MachineLICM.cpp revision 348856e56a247c9815986be51565551394f9e9c2
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
44STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
45STATISTIC(NumPostRAHoisted,
46          "Number of machine instructions hoisted out of loops post regalloc");
47
48namespace {
49  class MachineLICM : public MachineFunctionPass {
50    bool PreRegAlloc;
51
52    const TargetMachine   *TM;
53    const TargetInstrInfo *TII;
54    const TargetRegisterInfo *TRI;
55    const MachineFrameInfo *MFI;
56    MachineRegisterInfo *RegInfo;
57
58    // Various analyses that we use...
59    AliasAnalysis        *AA;      // Alias analysis info.
60    MachineLoopInfo      *LI;      // Current MachineLoopInfo
61    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
62
63    // State that is updated as we process loops
64    bool         Changed;          // True if a loop is changed.
65    bool         FirstInLoop;      // True if it's the first LICM in the loop.
66    MachineLoop *CurLoop;          // The current loop we are working on.
67    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
68
69    BitVector AllocatableSet;
70
71    // For each opcode, keep a list of potentail CSE instructions.
72    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
73
74  public:
75    static char ID; // Pass identification, replacement for typeid
76    MachineLICM() :
77      MachineFunctionPass(&ID), PreRegAlloc(true) {}
78
79    explicit MachineLICM(bool PreRA) :
80      MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
81
82    virtual bool runOnMachineFunction(MachineFunction &MF);
83
84    const char *getPassName() const { return "Machine Instruction LICM"; }
85
86    // FIXME: Loop preheaders?
87    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88      AU.setPreservesCFG();
89      AU.addRequired<MachineLoopInfo>();
90      AU.addRequired<MachineDominatorTree>();
91      AU.addRequired<AliasAnalysis>();
92      AU.addPreserved<MachineLoopInfo>();
93      AU.addPreserved<MachineDominatorTree>();
94      MachineFunctionPass::getAnalysisUsage(AU);
95    }
96
97    virtual void releaseMemory() {
98      CSEMap.clear();
99    }
100
101  private:
102    /// IsLoopInvariantInst - Returns true if the instruction is loop
103    /// invariant. I.e., all virtual register operands are defined outside of
104    /// the loop, physical registers aren't accessed (explicitly or implicitly),
105    /// and the instruction is hoistable.
106    ///
107    bool IsLoopInvariantInst(MachineInstr &I);
108
109    /// IsProfitableToHoist - Return true if it is potentially profitable to
110    /// hoist the given loop invariant.
111    bool IsProfitableToHoist(MachineInstr &MI);
112
113    /// HoistRegion - Walk the specified region of the CFG (defined by all
114    /// blocks dominated by the specified block, and that are in the current
115    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
116    /// visit definitions before uses, allowing us to hoist a loop body in one
117    /// pass without iteration.
118    ///
119    void HoistRegion(MachineDomTreeNode *N);
120    void HoistRegionPostRA(MachineDomTreeNode *N);
121
122    /// isLoadFromConstantMemory - Return true if the given instruction is a
123    /// load from constant memory.
124    bool isLoadFromConstantMemory(MachineInstr *MI);
125
126    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
127    /// the load itself could be hoisted. Return the unfolded and hoistable
128    /// load, or null if the load couldn't be unfolded or if it wouldn't
129    /// be hoistable.
130    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
131
132    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
133    /// duplicate of MI. Return this instruction if it's found.
134    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
135                                     std::vector<const MachineInstr*> &PrevMIs);
136
137    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
138    /// the preheader that compute the same value. If it's found, do a RAU on
139    /// with the definition of the existing instruction rather than hoisting
140    /// the instruction to the preheader.
141    bool EliminateCSE(MachineInstr *MI,
142           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
143
144    /// Hoist - When an instruction is found to only use loop invariant operands
145    /// that is safe to hoist, this instruction is called to do the dirty work.
146    ///
147    void Hoist(MachineInstr *MI);
148    void HoistPostRA(MachineInstr *MI);
149
150    /// InitCSEMap - Initialize the CSE map with instructions that are in the
151    /// current loop preheader that may become duplicates of instructions that
152    /// are hoisted out of the loop.
153    void InitCSEMap(MachineBasicBlock *BB);
154  };
155} // end anonymous namespace
156
157char MachineLICM::ID = 0;
158static RegisterPass<MachineLICM>
159X("machinelicm", "Machine Loop Invariant Code Motion");
160
161FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
162  return new MachineLICM(PreRegAlloc);
163}
164
165/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
166/// loop that has a preheader.
167static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
168  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
169    if (L->getLoopPreheader())
170      return false;
171  return true;
172}
173
174/// Hoist expressions out of the specified loop. Note, alias info for inner loop
175/// is not preserved so it is not a good idea to run LICM multiple times on one
176/// loop.
177///
178bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
179  if (PreRegAlloc)
180    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
181  else
182    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
183
184  Changed = FirstInLoop = false;
185  TM = &MF.getTarget();
186  TII = TM->getInstrInfo();
187  TRI = TM->getRegisterInfo();
188  MFI = MF.getFrameInfo();
189  RegInfo = &MF.getRegInfo();
190  AllocatableSet = TRI->getAllocatableSet(MF);
191
192  // Get our Loop information...
193  LI = &getAnalysis<MachineLoopInfo>();
194  DT = &getAnalysis<MachineDominatorTree>();
195  AA = &getAnalysis<AliasAnalysis>();
196
197  for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
198    CurLoop = *I;
199
200    // Only visit outer-most preheader-sporting loops.
201    if (!LoopIsOuterMostWithPreheader(CurLoop))
202      continue;
203
204    // Determine the block to which to hoist instructions. If we can't find a
205    // suitable loop preheader, we can't do any hoisting.
206    //
207    // FIXME: We are only hoisting if the basic block coming into this loop
208    // has only one successor. This isn't the case in general because we haven't
209    // broken critical edges or added preheaders.
210    CurPreheader = CurLoop->getLoopPreheader();
211    if (!CurPreheader)
212      continue;
213
214    // CSEMap is initialized for loop header when the first instruction is
215    // being hoisted.
216    FirstInLoop = true;
217    MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
218    if (!PreRegAlloc)
219      HoistRegionPostRA(N);
220    else {
221      HoistRegion(N);
222      CSEMap.clear();
223    }
224  }
225
226  return Changed;
227}
228
229void MachineLICM::HoistRegionPostRA(MachineDomTreeNode *N) {
230  assert(N != 0 && "Null dominator tree node?");
231
232  unsigned NumRegs = TRI->getNumRegs();
233  unsigned *PhysRegDefs = new unsigned[NumRegs];
234  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
235
236  SmallVector<std::pair<MachineInstr*, int>, 32> Candidates;
237  SmallSet<int, 32> StoredFIs;
238
239  // Walk the entire region, count number of defs for each register, and
240  // return potential LICM candidates.
241  SmallVector<MachineDomTreeNode*, 8> WorkList;
242  WorkList.push_back(N);
243  do {
244    N = WorkList.pop_back_val();
245    MachineBasicBlock *BB = N->getBlock();
246
247    if (!CurLoop->contains(BB))
248      continue;
249    // Conservatively treat live-in's as an external def.
250    for (MachineBasicBlock::const_livein_iterator I = BB->livein_begin(),
251           E = BB->livein_end(); I != E; ++I) {
252      unsigned Reg = *I;
253      ++PhysRegDefs[Reg];
254      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR)
255        ++PhysRegDefs[*SR];
256    }
257
258    for (MachineBasicBlock::iterator
259           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
260      bool RuledOut = false;
261      bool SeenDef = false;
262      MachineInstr *MI = &*MII;
263      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
264        const MachineOperand &MO = MI->getOperand(i);
265        if (!MO.isReg())
266          continue;
267        unsigned Reg = MO.getReg();
268        if (!Reg)
269          continue;
270        assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
271               "Not expecting virtual register!");
272
273        if (MO.isDef()) {
274          SeenDef = true;
275          if (++PhysRegDefs[Reg] > 1)
276            // MI defined register is seen defined by another instruction in
277            // the loop, it cannot be a LICM candidate.
278            RuledOut = true;
279          for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR)
280            if (++PhysRegDefs[*SR] > 1)
281              RuledOut = true;
282        }
283      }
284
285      // FIXME: Only consider reloads for now.
286      bool SkipCheck = false;
287      int FI;
288      if (SeenDef && !RuledOut) {
289        if (TII->isLoadFromStackSlot(MI, FI) &&
290            MFI->isSpillSlotObjectIndex(FI)) {
291          Candidates.push_back(std::make_pair(MI, FI));
292          SkipCheck = true;
293        }
294      }
295
296      // If MI is a store to a stack slot, remember the slot. An instruction
297      // loads from this slot cannot be a LICM candidate.
298      if (!SkipCheck && TII->isStoreToStackSlot(MI, FI))
299        StoredFIs.insert(FI);
300    }
301
302    const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
303    for (unsigned I = 0, E = Children.size(); I != E; ++I)
304      WorkList.push_back(Children[I]);
305  } while (!WorkList.empty());
306
307  // Now evaluate whether the potential candidates qualify.
308  // 1. Check if the candidate defined register is defined by another
309  //    instruction in the loop.
310  // 2. If the candidate is a load from stack slot (always true for now),
311  //    check if the slot is stored anywhere in the loop.
312  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
313    bool Safe = true;
314    int FI = Candidates[i].second;
315    if (StoredFIs.count(FI))
316      continue;
317
318    MachineInstr *MI = Candidates[i].first;
319    for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
320      const MachineOperand &MO = MI->getOperand(j);
321      if (!MO.isReg())
322        continue;
323      unsigned Reg = MO.getReg();
324      if (!Reg)
325        continue;
326      if (MO.isDef() && PhysRegDefs[Reg] > 1) {
327        Safe = false;
328        break;
329      }
330    }
331
332    if (Safe)
333      HoistPostRA(MI);
334  }
335}
336
337void MachineLICM::HoistPostRA(MachineInstr *MI) {
338  // Now move the instructions to the predecessor, inserting it before any
339  // terminator instructions.
340  DEBUG({
341      dbgs() << "Hoisting " << *MI;
342      if (CurPreheader->getBasicBlock())
343        dbgs() << " to MachineBasicBlock "
344               << CurPreheader->getName();
345      if (MI->getParent()->getBasicBlock())
346        dbgs() << " from MachineBasicBlock "
347               << MI->getParent()->getName();
348      dbgs() << "\n";
349    });
350
351  // Splice the instruction to the preheader.
352  CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
353
354  ++NumPostRAHoisted;
355  Changed = true;
356}
357
358/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
359/// dominated by the specified block, and that are in the current loop) in depth
360/// first order w.r.t the DominatorTree. This allows us to visit definitions
361/// before uses, allowing us to hoist a loop body in one pass without iteration.
362///
363void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
364  assert(N != 0 && "Null dominator tree node?");
365  MachineBasicBlock *BB = N->getBlock();
366
367  // If this subregion is not in the top level loop at all, exit.
368  if (!CurLoop->contains(BB)) return;
369
370  for (MachineBasicBlock::iterator
371         MII = BB->begin(), E = BB->end(); MII != E; ) {
372    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
373    Hoist(&*MII);
374    MII = NextMII;
375  }
376
377  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
378  for (unsigned I = 0, E = Children.size(); I != E; ++I)
379    HoistRegion(Children[I]);
380}
381
382/// IsLoopInvariantInst - Returns true if the instruction is loop
383/// invariant. I.e., all virtual register operands are defined outside of the
384/// loop, physical registers aren't accessed explicitly, and there are no side
385/// effects that aren't captured by the operands or other flags.
386///
387bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
388  const TargetInstrDesc &TID = I.getDesc();
389
390  // Ignore stuff that we obviously can't hoist.
391  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
392      TID.hasUnmodeledSideEffects())
393    return false;
394
395  if (TID.mayLoad()) {
396    // Okay, this instruction does a load. As a refinement, we allow the target
397    // to decide whether the loaded value is actually a constant. If so, we can
398    // actually use it as a load.
399    if (!I.isInvariantLoad(AA))
400      // FIXME: we should be able to hoist loads with no other side effects if
401      // there are no other instructions which can change memory in this loop.
402      // This is a trivial form of alias analysis.
403      return false;
404  }
405
406  // The instruction is loop invariant if all of its operands are.
407  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
408    const MachineOperand &MO = I.getOperand(i);
409
410    if (!MO.isReg())
411      continue;
412
413    unsigned Reg = MO.getReg();
414    if (Reg == 0) continue;
415
416    // Don't hoist an instruction that uses or defines a physical register.
417    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
418      if (MO.isUse()) {
419        // If the physreg has no defs anywhere, it's just an ambient register
420        // and we can freely move its uses. Alternatively, if it's allocatable,
421        // it could get allocated to something with a def during allocation.
422        if (!RegInfo->def_empty(Reg))
423          return false;
424        if (AllocatableSet.test(Reg))
425          return false;
426        // Check for a def among the register's aliases too.
427        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
428          unsigned AliasReg = *Alias;
429          if (!RegInfo->def_empty(AliasReg))
430            return false;
431          if (AllocatableSet.test(AliasReg))
432            return false;
433        }
434        // Otherwise it's safe to move.
435        continue;
436      } else if (!MO.isDead()) {
437        // A def that isn't dead. We can't move it.
438        return false;
439      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
440        // If the reg is live into the loop, we can't hoist an instruction
441        // which would clobber it.
442        return false;
443      }
444    }
445
446    if (!MO.isUse())
447      continue;
448
449    assert(RegInfo->getVRegDef(Reg) &&
450           "Machine instr not mapped for this vreg?!");
451
452    // If the loop contains the definition of an operand, then the instruction
453    // isn't loop invariant.
454    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
455      return false;
456  }
457
458  // If we got this far, the instruction is loop invariant!
459  return true;
460}
461
462
463/// HasPHIUses - Return true if the specified register has any PHI use.
464static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
465  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
466         UE = RegInfo->use_end(); UI != UE; ++UI) {
467    MachineInstr *UseMI = &*UI;
468    if (UseMI->isPHI())
469      return true;
470  }
471  return false;
472}
473
474/// isLoadFromConstantMemory - Return true if the given instruction is a
475/// load from constant memory. Machine LICM will hoist these even if they are
476/// not re-materializable.
477bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
478  if (!MI->getDesc().mayLoad()) return false;
479  if (!MI->hasOneMemOperand()) return false;
480  MachineMemOperand *MMO = *MI->memoperands_begin();
481  if (MMO->isVolatile()) return false;
482  if (!MMO->getValue()) return false;
483  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
484  if (PSV) {
485    MachineFunction &MF = *MI->getParent()->getParent();
486    return PSV->isConstant(MF.getFrameInfo());
487  } else {
488    return AA->pointsToConstantMemory(MMO->getValue());
489  }
490}
491
492/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
493/// the given loop invariant.
494bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
495  if (MI.isImplicitDef())
496    return false;
497
498  // FIXME: For now, only hoist re-materilizable instructions. LICM will
499  // increase register pressure. We want to make sure it doesn't increase
500  // spilling.
501  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
502  // these tend to help performance in low register pressure situation. The
503  // trade off is it may cause spill in high pressure situation. It will end up
504  // adding a store in the loop preheader. But the reload is no more expensive.
505  // The side benefit is these loads are frequently CSE'ed.
506  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
507    if (!isLoadFromConstantMemory(&MI))
508      return false;
509  }
510
511  // If result(s) of this instruction is used by PHIs, then don't hoist it.
512  // The presence of joins makes it difficult for current register allocator
513  // implementation to perform remat.
514  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
515    const MachineOperand &MO = MI.getOperand(i);
516    if (!MO.isReg() || !MO.isDef())
517      continue;
518    if (HasPHIUses(MO.getReg(), RegInfo))
519      return false;
520  }
521
522  return true;
523}
524
525MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
526  // If not, we may be able to unfold a load and hoist that.
527  // First test whether the instruction is loading from an amenable
528  // memory location.
529  if (!isLoadFromConstantMemory(MI))
530    return 0;
531
532  // Next determine the register class for a temporary register.
533  unsigned LoadRegIndex;
534  unsigned NewOpc =
535    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
536                                    /*UnfoldLoad=*/true,
537                                    /*UnfoldStore=*/false,
538                                    &LoadRegIndex);
539  if (NewOpc == 0) return 0;
540  const TargetInstrDesc &TID = TII->get(NewOpc);
541  if (TID.getNumDefs() != 1) return 0;
542  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
543  // Ok, we're unfolding. Create a temporary register and do the unfold.
544  unsigned Reg = RegInfo->createVirtualRegister(RC);
545
546  MachineFunction &MF = *MI->getParent()->getParent();
547  SmallVector<MachineInstr *, 2> NewMIs;
548  bool Success =
549    TII->unfoldMemoryOperand(MF, MI, Reg,
550                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
551                             NewMIs);
552  (void)Success;
553  assert(Success &&
554         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
555         "succeeded!");
556  assert(NewMIs.size() == 2 &&
557         "Unfolded a load into multiple instructions!");
558  MachineBasicBlock *MBB = MI->getParent();
559  MBB->insert(MI, NewMIs[0]);
560  MBB->insert(MI, NewMIs[1]);
561  // If unfolding produced a load that wasn't loop-invariant or profitable to
562  // hoist, discard the new instructions and bail.
563  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
564    NewMIs[0]->eraseFromParent();
565    NewMIs[1]->eraseFromParent();
566    return 0;
567  }
568  // Otherwise we successfully unfolded a load that we can hoist.
569  MI->eraseFromParent();
570  return NewMIs[0];
571}
572
573void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
574  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
575    const MachineInstr *MI = &*I;
576    // FIXME: For now, only hoist re-materilizable instructions. LICM will
577    // increase register pressure. We want to make sure it doesn't increase
578    // spilling.
579    if (TII->isTriviallyReMaterializable(MI, AA)) {
580      unsigned Opcode = MI->getOpcode();
581      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
582        CI = CSEMap.find(Opcode);
583      if (CI != CSEMap.end())
584        CI->second.push_back(MI);
585      else {
586        std::vector<const MachineInstr*> CSEMIs;
587        CSEMIs.push_back(MI);
588        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
589      }
590    }
591  }
592}
593
594const MachineInstr*
595MachineLICM::LookForDuplicate(const MachineInstr *MI,
596                              std::vector<const MachineInstr*> &PrevMIs) {
597  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
598    const MachineInstr *PrevMI = PrevMIs[i];
599    if (TII->produceSameValue(MI, PrevMI))
600      return PrevMI;
601  }
602  return 0;
603}
604
605bool MachineLICM::EliminateCSE(MachineInstr *MI,
606          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
607  if (CI == CSEMap.end())
608    return false;
609
610  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
611    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
612
613    // Replace virtual registers defined by MI by their counterparts defined
614    // by Dup.
615    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
616      const MachineOperand &MO = MI->getOperand(i);
617
618      // Physical registers may not differ here.
619      assert((!MO.isReg() || MO.getReg() == 0 ||
620              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
621              MO.getReg() == Dup->getOperand(i).getReg()) &&
622             "Instructions with different phys regs are not identical!");
623
624      if (MO.isReg() && MO.isDef() &&
625          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
626        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
627    }
628    MI->eraseFromParent();
629    ++NumCSEed;
630    return true;
631  }
632  return false;
633}
634
635/// Hoist - When an instruction is found to use only loop invariant operands
636/// that are safe to hoist, this instruction is called to do the dirty work.
637///
638void MachineLICM::Hoist(MachineInstr *MI) {
639  // First check whether we should hoist this instruction.
640  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
641    // If not, try unfolding a hoistable load.
642    MI = ExtractHoistableLoad(MI);
643    if (!MI) return;
644  }
645
646  // Now move the instructions to the predecessor, inserting it before any
647  // terminator instructions.
648  DEBUG({
649      dbgs() << "Hoisting " << *MI;
650      if (CurPreheader->getBasicBlock())
651        dbgs() << " to MachineBasicBlock "
652               << CurPreheader->getName();
653      if (MI->getParent()->getBasicBlock())
654        dbgs() << " from MachineBasicBlock "
655               << MI->getParent()->getName();
656      dbgs() << "\n";
657    });
658
659  // If this is the first instruction being hoisted to the preheader,
660  // initialize the CSE map with potential common expressions.
661  InitCSEMap(CurPreheader);
662
663  // Look for opportunity to CSE the hoisted instruction.
664  unsigned Opcode = MI->getOpcode();
665  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
666    CI = CSEMap.find(Opcode);
667  if (!EliminateCSE(MI, CI)) {
668    // Otherwise, splice the instruction to the preheader.
669    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
670
671    // Add to the CSE map.
672    if (CI != CSEMap.end())
673      CI->second.push_back(MI);
674    else {
675      std::vector<const MachineInstr*> CSEMIs;
676      CSEMIs.push_back(MI);
677      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
678    }
679  }
680
681  ++NumHoisted;
682  Changed = true;
683}
684