoisted out of loops");
52STATISTIC(NumLowRP,
53          "Number of instructions hoisted in low reg pressure situation");
54STATISTIC(NumHighLatency,
55          "Number of high latency instructions hoisted");
56STATISTIC(NumCSEed,
57          "Number of hoisted machine instructions CSEed");
58STATISTIC(NumPostRAHoisted,
59          "Number of machine instructions hoisted out of loops post regalloc");
60
61namespace {
62  class MachineLICM : public MachineFunctionPass {
63    const TargetMachine   *TM;
64    const TargetInstrInfo *TII;
65    const TargetLowering *TLI;
66    const TargetRegisterInfo *TRI;
67    const MachineFrameInfo *MFI;
68    MachineRegisterInfo *MRI;
69    const InstrItineraryData *InstrItins;
70    bool PreRegAlloc;
71
72    // Various analyses that we use...
73    AliasAnalysis        *AA;      // Alias analysis info.
74    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
75    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
76
77    // State that is updated as we process loops
78    bool         Changed;          // True if a loop is changed.
79    bool         FirstInLoop;      // True if it's the first LICM in the loop.
80    MachineLoop *CurLoop;          // The current loop we are working on.
81    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
82
83    // Exit blocks for CurLoop.
84    SmallVector<MachineBasicBlock*, 8> ExitBlocks;
85
86    bool isExitBlock(const MachineBasicBlock *MBB) const {
87      return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
88        ExitBlocks.end();
89    }
90
91    // Track 'estimated' register pressure.
92    SmallSet<unsigned, 32> RegSeen;
93    SmallVector<unsigned, 8> RegPressure;
94
95    // Register pressure "limit" per register class. If the pressure
96    // is higher than the limit, then it's considered high.
97    SmallVector<unsigned, 8> RegLimit;
98
99    // Register pressure on path leading from loop preheader to current BB.
100    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
101
102    // For each opcode, keep a list of potential CSE instructions.
103    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
104
105    enum {
106      SpeculateFalse   = 0,
107      SpeculateTrue    = 1,
108      SpeculateUnknown = 2
109    };
110
111    // If a MBB does not dominate loop exiting blocks then it may not safe
112    // to hoist loads from this block.
113    // Tri-state: 0 - false, 1 - true, 2 - unknown
114    unsigned SpeculationState;
115
116  public:
117    static char ID; // Pass identification, replacement for typeid
118    MachineLICM() :
119      MachineFunctionPass(ID), PreRegAlloc(true) {
120        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
121      }
122
123    explicit MachineLICM(bool PreRA) :
124      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
125        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
126      }
127
128    virtual bool runOnMachineFunction(MachineFunction &MF);
129
130    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131      AU.addRequired<MachineLoopInfo>();
132      AU.addRequired<MachineDominatorTree>();
133      AU.addRequired<AliasAnalysis>();
134      AU.addPreserved<MachineLoopInfo>();
135      AU.addPreserved<MachineDominatorTree>();
136      MachineFunctionPass::getAnalysisUsage(AU);
137    }
138
139    virtual void releaseMemory() {
140      RegSeen.clear();
141      RegPressure.clear();
142      RegLimit.clear();
143      BackTrace.clear();
144      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
145             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
146        CI->second.clear();
147      CSEMap.clear();
148    }
149
150  private:
151    /// CandidateInfo - Keep track of information about hoisting candidates.
152    struct CandidateInfo {
153      MachineInstr *MI;
154      unsigned      Def;
155      int           FI;
156      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
157        : MI(mi), Def(def), FI(fi) {}
158    };
159
160    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
161    /// invariants out to the preheader.
162    void HoistRegionPostRA();
163
164    /// HoistPostRA - When an instruction is found to only use loop invariant
165    /// operands that is safe to hoist, this instruction is called to do the
166    /// dirty work.
167    void HoistPostRA(MachineInstr *MI, unsigned Def);
168
169    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
170    /// gather register def and frame object update information.
171    void ProcessMI(MachineInstr *MI,
172                   BitVector &PhysRegDefs,
173                   BitVector &PhysRegClobbers,
174                   SmallSet<int, 32> &StoredFIs,
175                   SmallVector<CandidateInfo, 32> &Candidates);
176
177    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
178    /// current loop.
179    void AddToLiveIns(unsigned Reg);
180
181    /// IsLICMCandidate - Returns true if the instruction may be a suitable
182    /// candidate for LICM. e.g. If the instruction is a call, then it's
183    /// obviously not safe to hoist it.
184    bool IsLICMCandidate(MachineInstr &I);
185
186    /// IsLoopInvariantInst - Returns true if the instruction is loop
187    /// invariant. I.e., all virtual register operands are defined outside of
188    /// the loop, physical registers aren't accessed (explicitly or implicitly),
189    /// and the instruction is hoistable.
190    ///
191    bool IsLoopInvariantInst(MachineInstr &I);
192
193    /// HasLoopPHIUse - Return true if the specified instruction is used by any
194    /// phi node in the current loop.
195    bool HasLoopPHIUse(const MachineInstr *MI) const;
196
197    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
198    /// and an use in the current loop, return true if the target considered
199    /// it 'high'.
200    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
201                               unsigned Reg) const;
202
203    bool IsCheapInstruction(MachineInstr &MI) const;
204
205    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
206    /// check if hoisting an instruction of the given cost matrix can cause high
207    /// register pressure.
208    bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap);
209
210    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
211    /// the current block and update their register pressures to reflect the
212    /// effect of hoisting MI from the current block to the preheader.
213    void UpdateBackTraceRegPressure(const MachineInstr *MI);
214
215    /// IsProfitableToHoist - Return true if it is potentially profitable to
216    /// hoist the given loop invariant.
217    bool IsProfitableToHoist(MachineInstr &MI);
218
219    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
220    /// If not then a load from this mbb may not be safe to hoist.
221    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
222
223    void EnterScope(MachineBasicBlock *MBB);
224
225    void ExitScope(MachineBasicBlock *MBB);
226
227    /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
228    /// dominator tree node if its a leaf or all of its children are done. Walk
229    /// up the dominator tree to destroy ancestors which are now done.
230    void ExitScopeIfDone(MachineDomTreeNode *Node,
231                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
232                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
233
234    /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
235    /// blocks dominated by the specified header block, and that are in the
236    /// current loop) in depth first order w.r.t the DominatorTree. This allows
237    /// us to visit definitions before uses, allowing us to hoist a loop body in
238    /// one pass without iteration.
239    ///
240    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
241    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
242
243    /// getRegisterClassIDAndCost - For a given MI, register, and the operand
244    /// index, return the ID and cost of its representative register class by
245    /// reference.
246    void getRegisterClassIDAndCost(const MachineInstr *MI,
247                                   unsigned Reg, unsigned OpIdx,
248                                   unsigned &RCId, unsigned &RCCost) const;
249
250    /// InitRegPressure - Find all virtual register references that are liveout
251    /// of the preheader to initialize the starting "register pressure". Note
252    /// this does not count live through (livein but not used) registers.
253    void InitRegPressure(MachineBasicBlock *BB);
254
255    /// UpdateRegPressure - Update estimate of register pressure after the
256    /// specified instruction.
257    void UpdateRegPressure(const MachineInstr *MI);
258
259    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
260    /// the load itself could be hoisted. Return the unfolded and hoistable
261    /// load, or null if the load couldn't be unfolded or if it wouldn't
262    /// be hoistable.
263    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
264
265    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
266    /// duplicate of MI. Return this instruction if it's found.
267    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
268                                     std::vector<const MachineInstr*> &PrevMIs);
269
270    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
271    /// the preheader that compute the same value. If it's found, do a RAU on
272    /// with the definition of the existing instruction rather than hoisting
273    /// the instruction to the preheader.
274    bool EliminateCSE(MachineInstr *MI,
275           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
276
277    /// MayCSE - Return true if the given instruction will be CSE'd if it's
278    /// hoisted out of the loop.
279    bool MayCSE(MachineInstr *MI);
280
281    /// Hoist - When an instruction is found to only use loop invariant operands
282    /// that is safe to hoist, this instruction is called to do the dirty work.
283    /// It returns true if the instruction is hoisted.
284    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
285
286    /// InitCSEMap - Initialize the CSE map with instructions that are in the
287    /// current loop preheader that may become duplicates of instructions that
288    /// are hoisted out of the loop.
289    void InitCSEMap(MachineBasicBlock *BB);
290
291    /// getCurPreheader - Get the preheader for the current loop, splitting
292    /// a critical edge if needed.
293    MachineBasicBlock *getCurPreheader();
294  };
295} // end anonymous namespace
296
297char MachineLICM::ID = 0;
298char &llvm::MachineLICMID = MachineLICM::ID;
299INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
300                "Machine Loop Invariant Code Motion", false, false)
301INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
302INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
303INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
304INITIALIZE_PASS_END(MachineLICM, "machinelicm",
305                "Machine Loop Invariant Code Motion", false, false)
306
307/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
308/// loop that has a unique predecessor.
309static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
310  // Check whether this loop even has a unique predecessor.
311  if (!CurLoop->getLoopPredecessor())
312    return false;
313  // Ok, now check to see if any of its outer loops do.
314  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
315    if (L->getLoopPredecessor())
316      return false;
317  // None of them did, so this is the outermost with a unique predecessor.
318  return true;
319}
320
321bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
322  Changed = FirstInLoop = false;
323  TM = &MF.getTarget();
324  TII = TM->getInstrInfo();
325  TLI = TM->getTargetLowering();
326  TRI = TM->getRegisterInfo();
327  MFI = MF.getFrameInfo();
328  MRI = &MF.getRegInfo();
329  InstrItins = TM->getInstrItineraryData();
330
331  PreRegAlloc = MRI->isSSA();
332
333  if (PreRegAlloc)
334    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
335  else
336    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
337  DEBUG(dbgs() << MF.getName() << " ********\n");
338
339  if (PreRegAlloc) {
340    // Estimate register pressure during pre-regalloc pass.
341    unsigned NumRC = TRI->getNumRegClasses();
342    RegPressure.resize(NumRC);
343    std::fill(RegPressure.begin(), RegPressure.end(), 0);
344    RegLimit.resize(NumRC);
345    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
346           E = TRI->regclass_end(); I != E; ++I)
347      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
348  }
349
350  // Get our Loop information...
351  MLI = &getAnalysis<MachineLoopInfo>();
352  DT  = &getAnalysis<MachineDominatorTree>();
353  AA  = &getAnalysis<AliasAnalysis>();
354
355  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
356  while (!Worklist.empty()) {
357    CurLoop = Worklist.pop_back_val();
358    CurPreheader = 0;
359    ExitBlocks.clear();
360
361    // If this is done before regalloc, only visit outer-most preheader-sporting
362    // loops.
363    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
364      Worklist.append(CurLoop->begin(), CurLoop->end());
365      continue;
366    }
367
368    CurLoop->getExitBlocks(ExitBlocks);
369
370    if (!PreRegAlloc)
371      HoistRegionPostRA();
372    else {
373      // CSEMap is initialized for loop header when the first instruction is
374      // being hoisted.
375      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
376      FirstInLoop = true;
377      HoistOutOfLoop(N);
378      CSEMap.clear();
379    }
380  }
381
382  return Changed;
383}
384
385/// InstructionStoresToFI - Return true if instruction stores to the
386/// specified frame.
387static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
388  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
389         oe = MI->memoperands_end(); o != oe; ++o) {
390    if (!(*o)->isStore() || !(*o)->getValue())
391      continue;
392    if (const FixedStackPseudoSourceValue *Value =
393        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
394      if (Value->getFrameIndex() == FI)
395        return true;
396    }
397  }
398  return false;
399}
400
401/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
402/// gather register def and frame object update information.
403void MachineLICM::ProcessMI(MachineInstr *MI,
404                            BitVector &PhysRegDefs,
405                            BitVector &PhysRegClobbers,
406                            SmallSet<int, 32> &StoredFIs,
407                            SmallVector<CandidateInfo, 32> &Candidates) {
408  bool RuledOut = false;
409  bool HasNonInvariantUse = false;
410  unsigned Def = 0;
411  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
412    const MachineOperand &MO = MI->getOperand(i);
413    if (MO.isFI()) {
414      // Remember if the instruction stores to the frame index.
415      int FI = MO.getIndex();
416      if (!StoredFIs.count(FI) &&
417          MFI->isSpillSlotObjectIndex(FI) &&
418          InstructionStoresToFI(MI, FI))
419        StoredFIs.insert(FI);
420      HasNonInvariantUse = true;
421      continue;
422    }
423
424    // We can't hoist an instruction defining a physreg that is clobbered in
425    // the loop.
426    if (MO.isRegMask()) {
427      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
428      continue;
429    }
430
431    if (!MO.isReg())
432      continue;
433    unsigned Reg = MO.getReg();
434    if (!Reg)
435      continue;
436    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
437           "Not expecting virtual register!");
438
439    if (!MO.isDef()) {
440      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
441        // If it's using a non-loop-invariant register, then it's obviously not
442        // safe to hoist.
443        HasNonInvariantUse = true;
444      continue;
445    }
446
447    if (MO.isImplicit()) {
448      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
449        PhysRegClobbers.set(*AI);
450      if (!MO.isDead())
451        // Non-dead implicit def? This cannot be hoisted.
452        RuledOut = true;
453      // No need to check if a dead implicit def is also defined by
454      // another instruction.
455      continue;
456    }
457
458    // FIXME: For now, avoid instructions with multiple defs, unless
459    // it's a dead implicit def.
460    if (Def)
461      RuledOut = true;
462    else
463      Def = Reg;
464
465    // If we have already seen another instruction that defines the same
466    // register, then this is not safe.  Two defs is indicated by setting a
467    // PhysRegClobbers bit.
468    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
469      if (PhysRegDefs.test(*AS))
470        PhysRegClobbers.set(*AS);
471      if (PhysRegClobbers.test(*AS))
472        // MI defined register is seen defined by another instruction in
473        // the loop, it cannot be a LICM candidate.
474        RuledOut = true;
475      PhysRegDefs.set(*AS);
476    }
477  }
478
479  // Only consider reloads for now and remats which do not have register
480  // operands. FIXME: Consider unfold load folding instructions.
481  if (Def && !RuledOut) {
482    int FI = INT_MIN;
483    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
484        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
485      Candidates.push_back(CandidateInfo(MI, Def, FI));
486  }
487}
488
489/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
490/// invariants out to the preheader.
491void MachineLICM::HoistRegionPostRA() {
492  MachineBasicBlock *Preheader = getCurPreheader();
493  if (!Preheader)
494    return;
495
496  unsigned NumRegs = TRI->getNumRegs();
497  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
498  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
499
500  SmallVector<CandidateInfo, 32> Candidates;
501  SmallSet<int, 32> StoredFIs;
502
503  // Walk the entire region, count number of defs for each register, and
504  // collect potential LICM candidates.
505  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
506  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
507    MachineBasicBlock *BB = Blocks[i];
508
509    // If the header of the loop containing this basic block is a landing pad,
510    // then don't try to hoist instructions out of this loop.
511    const MachineLoop *ML = MLI->getLoopFor(BB);
512    if (ML && ML->getHeader()->isLandingPad()) continue;
513
514    // Conservatively treat live-in's as an external def.
515    // FIXME: That means a reload that're reused in successor block(s) will not
516    // be LICM'ed.
517    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
518           E = BB->livein_end(); I != E; ++I) {
519      unsigned Reg = *I;
520      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
521        PhysRegDefs.set(*AI);
522    }
523
524    SpeculationState = SpeculateUnknown;
525    for (MachineBasicBlock::iterator
526           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
527      MachineInstr *MI = &*MII;
528      ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
529    }
530  }
531
532  // Gather the registers read / clobbered by the terminator.
533  BitVector TermRegs(NumRegs);
534  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
535  if (TI != Preheader->end()) {
536    for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
537      const MachineOperand &MO = TI->getOperand(i);
538      if (!MO.isReg())
539        continue;
540      unsigned Reg = MO.getReg();
541      if (!Reg)
542        continue;
543      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
544        TermRegs.set(*AI);
545    }
546  }
547
548  // Now evaluate whether the potential candidates qualify.
549  // 1. Check if the candidate defined register is defined by another
550  //    instruction in the loop.
551  // 2. If the candidate is a load from stack slot (always true for now),
552  //    check if the slot is stored anywhere in the loop.
553  // 3. Make sure candidate def should not clobber
554  //    registers read by the terminator. Similarly its def should not be
555  //    clobbered by the terminator.
556  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
557    if (Candidates[i].FI != INT_MIN &&
558        StoredFIs.count(Candidates[i].FI))
559      continue;
560
561    unsigned Def = Candidates[i].Def;
562    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
563      bool Safe = true;
564      MachineInstr *MI = Candidates[i].MI;
565      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
566        const MachineOperand &MO = MI->getOperand(j);
567        if (!MO.isReg() || MO.isDef() || !MO.getReg())
568          continue;
569        unsigned Reg = MO.getReg();
570        if (PhysRegDefs.test(Reg) ||
571            PhysRegClobbers.test(Reg)) {
572          // If it's using a non-loop-invariant register, then it's obviously
573          // not safe to hoist.
574          Safe = false;
575          break;
576        }
577      }
578      if (Safe)
579        HoistPostRA(MI, Candidates[i].Def);
580    }
581  }
582}
583
584/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
585/// loop, and make sure it is not killed by any instructions in the loop.
586void MachineLICM::AddToLiveIns(unsigned Reg) {
587  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
588  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
589    MachineBasicBlock *BB = Blocks[i];
590    if (!BB->isLiveIn(Reg))
591      BB->addLiveIn(Reg);
592    for (MachineBasicBlock::iterator
593           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
594      MachineInstr *MI = &*MII;
595      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
596        MachineOperand &MO = MI->getOperand(i);
597        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
598        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
599          MO.setIsKill(false);
600      }
601    }
602  }
603}
604
605/// HoistPostRA - When an instruction is found to only use loop invariant
606/// operands that is safe to hoist, this instruction is called to do the
607/// dirty work.
608void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
609  MachineBasicBlock *Preheader = getCurPreheader();
610
611  // Now move the instructions to the predecessor, inserting it before any
612  // terminator instructions.
613  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
614               << MI->getParent()->getNumber() << ": " << *MI);
615
616  // Splice the instruction to the preheader.
617  MachineBasicBlock *MBB = MI->getParent();
618  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
619
620  // Add register to livein list to all the BBs in the current loop since a
621  // loop invariant must be kept live throughout the whole loop. This is
622  // important to ensure later passes do not scavenge the def register.
623  AddToLiveIns(Def);
624
625  ++NumPostRAHoisted;
626  Changed = true;
627}
628
629// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
630// If not then a load from this mbb may not be safe to hoist.
631bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
632  if (SpeculationState != SpeculateUnknown)
633    return SpeculationState == SpeculateFalse;
634
635  if (BB != CurLoop->getHeader()) {
636    // Check loop exiting blocks.
637    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
638    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
639    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
640      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
641        SpeculationState = SpeculateTrue;
642        return false;
643      }
644  }
645
646  SpeculationState = SpeculateFalse;
647  return true;
648}
649
650void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
651  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
652
653  // Remember livein register pressure.
654  BackTrace.push_back(RegPressure);
655}
656
657void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
658  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
659  BackTrace.pop_back();
660}
661
662/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
663/// dominator tree node if its a leaf or all of its children are done. Walk
664/// up the dominator tree to destroy ancestors which are now done.
665void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
666                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
667                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
668  if (OpenChildren[Node])
669    return;
670
671  // Pop scope.
672  ExitScope(Node->getBlock());
673
674  // Now traverse upwards to pop ancestors whose offsprings are all done.
675  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
676    unsigned Left = --OpenChildren[Parent];
677    if (Left != 0)
678      break;
679    ExitScope(Parent->getBlock());
680    Node = Parent;
681  }
682}
683
684/// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
685/// blocks dominated by the specified header block, and that are in the
686/// current loop) in depth first order w.r.t the DominatorTree. This allows
687/// us to visit definitions before uses, allowing us to hoist a loop body in
688/// one pass without iteration.
689///
690void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
691  SmallVector<MachineDomTreeNode*, 32> Scopes;
692  SmallVector<MachineDomTreeNode*, 8> WorkList;
693  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
694  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
695
696  // Perform a DFS walk to determine the order of visit.
697  WorkList.push_back(HeaderN);
698  do {
699    MachineDomTreeNode *Node = WorkList.pop_back_val();
700    assert(Node != 0 && "Null dominator tree node?");
701    MachineBasicBlock *BB = Node->getBlock();
702
703    // If the header of the loop containing this basic block is a landing pad,
704    // then don't try to hoist instructions out of this loop.
705    const MachineLoop *ML = MLI->getLoopFor(BB);
706    if (ML && ML->getHeader()->isLandingPad())
707      continue;
708
709    // If this subregion is not in the top level loop at all, exit.
710    if (!CurLoop->contains(BB))
711      continue;
712
713    Scopes.push_back(Node);
714    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
715    unsigned NumChildren = Children.size();
716
717    // Don't hoist things out of a large switch statement.  This often causes
718    // code to be hoisted that wasn't going to be executed, and increases
719    // register pressure in a situation where it's likely to matter.
720    if (BB->succ_size() >= 25)
721      NumChildren = 0;
722
723    OpenChildren[Node] = NumChildren;
724    // Add children in reverse order as then the next popped worklist node is
725    // the first child of this node.  This means we ultimately traverse the
726    // DOM tree in exactly the same order as if we'd recursed.
727    for (int i = (int)NumChildren-1; i >= 0; --i) {
728      MachineDomTreeNode *Child = Children[i];
729      ParentMap[Child] = Node;
730      WorkList.push_back(Child);
731    }
732  } while (!WorkList.empty());
733
734  if (Scopes.size() != 0) {
735    MachineBasicBlock *Preheader = getCurPreheader();
736    if (!Preheader)
737      return;
738
739    // Compute registers which are livein into the loop headers.
740    RegSeen.clear();
741    BackTrace.clear();
742    InitRegPressure(Preheader);
743  }
744
745  // Now perform LICM.
746  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
747    MachineDomTreeNode *Node = Scopes[i];
748    MachineBasicBlock *MBB = Node->getBlock();
749
750    MachineBasicBlock *Preheader = getCurPreheader();
751    if (!Preheader)
752      continue;
753
754    EnterScope(MBB);
755
756    // Process the block
757    SpeculationState = SpeculateUnknown;
758    for (MachineBasicBlock::iterator
759         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
760      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
761      MachineInstr *MI = &*MII;
762      if (!Hoist(MI, Preheader))
763        UpdateRegPressure(MI);
764      MII = NextMII;
765    }
766
767    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
768    ExitScopeIfDone(Node, OpenChildren, ParentMap);
769  }
770}
771
772static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
773  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
774}
775
776/// getRegisterClassIDAndCost - For a given MI, register, and the operand
777/// index, return the ID and cost of its representative register class.
778void
779MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
780                                       unsigned Reg, unsigned OpIdx,
781                                       unsigned &RCId, unsigned &RCCost) const {
782  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
783  EVT VT = *RC->vt_begin();
784  if (VT == MVT::Untyped) {
785    RCId = RC->getID();
786    RCCost = 1;
787  } else {
788    RCId = TLI->getRepRegClassFor(VT)->getID();
789    RCCost = TLI->getRepRegClassCostFor(VT);
790  }
791}
792
793/// InitRegPressure - Find all virtual register references that are liveout of
794/// the preheader to initialize the starting "register pressure". Note this
795/// does not count live through (livein but not used) registers.
796void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
797  std::fill(RegPressure.begin(), RegPressure.end(), 0);
798
799  // If the preheader has only a single predecessor and it ends with a
800  // fallthrough or an unconditional branch, then scan its predecessor for live
801  // defs as well. This happens whenever the preheader is created by splitting
802  // the critical edge from the loop predecessor to the loop header.
803  if (BB->pred_size() == 1) {
804    MachineBasicBlock *TBB = 0, *FBB = 0;
805    SmallVector<MachineOperand, 4> Cond;
806    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
807      InitRegPressure(*BB->pred_begin());
808  }
809
810  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
811       MII != E; ++MII) {
812    MachineInstr *MI = &*MII;
813    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
814      const MachineOperand &MO = MI->getOperand(i);
815      if (!MO.isReg() || MO.isImplicit())
816        continue;
817      unsigned Reg = MO.getReg();
818      if (!TargetRegisterInfo::isVirtualRegister(Reg))
819        continue;
820
821      bool isNew = RegSeen.insert(Reg);
822      unsigned RCId, RCCost;
823      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
824      if (MO.isDef())
825        RegPressure[RCId] += RCCost;
826      else {
827        bool isKill = isOperandKill(MO, MRI);
828        if (isNew && !isKill)
829          // Haven't seen this, it must be a livein.
830          RegPressure[RCId] += RCCost;
831        else if (!isNew && isKill)
832          RegPressure[RCId] -= RCCost;
833      }
834    }
835  }
836}
837
838/// UpdateRegPressure - Update estimate of register pressure after the
839/// specified instruction.
840void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
841  if (MI->isImplicitDef())
842    return;
843
844  SmallVector<unsigned, 4> Defs;
845  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
846    const MachineOperand &MO = MI->getOperand(i);
847    if (!MO.isReg() || MO.isImplicit())
848      continue;
849    unsigned Reg = MO.getReg();
850    if (!TargetRegisterInfo::isVirtualRegister(Reg))
851      continue;
852
853    bool isNew = RegSeen.insert(Reg);
854    if (MO.isDef())
855      Defs.push_back(Reg);
856    else if (!isNew && isOperandKill(MO, MRI)) {
857      unsigned RCId, RCCost;
858      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
859      if (RCCost > RegPressure[RCId])
860        RegPressure[RCId] = 0;
861      else
862        RegPressure[RCId] -= RCCost;
863    }
864  }
865
866  unsigned Idx = 0;
867  while (!Defs.empty()) {
868    unsigned Reg = Defs.pop_back_val();
869    unsigned RCId, RCCost;
870    getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
871    RegPressure[RCId] += RCCost;
872    ++Idx;
873  }
874}
875
876/// isLoadFromGOTOrConstantPool - Return true if this machine instruction
877/// loads from global offset table or constant pool.
878static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
879  assert (MI.mayLoad() && "Expected MI that loads!");
880  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
881         E = MI.memoperands_end(); I != E; ++I) {
882    if (const Value *V = (*I)->getValue()) {
883      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
884        if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
885          return true;
886    }
887  }
888  return false;
889}
890
891/// IsLICMCandidate - Returns true if the instruction may be a suitable
892/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
893/// not safe to hoist it.
894bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
895  // Check if it's safe to move the instruction.
896  bool DontMoveAcrossStore = true;
897  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
898    return false;
899
900  // If it is load then check if it is guaranteed to execute by making sure that
901  // it dominates all exiting blocks. If it doesn't, then there is a path out of
902  // the loop which does not execute this load, so we can't hoist it. Loads
903  // from constant memory are not safe to speculate all the time, for example
904  // indexed load from a jump table.
905  // Stores and side effects are already checked by isSafeToMove.
906  if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
907      !IsGuaranteedToExecute(I.getParent()))
908    return false;
909
910  return true;
911}
912
913/// IsLoopInvariantInst - Returns true if the instruction is loop
914/// invariant. I.e., all virtual register operands are defined outside of the
915/// loop, physical registers aren't accessed explicitly, and there are no side
916/// effects that aren't captured by the operands or other flags.
917///
918bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
919  if (!IsLICMCandidate(I))
920    return false;
921
922  // The instruction is loop invariant if all of its operands are.
923  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
924    const MachineOperand &MO = I.getOperand(i);
925
926    if (!MO.isReg())
927      continue;
928
929    unsigned Reg = MO.getReg();
930    if (Reg == 0) continue;
931
932    // Don't hoist an instruction that uses or defines a physical register.
933    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
934      if (MO.isUse()) {
935        // If the physreg has no defs anywhere, it's just an ambient register
936        // and we can freely move its uses. Alternatively, if it's allocatable,
937        // it could get allocated to something with a def during allocation.
938        if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
939          return false;
940        // Otherwise it's safe to move.
941        continue;
942      } else if (!MO.isDead()) {
943        // A def that isn't dead. We can't move it.
944        return false;
945      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
946        // If the reg is live into the loop, we can't hoist an instruction
947        // which would clobber it.
948        return false;
949      }
950    }
951
952    if (!MO.isUse())
953      continue;
954
955    assert(MRI->getVRegDef(Reg) &&
956           "Machine instr not mapped for this vreg?!");
957
958    // If the loop contains the definition of an operand, then the instruction
959    // isn't loop invariant.
960    if (CurLoop->contains(MRI->getVRegDef(Reg)))
961      return false;
962  }
963
964  // If we got this far, the instruction is loop invariant!
965  return true;
966}
967
968
969/// HasLoopPHIUse - Return true if the specified instruction is used by a
970/// phi node and hoisting it could cause a copy to be inserted.
971bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
972  SmallVector<const MachineInstr*, 8> Work(1, MI);
973  do {
974    MI = Work.pop_back_val();
975    for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
976      if (!MO->isReg() || !MO->isDef())
977        continue;
978      unsigned Reg = MO->getReg();
979      if (!TargetRegisterInfo::isVirtualRegister(Reg))
980        continue;
981      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
982           UE = MRI->use_end(); UI != UE; ++UI) {
983        MachineInstr *UseMI = &*UI;
984        // A PHI may cause a copy to be inserted.
985        if (UseMI->isPHI()) {
986          // A PHI inside the loop causes a copy because the live range of Reg is
987          // extended across the PHI.
988          if (CurLoop->contains(UseMI))
989            return true;
990          // A PHI in an exit block can cause a copy to be inserted if the PHI
991          // has multiple predecessors in the loop with different values.
992          // For now, approximate by rejecting all exit blocks.
993          if (isExitBlock(UseMI->getParent()))
994            return true;
995          continue;
996        }
997        // Look past copies as well.
998        if (UseMI->isCopy() && CurLoop->contains(UseMI))
999          Work.push_back(UseMI);
1000      }
1001    }
1002  } while (!Work.empty());
1003  return false;
1004}
1005
1006/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
1007/// and an use in the current loop, return true if the target considered
1008/// it 'high'.
1009bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
1010                                        unsigned DefIdx, unsigned Reg) const {
1011  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
1012    return false;
1013
1014  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
1015         E = MRI->use_nodbg_end(); I != E; ++I) {
1016    MachineInstr *UseMI = &*I;
1017    if (UseMI->isCopyLike())
1018      continue;
1019    if (!CurLoop->contains(UseMI->getParent()))
1020      continue;
1021    for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
1022      const MachineOperand &MO = UseMI->getOperand(i);
1023      if (!MO.isReg() || !MO.isUse())
1024        continue;
1025      unsigned MOReg = MO.getReg();
1026      if (MOReg != Reg)
1027        continue;
1028
1029      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
1030        return true;
1031    }
1032
1033    // Only look at the first in loop use.
1034    break;
1035  }
1036
1037  return false;
1038}
1039
1040/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
1041/// the operand latency between its def and a use is one or less.
1042bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
1043  if (MI.isAsCheapAsAMove() || MI.isCopyLike())
1044    return true;
1045  if (!InstrItins || InstrItins->isEmpty())
1046    return false;
1047
1048  bool isCheap = false;
1049  unsigned NumDefs = MI.getDesc().getNumDefs();
1050  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1051    MachineOperand &DefMO = MI.getOperand(i);
1052    if (!DefMO.isReg() || !DefMO.isDef())
1053      continue;
1054    --NumDefs;
1055    unsigned Reg = DefMO.getReg();
1056    if (TargetRegisterInfo::isPhysicalRegister(Reg))
1057      continue;
1058
1059    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
1060      return false;
1061    isCheap = true;
1062  }
1063
1064  return isCheap;
1065}
1066
1067/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
1068/// if hoisting an instruction of the given cost matrix can cause high
1069/// register pressure.
1070bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost,
1071                                          bool CheapInstr) {
1072  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1073       CI != CE; ++CI) {
1074    if (CI->second <= 0)
1075      continue;
1076
1077    unsigned RCId = CI->first;
1078    unsigned Limit = RegLimit[RCId];
1079    int Cost = CI->second;
1080
1081    // Don't hoist cheap instructions if they would increase register pressure,
1082    // even if we're under the limit.
1083    if (CheapInstr)
1084      return true;
1085
1086    for (unsigned i = BackTrace.size(); i != 0; --i) {
1087      SmallVector<unsigned, 8> &RP = BackTrace[i-1];
1088      if (RP[RCId] + Cost >= Limit)
1089        return true;
1090    }
1091  }
1092
1093  return false;
1094}
1095
1096/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
1097/// current block and update their register pressures to reflect the effect
1098/// of hoisting MI from the current block to the preheader.
1099void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1100  if (MI->isImplicitDef())
1101    return;
1102
1103  // First compute the 'cost' of the instruction, i.e. its contribution
1104  // to register pressure.
1105  DenseMap<unsigned, int> Cost;
1106  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1107    const MachineOperand &MO = MI->getOperand(i);
1108    if (!MO.isReg() || MO.isImplicit())
1109      continue;
1110    unsigned Reg = MO.getReg();
1111    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1112      continue;
1113
1114    unsigned RCId, RCCost;
1115    getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
1116    if (MO.isDef()) {
1117      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1118      if (CI != Cost.end())
1119        CI->second += RCCost;
1120      else
1121        Cost.insert(std::make_pair(RCId, RCCost));
1122    } else if (isOperandKill(MO, MRI)) {
1123      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1124      if (CI != Cost.end())
1125        CI->second -= RCCost;
1126      else
1127        Cost.insert(std::make_pair(RCId, -RCCost));
1128    }
1129  }
1130
1131  // Update register pressure of blocks from loop header to current block.
1132  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1133    SmallVector<unsigned, 8> &RP = BackTrace[i];
1134    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1135         CI != CE; ++CI) {
1136      unsigned RCId = CI->first;
1137      RP[RCId] += CI->second;
1138    }
1139  }
1140}
1141
1142/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1143/// the given loop invariant.
1144bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1145  if (MI.isImplicitDef())
1146    return true;
1147
1148  // Besides removing computation from the loop, hoisting an instruction has
1149  // these effects:
1150  //
1151  // - The value defined by the instruction becomes live across the entire
1152  //   loop. This increases register pressure in the loop.
1153  //
1154  // - If the value is used by a PHI in the loop, a copy will be required for
1155  //   lowering the PHI after extending the live range.
1156  //
1157  // - When hoisting the last use of a value in the loop, that value no longer
1158  //   needs to be live in the loop. This lowers register pressure in the loop.
1159
1160  bool CheapInstr = IsCheapInstruction(MI);
1161  bool CreatesCopy = HasLoopPHIUse(&MI);
1162
1163  // Don't hoist a cheap instruction if it would create a copy in the loop.
1164  if (CheapInstr && CreatesCopy) {
1165    DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1166    return false;
1167  }
1168
1169  // Rematerializable instructions should always be hoisted since the register
1170  // allocator can just pull them down again when needed.
1171  if (TII->isTriviallyReMaterializable(&MI, AA))
1172    return true;
1173
1174  // Estimate register pressure to determine whether to LICM the instruction.
1175  // In low register pressure situation, we can be more aggressive about
1176  // hoisting. Also, favors hoisting long latency instructions even in
1177  // moderately high pressure situation.
1178  // Cheap instructions will only be hoisted if they don't increase register
1179  // pressure at all.
1180  // FIXME: If there are long latency loop-invariant instructions inside the
1181  // loop at this point, why didn't the optimizer's LICM hoist them?
1182  DenseMap<unsigned, int> Cost;
1183  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1184    const MachineOperand &MO = MI.getOperand(i);
1185    if (!MO.isReg() || MO.isImplicit())
1186      continue;
1187    unsigned Reg = MO.getReg();
1188    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1189      continue;
1190
1191    unsigned RCId, RCCost;
1192    getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1193    if (MO.isDef()) {
1194      if (HasHighOperandLatency(MI, i, Reg)) {
1195        DEBUG(dbgs() << "Hoist High Latency: " << MI);
1196        ++NumHighLatency;
1197        return true;
1198      }
1199      Cost[RCId] += RCCost;
1200    } else if (isOperandKill(MO, MRI)) {
1201      // Is a virtual register use is a kill, hoisting it out of the loop
1202      // may actually reduce register pressure or be register pressure
1203      // neutral.
1204      Cost[RCId] -= RCCost;
1205    }
1206  }
1207
1208  // Visit BBs from header to current BB, if hoisting this doesn't cause
1209  // high register pressure, then it's safe to proceed.
1210  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1211    DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1212    ++NumLowRP;
1213    return true;
1214  }
1215
1216  // Don't risk increasing register pressure if it would create copies.
1217  if (CreatesCopy) {
1218    DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1219    return false;
1220  }
1221
1222  // Do not "speculate" in high register pressure situation. If an
1223  // instruction is not guaranteed to be executed in the loop, it's best to be
1224  // conservative.
1225  if (AvoidSpeculation &&
1226      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1227    DEBUG(dbgs() << "Won't speculate: " << MI);
1228    return false;
1229  }
1230
1231  // High register pressure situation, only hoist if the instruction is going
1232  // to be remat'ed.
1233  if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1234      !MI.isInvariantLoad(AA)) {
1235    DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1236    return false;
1237  }
1238
1239  return true;
1240}
1241
1242MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1243  // Don't unfold simple loads.
1244  if (MI->canFoldAsLoad())
1245    return 0;
1246
1247  // If not, we may be able to unfold a load and hoist that.
1248  // First test whether the instruction is loading from an amenable
1249  // memory location.
1250  if (!MI->isInvariantLoad(AA))
1251    return 0;
1252
1253  // Next determine the register class for a temporary register.
1254  unsigned LoadRegIndex;
1255  unsigned NewOpc =
1256    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1257                                    /*UnfoldLoad=*/true,
1258                                    /*UnfoldStore=*/false,
1259                                    &LoadRegIndex);
1260  if (NewOpc == 0) return 0;
1261  const MCInstrDesc &MID = TII->get(NewOpc);
1262  if (MID.getNumDefs() != 1) return 0;
1263  MachineFunction &MF = *MI->getParent()->getParent();
1264  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1265  // Ok, we're unfolding. Create a temporary register and do the unfold.
1266  unsigned Reg = MRI->createVirtualRegister(RC);
1267
1268  SmallVector<MachineInstr *, 2> NewMIs;
1269  bool Success =
1270    TII->unfoldMemoryOperand(MF, MI, Reg,
1271                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1272                             NewMIs);
1273  (void)Success;
1274  assert(Success &&
1275         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1276         "succeeded!");
1277  assert(NewMIs.size() == 2 &&
1278         "Unfolded a load into multiple instructions!");
1279  MachineBasicBlock *MBB = MI->getParent();
1280  MachineBasicBlock::iterator Pos = MI;
1281  MBB->insert(Pos, NewMIs[0]);
1282  MBB->insert(Pos, NewMIs[1]);
1283  // If unfolding produced a load that wasn't loop-invariant or profitable to
1284  // hoist, discard the new instructions and bail.
1285  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1286    NewMIs[0]->eraseFromParent();
1287    NewMIs[1]->eraseFromParent();
1288    return 0;
1289  }
1290
1291  // Update register pressure for the unfolded instruction.
1292  UpdateRegPressure(NewMIs[1]);
1293
1294  // Otherwise we successfully unfolded a load that we can hoist.
1295  MI->eraseFromParent();
1296  return NewMIs[0];
1297}
1298
1299void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1300  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1301    const MachineInstr *MI = &*I;
1302    unsigned Opcode = MI->getOpcode();
1303    DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1304      CI = CSEMap.find(Opcode);
1305    if (CI != CSEMap.end())
1306      CI->second.push_back(MI);
1307    else {
1308      std::vector<const MachineInstr*> CSEMIs;
1309      CSEMIs.push_back(MI);
1310      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1311    }
1312  }
1313}
1314
1315const MachineInstr*
1316MachineLICM::LookForDuplicate(const MachineInstr *MI,
1317                              std::vector<const MachineInstr*> &PrevMIs) {
1318  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1319    const MachineInstr *PrevMI = PrevMIs[i];
1320    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1321      return PrevMI;
1322  }
1323  return 0;
1324}
1325
1326bool MachineLICM::EliminateCSE(MachineInstr *MI,
1327          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1328  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1329  // the undef property onto uses.
1330  if (CI == CSEMap.end() || MI->isImplicitDef())
1331    return false;
1332
1333  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1334    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1335
1336    // Replace virtual registers defined by MI by their counterparts defined
1337    // by Dup.
1338    SmallVector<unsigned, 2> Defs;
1339    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1340      const MachineOperand &MO = MI->getOperand(i);
1341
1342      // Physical registers may not differ here.
1343      assert((!MO.isReg() || MO.getReg() == 0 ||
1344              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1345              MO.getReg() == Dup->getOperand(i).getReg()) &&
1346             "Instructions with different phys regs are not identical!");
1347
1348      if (MO.isReg() && MO.isDef() &&
1349          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1350        Defs.push_back(i);
1351    }
1352
1353    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1354    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1355      unsigned Idx = Defs[i];
1356      unsigned Reg = MI->getOperand(Idx).getReg();
1357      unsigned DupReg = Dup->getOperand(Idx).getReg();
1358      OrigRCs.push_back(MRI->getRegClass(DupReg));
1359
1360      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1361        // Restore old RCs if more than one defs.
1362        for (unsigned j = 0; j != i; ++j)
1363          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1364        return false;
1365      }
1366    }
1367
1368    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1369      unsigned Idx = Defs[i];
1370      unsigned Reg = MI->getOperand(Idx).getReg();
1371      unsigned DupReg = Dup->getOperand(Idx).getReg();
1372      MRI->replaceRegWith(Reg, DupReg);
1373      MRI->clearKillFlags(DupReg);
1374    }
1375
1376    MI->eraseFromParent();
1377    ++NumCSEed;
1378    return true;
1379  }
1380  return false;
1381}
1382
1383/// MayCSE - Return true if the given instruction will be CSE'd if it's
1384/// hoisted out of the loop.
1385bool MachineLICM::MayCSE(MachineInstr *MI) {
1386  unsigned Opcode = MI->getOpcode();
1387  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1388    CI = CSEMap.find(Opcode);
1389  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1390  // the undef property onto uses.
1391  if (CI == CSEMap.end() || MI->isImplicitDef())
1392    return false;
1393
1394  return LookForDuplicate(MI, CI->second) != 0;
1395}
1396
1397/// Hoist - When an instruction is found to use only loop invariant operands
1398/// that are safe to hoist, this instruction is called to do the dirty work.
1399///
1400bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1401  // First check whether we should hoist this instruction.
1402  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1403    // If not, try unfolding a hoistable load.
1404    MI = ExtractHoistableLoad(MI);
1405    if (!MI) return false;
1406  }
1407
1408  // Now move the instructions to the predecessor, inserting it before any
1409  // terminator instructions.
1410  DEBUG({
1411      dbgs() << "Hoisting " << *MI;
1412      if (Preheader->getBasicBlock())
1413        dbgs() << " to MachineBasicBlock "
1414               << Preheader->getName();
1415      if (MI->getParent()->getBasicBlock())
1416        dbgs() << " from MachineBasicBlock "
1417               << MI->getParent()->getName();
1418      dbgs() << "\n";
1419    });
1420
1421  // If this is the first instruction being hoisted to the preheader,
1422  // initialize the CSE map with potential common expressions.
1423  if (FirstInLoop) {
1424    InitCSEMap(Preheader);
1425    FirstInLoop = false;
1426  }
1427
1428  // Look for opportunity to CSE the hoisted instruction.
1429  unsigned Opcode = MI->getOpcode();
1430  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1431    CI = CSEMap.find(Opcode);
1432  if (!EliminateCSE(MI, CI)) {
1433    // Otherwise, splice the instruction to the preheader.
1434    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1435
1436    // Update register pressure for BBs from header to this block.
1437    UpdateBackTraceRegPressure(MI);
1438
1439    // Clear the kill flags of any register this instruction defines,
1440    // since they may need to be live throughout the entire loop
1441    // rather than just live for part of it.
1442    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1443      MachineOperand &MO = MI->getOperand(i);
1444      if (MO.isReg() && MO.isDef() && !MO.isDead())
1445        MRI->clearKillFlags(MO.getReg());
1446    }
1447
1448    // Add to the CSE map.
1449    if (CI != CSEMap.end())
1450      CI->second.push_back(MI);
1451    else {
1452      std::vector<const MachineInstr*> CSEMIs;
1453      CSEMIs.push_back(MI);
1454      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1455    }
1456  }
1457
1458  ++NumHoisted;
1459  Changed = true;
1460
1461  return true;
1462}
1463
1464MachineBasicBlock *MachineLICM::getCurPreheader() {
1465  // Determine the block to which to hoist instructions. If we can't find a
1466  // suitable loop predecessor, we can't do any hoisting.
1467
1468  // If we've tried to get a preheader and failed, don't try again.
1469  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1470    return 0;
1471
1472  if (!CurPreheader) {
1473    CurPreheader = CurLoop->getLoopPreheader();
1474    if (!CurPreheader) {
1475      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1476      if (!Pred) {
1477        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1478        return 0;
1479      }
1480
1481      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1482      if (!CurPreheader) {
1483        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1484        return 0;
1485      }
1486    }
1487  }
1488  return CurPreheader;
1489}
1490