MachineLICM.cpp revision 3cfecf5cc2279cbbcdd497f2898161e40e690c86
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrItineraries.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43using namespace llvm;
44
45static cl::opt<bool>
46AvoidSpeculation("avoid-speculation",
47                 cl::desc("MachineLICM should avoid speculation"),
48                 cl::init(true), cl::Hidden);
49
50STATISTIC(NumHoisted,
51          "Number of machine instructions hoisted out of loops");
52STATISTIC(NumLowRP,
53          "Number of instructions hoisted in low reg pressure situation");
54STATISTIC(NumHighLatency,
55          "Number of high latency instructions hoisted");
56STATISTIC(NumCSEed,
57          "Number of hoisted machine instructions CSEed");
58STATISTIC(NumPostRAHoisted,
59          "Number of machine instructions hoisted out of loops post regalloc");
60
61namespace {
62  class MachineLICM : public MachineFunctionPass {
63    bool PreRegAlloc;
64
65    const TargetMachine   *TM;
66    const TargetInstrInfo *TII;
67    const TargetLowering *TLI;
68    const TargetRegisterInfo *TRI;
69    const MachineFrameInfo *MFI;
70    MachineRegisterInfo *MRI;
71    const InstrItineraryData *InstrItins;
72
73    // Various analyses that we use...
74    AliasAnalysis        *AA;      // Alias analysis info.
75    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
76    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
77
78    // State that is updated as we process loops
79    bool         Changed;          // True if a loop is changed.
80    bool         FirstInLoop;      // True if it's the first LICM in the loop.
81    MachineLoop *CurLoop;          // The current loop we are working on.
82    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
83
84    BitVector AllocatableSet;
85
86    // Track 'estimated' register pressure.
87    SmallSet<unsigned, 32> RegSeen;
88    SmallVector<unsigned, 8> RegPressure;
89
90    // Register pressure "limit" per register class. If the pressure
91    // is higher than the limit, then it's considered high.
92    SmallVector<unsigned, 8> RegLimit;
93
94    // Register pressure on path leading from loop preheader to current BB.
95    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
96
97    // For each opcode, keep a list of potential CSE instructions.
98    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
99
100    enum {
101      SpeculateFalse   = 0,
102      SpeculateTrue    = 1,
103      SpeculateUnknown = 2
104    };
105
106    // If a MBB does not dominate loop exiting blocks then it may not safe
107    // to hoist loads from this block.
108    // Tri-state: 0 - false, 1 - true, 2 - unknown
109    unsigned SpeculationState;
110
111  public:
112    static char ID; // Pass identification, replacement for typeid
113    MachineLICM() :
114      MachineFunctionPass(ID), PreRegAlloc(true) {
115        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
116      }
117
118    explicit MachineLICM(bool PreRA) :
119      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
120        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
121      }
122
123    virtual bool runOnMachineFunction(MachineFunction &MF);
124
125    const char *getPassName() const { return "Machine Instruction LICM"; }
126
127    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
128      AU.addRequired<MachineLoopInfo>();
129      AU.addRequired<MachineDominatorTree>();
130      AU.addRequired<AliasAnalysis>();
131      AU.addPreserved<MachineLoopInfo>();
132      AU.addPreserved<MachineDominatorTree>();
133      MachineFunctionPass::getAnalysisUsage(AU);
134    }
135
136    virtual void releaseMemory() {
137      RegSeen.clear();
138      RegPressure.clear();
139      RegLimit.clear();
140      BackTrace.clear();
141      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
142             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
143        CI->second.clear();
144      CSEMap.clear();
145    }
146
147  private:
148    /// CandidateInfo - Keep track of information about hoisting candidates.
149    struct CandidateInfo {
150      MachineInstr *MI;
151      unsigned      Def;
152      int           FI;
153      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
154        : MI(mi), Def(def), FI(fi) {}
155    };
156
157    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
158    /// invariants out to the preheader.
159    void HoistRegionPostRA();
160
161    /// HoistPostRA - When an instruction is found to only use loop invariant
162    /// operands that is safe to hoist, this instruction is called to do the
163    /// dirty work.
164    void HoistPostRA(MachineInstr *MI, unsigned Def);
165
166    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
167    /// gather register def and frame object update information.
168    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
169                   SmallSet<int, 32> &StoredFIs,
170                   SmallVector<CandidateInfo, 32> &Candidates);
171
172    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
173    /// current loop.
174    void AddToLiveIns(unsigned Reg);
175
176    /// IsLICMCandidate - Returns true if the instruction may be a suitable
177    /// candidate for LICM. e.g. If the instruction is a call, then it's
178    /// obviously not safe to hoist it.
179    bool IsLICMCandidate(MachineInstr &I);
180
181    /// IsLoopInvariantInst - Returns true if the instruction is loop
182    /// invariant. I.e., all virtual register operands are defined outside of
183    /// the loop, physical registers aren't accessed (explicitly or implicitly),
184    /// and the instruction is hoistable.
185    ///
186    bool IsLoopInvariantInst(MachineInstr &I);
187
188    /// HasAnyPHIUse - Return true if the specified register is used by any
189    /// phi node.
190    bool HasAnyPHIUse(unsigned Reg) const;
191
192    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
193    /// and an use in the current loop, return true if the target considered
194    /// it 'high'.
195    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
196                               unsigned Reg) const;
197
198    bool IsCheapInstruction(MachineInstr &MI) const;
199
200    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
201    /// check if hoisting an instruction of the given cost matrix can cause high
202    /// register pressure.
203    bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
204
205    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
206    /// the current block and update their register pressures to reflect the
207    /// effect of hoisting MI from the current block to the preheader.
208    void UpdateBackTraceRegPressure(const MachineInstr *MI);
209
210    /// IsProfitableToHoist - Return true if it is potentially profitable to
211    /// hoist the given loop invariant.
212    bool IsProfitableToHoist(MachineInstr &MI);
213
214    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
215    /// If not then a load from this mbb may not be safe to hoist.
216    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
217
218    void EnterScope(MachineBasicBlock *MBB);
219
220    void ExitScope(MachineBasicBlock *MBB);
221
222    /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
223    /// dominator tree node if its a leaf or all of its children are done. Walk
224    /// up the dominator tree to destroy ancestors which are now done.
225    void ExitScopeIfDone(MachineDomTreeNode *Node,
226                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
227                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
228
229    /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
230    /// blocks dominated by the specified header block, and that are in the
231    /// current loop) in depth first order w.r.t the DominatorTree. This allows
232    /// us to visit definitions before uses, allowing us to hoist a loop body in
233    /// one pass without iteration.
234    ///
235    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
236    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
237
238    /// getRegisterClassIDAndCost - For a given MI, register, and the operand
239    /// index, return the ID and cost of its representative register class by
240    /// reference.
241    void getRegisterClassIDAndCost(const MachineInstr *MI,
242                                   unsigned Reg, unsigned OpIdx,
243                                   unsigned &RCId, unsigned &RCCost) const;
244
245    /// InitRegPressure - Find all virtual register references that are liveout
246    /// of the preheader to initialize the starting "register pressure". Note
247    /// this does not count live through (livein but not used) registers.
248    void InitRegPressure(MachineBasicBlock *BB);
249
250    /// UpdateRegPressure - Update estimate of register pressure after the
251    /// specified instruction.
252    void UpdateRegPressure(const MachineInstr *MI);
253
254    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
255    /// the load itself could be hoisted. Return the unfolded and hoistable
256    /// load, or null if the load couldn't be unfolded or if it wouldn't
257    /// be hoistable.
258    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
259
260    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
261    /// duplicate of MI. Return this instruction if it's found.
262    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
263                                     std::vector<const MachineInstr*> &PrevMIs);
264
265    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
266    /// the preheader that compute the same value. If it's found, do a RAU on
267    /// with the definition of the existing instruction rather than hoisting
268    /// the instruction to the preheader.
269    bool EliminateCSE(MachineInstr *MI,
270           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
271
272    /// MayCSE - Return true if the given instruction will be CSE'd if it's
273    /// hoisted out of the loop.
274    bool MayCSE(MachineInstr *MI);
275
276    /// Hoist - When an instruction is found to only use loop invariant operands
277    /// that is safe to hoist, this instruction is called to do the dirty work.
278    /// It returns true if the instruction is hoisted.
279    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
280
281    /// InitCSEMap - Initialize the CSE map with instructions that are in the
282    /// current loop preheader that may become duplicates of instructions that
283    /// are hoisted out of the loop.
284    void InitCSEMap(MachineBasicBlock *BB);
285
286    /// getCurPreheader - Get the preheader for the current loop, splitting
287    /// a critical edge if needed.
288    MachineBasicBlock *getCurPreheader();
289  };
290} // end anonymous namespace
291
292char MachineLICM::ID = 0;
293INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
294                "Machine Loop Invariant Code Motion", false, false)
295INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
296INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
297INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
298INITIALIZE_PASS_END(MachineLICM, "machinelicm",
299                "Machine Loop Invariant Code Motion", false, false)
300
301FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
302  return new MachineLICM(PreRegAlloc);
303}
304
305/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
306/// loop that has a unique predecessor.
307static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
308  // Check whether this loop even has a unique predecessor.
309  if (!CurLoop->getLoopPredecessor())
310    return false;
311  // Ok, now check to see if any of its outer loops do.
312  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
313    if (L->getLoopPredecessor())
314      return false;
315  // None of them did, so this is the outermost with a unique predecessor.
316  return true;
317}
318
319bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
320  if (PreRegAlloc)
321    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
322  else
323    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
324  DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
325
326  Changed = FirstInLoop = false;
327  TM = &MF.getTarget();
328  TII = TM->getInstrInfo();
329  TLI = TM->getTargetLowering();
330  TRI = TM->getRegisterInfo();
331  MFI = MF.getFrameInfo();
332  MRI = &MF.getRegInfo();
333  InstrItins = TM->getInstrItineraryData();
334  AllocatableSet = TRI->getAllocatableSet(MF);
335
336  if (PreRegAlloc) {
337    // Estimate register pressure during pre-regalloc pass.
338    unsigned NumRC = TRI->getNumRegClasses();
339    RegPressure.resize(NumRC);
340    std::fill(RegPressure.begin(), RegPressure.end(), 0);
341    RegLimit.resize(NumRC);
342    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
343           E = TRI->regclass_end(); I != E; ++I)
344      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
345  }
346
347  // Get our Loop information...
348  MLI = &getAnalysis<MachineLoopInfo>();
349  DT  = &getAnalysis<MachineDominatorTree>();
350  AA  = &getAnalysis<AliasAnalysis>();
351
352  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
353  while (!Worklist.empty()) {
354    CurLoop = Worklist.pop_back_val();
355    CurPreheader = 0;
356
357    // If this is done before regalloc, only visit outer-most preheader-sporting
358    // loops.
359    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
360      Worklist.append(CurLoop->begin(), CurLoop->end());
361      continue;
362    }
363
364    if (!PreRegAlloc)
365      HoistRegionPostRA();
366    else {
367      // CSEMap is initialized for loop header when the first instruction is
368      // being hoisted.
369      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
370      FirstInLoop = true;
371      HoistOutOfLoop(N);
372      CSEMap.clear();
373    }
374  }
375
376  return Changed;
377}
378
379/// InstructionStoresToFI - Return true if instruction stores to the
380/// specified frame.
381static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
382  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
383         oe = MI->memoperands_end(); o != oe; ++o) {
384    if (!(*o)->isStore() || !(*o)->getValue())
385      continue;
386    if (const FixedStackPseudoSourceValue *Value =
387        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
388      if (Value->getFrameIndex() == FI)
389        return true;
390    }
391  }
392  return false;
393}
394
395/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
396/// gather register def and frame object update information.
397void MachineLICM::ProcessMI(MachineInstr *MI,
398                            unsigned *PhysRegDefs,
399                            SmallSet<int, 32> &StoredFIs,
400                            SmallVector<CandidateInfo, 32> &Candidates) {
401  bool RuledOut = false;
402  bool HasNonInvariantUse = false;
403  unsigned Def = 0;
404  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
405    const MachineOperand &MO = MI->getOperand(i);
406    if (MO.isFI()) {
407      // Remember if the instruction stores to the frame index.
408      int FI = MO.getIndex();
409      if (!StoredFIs.count(FI) &&
410          MFI->isSpillSlotObjectIndex(FI) &&
411          InstructionStoresToFI(MI, FI))
412        StoredFIs.insert(FI);
413      HasNonInvariantUse = true;
414      continue;
415    }
416
417    if (!MO.isReg())
418      continue;
419    unsigned Reg = MO.getReg();
420    if (!Reg)
421      continue;
422    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
423           "Not expecting virtual register!");
424
425    if (!MO.isDef()) {
426      if (Reg && PhysRegDefs[Reg])
427        // If it's using a non-loop-invariant register, then it's obviously not
428        // safe to hoist.
429        HasNonInvariantUse = true;
430      continue;
431    }
432
433    if (MO.isImplicit()) {
434      ++PhysRegDefs[Reg];
435      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
436        ++PhysRegDefs[*AS];
437      if (!MO.isDead())
438        // Non-dead implicit def? This cannot be hoisted.
439        RuledOut = true;
440      // No need to check if a dead implicit def is also defined by
441      // another instruction.
442      continue;
443    }
444
445    // FIXME: For now, avoid instructions with multiple defs, unless
446    // it's a dead implicit def.
447    if (Def)
448      RuledOut = true;
449    else
450      Def = Reg;
451
452    // If we have already seen another instruction that defines the same
453    // register, then this is not safe.
454    if (++PhysRegDefs[Reg] > 1)
455      // MI defined register is seen defined by another instruction in
456      // the loop, it cannot be a LICM candidate.
457      RuledOut = true;
458    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
459      if (++PhysRegDefs[*AS] > 1)
460        RuledOut = true;
461  }
462
463  // Only consider reloads for now and remats which do not have register
464  // operands. FIXME: Consider unfold load folding instructions.
465  if (Def && !RuledOut) {
466    int FI = INT_MIN;
467    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
468        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
469      Candidates.push_back(CandidateInfo(MI, Def, FI));
470  }
471}
472
473/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
474/// invariants out to the preheader.
475void MachineLICM::HoistRegionPostRA() {
476  unsigned NumRegs = TRI->getNumRegs();
477  unsigned *PhysRegDefs = new unsigned[NumRegs];
478  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
479
480  SmallVector<CandidateInfo, 32> Candidates;
481  SmallSet<int, 32> StoredFIs;
482
483  // Walk the entire region, count number of defs for each register, and
484  // collect potential LICM candidates.
485  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
486  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
487    MachineBasicBlock *BB = Blocks[i];
488
489    // If the header of the loop containing this basic block is a landing pad,
490    // then don't try to hoist instructions out of this loop.
491    const MachineLoop *ML = MLI->getLoopFor(BB);
492    if (ML && ML->getHeader()->isLandingPad()) continue;
493
494    // Conservatively treat live-in's as an external def.
495    // FIXME: That means a reload that're reused in successor block(s) will not
496    // be LICM'ed.
497    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
498           E = BB->livein_end(); I != E; ++I) {
499      unsigned Reg = *I;
500      ++PhysRegDefs[Reg];
501      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
502        ++PhysRegDefs[*AS];
503    }
504
505    SpeculationState = SpeculateUnknown;
506    for (MachineBasicBlock::iterator
507           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
508      MachineInstr *MI = &*MII;
509      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
510    }
511  }
512
513  // Now evaluate whether the potential candidates qualify.
514  // 1. Check if the candidate defined register is defined by another
515  //    instruction in the loop.
516  // 2. If the candidate is a load from stack slot (always true for now),
517  //    check if the slot is stored anywhere in the loop.
518  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
519    if (Candidates[i].FI != INT_MIN &&
520        StoredFIs.count(Candidates[i].FI))
521      continue;
522
523    if (PhysRegDefs[Candidates[i].Def] == 1) {
524      bool Safe = true;
525      MachineInstr *MI = Candidates[i].MI;
526      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
527        const MachineOperand &MO = MI->getOperand(j);
528        if (!MO.isReg() || MO.isDef() || !MO.getReg())
529          continue;
530        if (PhysRegDefs[MO.getReg()]) {
531          // If it's using a non-loop-invariant register, then it's obviously
532          // not safe to hoist.
533          Safe = false;
534          break;
535        }
536      }
537      if (Safe)
538        HoistPostRA(MI, Candidates[i].Def);
539    }
540  }
541
542  delete[] PhysRegDefs;
543}
544
545/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
546/// loop, and make sure it is not killed by any instructions in the loop.
547void MachineLICM::AddToLiveIns(unsigned Reg) {
548  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
549  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
550    MachineBasicBlock *BB = Blocks[i];
551    if (!BB->isLiveIn(Reg))
552      BB->addLiveIn(Reg);
553    for (MachineBasicBlock::iterator
554           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
555      MachineInstr *MI = &*MII;
556      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
557        MachineOperand &MO = MI->getOperand(i);
558        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
559        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
560          MO.setIsKill(false);
561      }
562    }
563  }
564}
565
566/// HoistPostRA - When an instruction is found to only use loop invariant
567/// operands that is safe to hoist, this instruction is called to do the
568/// dirty work.
569void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
570  MachineBasicBlock *Preheader = getCurPreheader();
571  if (!Preheader) return;
572
573  // Now move the instructions to the predecessor, inserting it before any
574  // terminator instructions.
575  DEBUG({
576      dbgs() << "Hoisting " << *MI;
577      if (Preheader->getBasicBlock())
578        dbgs() << " to MachineBasicBlock "
579               << Preheader->getName();
580      if (MI->getParent()->getBasicBlock())
581        dbgs() << " from MachineBasicBlock "
582               << MI->getParent()->getName();
583      dbgs() << "\n";
584    });
585
586  // Splice the instruction to the preheader.
587  MachineBasicBlock *MBB = MI->getParent();
588  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
589
590  // Add register to livein list to all the BBs in the current loop since a
591  // loop invariant must be kept live throughout the whole loop. This is
592  // important to ensure later passes do not scavenge the def register.
593  AddToLiveIns(Def);
594
595  ++NumPostRAHoisted;
596  Changed = true;
597}
598
599// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
600// If not then a load from this mbb may not be safe to hoist.
601bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
602  if (SpeculationState != SpeculateUnknown)
603    return SpeculationState == SpeculateFalse;
604
605  if (BB != CurLoop->getHeader()) {
606    // Check loop exiting blocks.
607    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
608    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
609    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
610      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
611        SpeculationState = SpeculateTrue;
612        return false;
613      }
614  }
615
616  SpeculationState = SpeculateFalse;
617  return true;
618}
619
620void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
621  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
622
623  // Remember livein register pressure.
624  BackTrace.push_back(RegPressure);
625}
626
627void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
628  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
629  BackTrace.pop_back();
630}
631
632/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
633/// dominator tree node if its a leaf or all of its children are done. Walk
634/// up the dominator tree to destroy ancestors which are now done.
635void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
636                                  DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
637                                  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
638  if (OpenChildren[Node])
639    return;
640
641  // Pop scope.
642  ExitScope(Node->getBlock());
643
644  // Now traverse upwards to pop ancestors whose offsprings are all done.
645  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
646    unsigned Left = --OpenChildren[Parent];
647    if (Left != 0)
648      break;
649    ExitScope(Parent->getBlock());
650    Node = Parent;
651  }
652}
653
654/// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
655/// blocks dominated by the specified header block, and that are in the
656/// current loop) in depth first order w.r.t the DominatorTree. This allows
657/// us to visit definitions before uses, allowing us to hoist a loop body in
658/// one pass without iteration.
659///
660void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
661  SmallVector<MachineDomTreeNode*, 32> Scopes;
662  SmallVector<MachineDomTreeNode*, 8> WorkList;
663  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
664  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
665
666  // Perform a DFS walk to determine the order of visit.
667  WorkList.push_back(HeaderN);
668  do {
669    MachineDomTreeNode *Node = WorkList.pop_back_val();
670    assert(Node != 0 && "Null dominator tree node?");
671    MachineBasicBlock *BB = Node->getBlock();
672
673    // If the header of the loop containing this basic block is a landing pad,
674    // then don't try to hoist instructions out of this loop.
675    const MachineLoop *ML = MLI->getLoopFor(BB);
676    if (ML && ML->getHeader()->isLandingPad())
677      continue;
678
679    // If this subregion is not in the top level loop at all, exit.
680    if (!CurLoop->contains(BB))
681      continue;
682
683    Scopes.push_back(Node);
684    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
685    unsigned NumChildren = Children.size();
686
687    // Don't hoist things out of a large switch statement.  This often causes
688    // code to be hoisted that wasn't going to be executed, and increases
689    // register pressure in a situation where it's likely to matter.
690    if (BB->succ_size() >= 25)
691      NumChildren = 0;
692
693    OpenChildren[Node] = NumChildren;
694    // Add children in reverse order as then the next popped worklist node is
695    // the first child of this node.  This means we ultimately traverse the
696    // DOM tree in exactly the same order as if we'd recursed.
697    for (int i = (int)NumChildren-1; i >= 0; --i) {
698      MachineDomTreeNode *Child = Children[i];
699      ParentMap[Child] = Node;
700      WorkList.push_back(Child);
701    }
702  } while (!WorkList.empty());
703
704  if (Scopes.size() != 0) {
705    MachineBasicBlock *Preheader = getCurPreheader();
706    if (!Preheader)
707      return;
708
709    // Compute registers which are livein into the loop headers.
710    RegSeen.clear();
711    BackTrace.clear();
712    InitRegPressure(Preheader);
713  }
714
715  // Now perform LICM.
716  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
717    MachineDomTreeNode *Node = Scopes[i];
718    MachineBasicBlock *MBB = Node->getBlock();
719
720    MachineBasicBlock *Preheader = getCurPreheader();
721    if (!Preheader)
722      continue;
723
724    EnterScope(MBB);
725
726    // Process the block
727    SpeculationState = SpeculateUnknown;
728    for (MachineBasicBlock::iterator
729         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
730      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
731      MachineInstr *MI = &*MII;
732      if (!Hoist(MI, Preheader))
733        UpdateRegPressure(MI);
734      MII = NextMII;
735    }
736
737    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
738    ExitScopeIfDone(Node, OpenChildren, ParentMap);
739  }
740}
741
742static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
743  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
744}
745
746/// getRegisterClassIDAndCost - For a given MI, register, and the operand
747/// index, return the ID and cost of its representative register class.
748void
749MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
750                                       unsigned Reg, unsigned OpIdx,
751                                       unsigned &RCId, unsigned &RCCost) const {
752  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
753  EVT VT = *RC->vt_begin();
754  if (VT == MVT::Untyped) {
755    RCId = RC->getID();
756    RCCost = 1;
757  } else {
758    RCId = TLI->getRepRegClassFor(VT)->getID();
759    RCCost = TLI->getRepRegClassCostFor(VT);
760  }
761}
762
763/// InitRegPressure - Find all virtual register references that are liveout of
764/// the preheader to initialize the starting "register pressure". Note this
765/// does not count live through (livein but not used) registers.
766void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
767  std::fill(RegPressure.begin(), RegPressure.end(), 0);
768
769  // If the preheader has only a single predecessor and it ends with a
770  // fallthrough or an unconditional branch, then scan its predecessor for live
771  // defs as well. This happens whenever the preheader is created by splitting
772  // the critical edge from the loop predecessor to the loop header.
773  if (BB->pred_size() == 1) {
774    MachineBasicBlock *TBB = 0, *FBB = 0;
775    SmallVector<MachineOperand, 4> Cond;
776    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
777      InitRegPressure(*BB->pred_begin());
778  }
779
780  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
781       MII != E; ++MII) {
782    MachineInstr *MI = &*MII;
783    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
784      const MachineOperand &MO = MI->getOperand(i);
785      if (!MO.isReg() || MO.isImplicit())
786        continue;
787      unsigned Reg = MO.getReg();
788      if (!TargetRegisterInfo::isVirtualRegister(Reg))
789        continue;
790
791      bool isNew = RegSeen.insert(Reg);
792      unsigned RCId, RCCost;
793      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
794      if (MO.isDef())
795        RegPressure[RCId] += RCCost;
796      else {
797        bool isKill = isOperandKill(MO, MRI);
798        if (isNew && !isKill)
799          // Haven't seen this, it must be a livein.
800          RegPressure[RCId] += RCCost;
801        else if (!isNew && isKill)
802          RegPressure[RCId] -= RCCost;
803      }
804    }
805  }
806}
807
808/// UpdateRegPressure - Update estimate of register pressure after the
809/// specified instruction.
810void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
811  if (MI->isImplicitDef())
812    return;
813
814  SmallVector<unsigned, 4> Defs;
815  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
816    const MachineOperand &MO = MI->getOperand(i);
817    if (!MO.isReg() || MO.isImplicit())
818      continue;
819    unsigned Reg = MO.getReg();
820    if (!TargetRegisterInfo::isVirtualRegister(Reg))
821      continue;
822
823    bool isNew = RegSeen.insert(Reg);
824    if (MO.isDef())
825      Defs.push_back(Reg);
826    else if (!isNew && isOperandKill(MO, MRI)) {
827      unsigned RCId, RCCost;
828      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
829      if (RCCost > RegPressure[RCId])
830        RegPressure[RCId] = 0;
831      else
832        RegPressure[RCId] -= RCCost;
833    }
834  }
835
836  unsigned Idx = 0;
837  while (!Defs.empty()) {
838    unsigned Reg = Defs.pop_back_val();
839    unsigned RCId, RCCost;
840    getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
841    RegPressure[RCId] += RCCost;
842    ++Idx;
843  }
844}
845
846/// isLoadFromGOTOrConstantPool - Return true if this machine instruction
847/// loads from global offset table or constant pool.
848static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
849  assert (MI.mayLoad() && "Expected MI that loads!");
850  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
851	 E = MI.memoperands_end(); I != E; ++I) {
852    if (const Value *V = (*I)->getValue()) {
853      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
854        if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
855	  return true;
856    }
857  }
858  return false;
859}
860
861/// IsLICMCandidate - Returns true if the instruction may be a suitable
862/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
863/// not safe to hoist it.
864bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
865  // Check if it's safe to move the instruction.
866  bool DontMoveAcrossStore = true;
867  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
868    return false;
869
870  // If it is load then check if it is guaranteed to execute by making sure that
871  // it dominates all exiting blocks. If it doesn't, then there is a path out of
872  // the loop which does not execute this load, so we can't hoist it. Loads
873  // from constant memory are not safe to speculate all the time, for example
874  // indexed load from a jump table.
875  // Stores and side effects are already checked by isSafeToMove.
876  if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
877      !IsGuaranteedToExecute(I.getParent()))
878    return false;
879
880  return true;
881}
882
883/// IsLoopInvariantInst - Returns true if the instruction is loop
884/// invariant. I.e., all virtual register operands are defined outside of the
885/// loop, physical registers aren't accessed explicitly, and there are no side
886/// effects that aren't captured by the operands or other flags.
887///
888bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
889  if (!IsLICMCandidate(I))
890    return false;
891
892  // The instruction is loop invariant if all of its operands are.
893  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
894    const MachineOperand &MO = I.getOperand(i);
895
896    if (!MO.isReg())
897      continue;
898
899    unsigned Reg = MO.getReg();
900    if (Reg == 0) continue;
901
902    // Don't hoist an instruction that uses or defines a physical register.
903    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
904      if (MO.isUse()) {
905        // If the physreg has no defs anywhere, it's just an ambient register
906        // and we can freely move its uses. Alternatively, if it's allocatable,
907        // it could get allocated to something with a def during allocation.
908        if (!MRI->def_empty(Reg))
909          return false;
910        if (AllocatableSet.test(Reg))
911          return false;
912        // Check for a def among the register's aliases too.
913        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
914          unsigned AliasReg = *Alias;
915          if (!MRI->def_empty(AliasReg))
916            return false;
917          if (AllocatableSet.test(AliasReg))
918            return false;
919        }
920        // Otherwise it's safe to move.
921        continue;
922      } else if (!MO.isDead()) {
923        // A def that isn't dead. We can't move it.
924        return false;
925      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
926        // If the reg is live into the loop, we can't hoist an instruction
927        // which would clobber it.
928        return false;
929      }
930    }
931
932    if (!MO.isUse())
933      continue;
934
935    assert(MRI->getVRegDef(Reg) &&
936           "Machine instr not mapped for this vreg?!");
937
938    // If the loop contains the definition of an operand, then the instruction
939    // isn't loop invariant.
940    if (CurLoop->contains(MRI->getVRegDef(Reg)))
941      return false;
942  }
943
944  // If we got this far, the instruction is loop invariant!
945  return true;
946}
947
948
949/// HasAnyPHIUse - Return true if the specified register is used by any
950/// phi node.
951bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
952  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
953         UE = MRI->use_end(); UI != UE; ++UI) {
954    MachineInstr *UseMI = &*UI;
955    if (UseMI->isPHI())
956      return true;
957    // Look pass copies as well.
958    if (UseMI->isCopy()) {
959      unsigned Def = UseMI->getOperand(0).getReg();
960      if (TargetRegisterInfo::isVirtualRegister(Def) &&
961          HasAnyPHIUse(Def))
962        return true;
963    }
964  }
965  return false;
966}
967
968/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
969/// and an use in the current loop, return true if the target considered
970/// it 'high'.
971bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
972                                        unsigned DefIdx, unsigned Reg) const {
973  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
974    return false;
975
976  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
977         E = MRI->use_nodbg_end(); I != E; ++I) {
978    MachineInstr *UseMI = &*I;
979    if (UseMI->isCopyLike())
980      continue;
981    if (!CurLoop->contains(UseMI->getParent()))
982      continue;
983    for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
984      const MachineOperand &MO = UseMI->getOperand(i);
985      if (!MO.isReg() || !MO.isUse())
986        continue;
987      unsigned MOReg = MO.getReg();
988      if (MOReg != Reg)
989        continue;
990
991      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
992        return true;
993    }
994
995    // Only look at the first in loop use.
996    break;
997  }
998
999  return false;
1000}
1001
1002/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
1003/// the operand latency between its def and a use is one or less.
1004bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
1005  if (MI.isAsCheapAsAMove() || MI.isCopyLike())
1006    return true;
1007  if (!InstrItins || InstrItins->isEmpty())
1008    return false;
1009
1010  bool isCheap = false;
1011  unsigned NumDefs = MI.getDesc().getNumDefs();
1012  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1013    MachineOperand &DefMO = MI.getOperand(i);
1014    if (!DefMO.isReg() || !DefMO.isDef())
1015      continue;
1016    --NumDefs;
1017    unsigned Reg = DefMO.getReg();
1018    if (TargetRegisterInfo::isPhysicalRegister(Reg))
1019      continue;
1020
1021    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
1022      return false;
1023    isCheap = true;
1024  }
1025
1026  return isCheap;
1027}
1028
1029/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
1030/// if hoisting an instruction of the given cost matrix can cause high
1031/// register pressure.
1032bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
1033  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1034       CI != CE; ++CI) {
1035    if (CI->second <= 0)
1036      continue;
1037
1038    unsigned RCId = CI->first;
1039    unsigned Limit = RegLimit[RCId];
1040    int Cost = CI->second;
1041    for (unsigned i = BackTrace.size(); i != 0; --i) {
1042      SmallVector<unsigned, 8> &RP = BackTrace[i-1];
1043      if (RP[RCId] + Cost >= Limit)
1044        return true;
1045    }
1046  }
1047
1048  return false;
1049}
1050
1051/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
1052/// current block and update their register pressures to reflect the effect
1053/// of hoisting MI from the current block to the preheader.
1054void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1055  if (MI->isImplicitDef())
1056    return;
1057
1058  // First compute the 'cost' of the instruction, i.e. its contribution
1059  // to register pressure.
1060  DenseMap<unsigned, int> Cost;
1061  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1062    const MachineOperand &MO = MI->getOperand(i);
1063    if (!MO.isReg() || MO.isImplicit())
1064      continue;
1065    unsigned Reg = MO.getReg();
1066    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1067      continue;
1068
1069    unsigned RCId, RCCost;
1070    getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
1071    if (MO.isDef()) {
1072      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1073      if (CI != Cost.end())
1074        CI->second += RCCost;
1075      else
1076        Cost.insert(std::make_pair(RCId, RCCost));
1077    } else if (isOperandKill(MO, MRI)) {
1078      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1079      if (CI != Cost.end())
1080        CI->second -= RCCost;
1081      else
1082        Cost.insert(std::make_pair(RCId, -RCCost));
1083    }
1084  }
1085
1086  // Update register pressure of blocks from loop header to current block.
1087  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1088    SmallVector<unsigned, 8> &RP = BackTrace[i];
1089    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1090         CI != CE; ++CI) {
1091      unsigned RCId = CI->first;
1092      RP[RCId] += CI->second;
1093    }
1094  }
1095}
1096
1097/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1098/// the given loop invariant.
1099bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1100  if (MI.isImplicitDef())
1101    return true;
1102
1103  // If the instruction is cheap, only hoist if it is re-materilizable. LICM
1104  // will increase register pressure. It's probably not worth it if the
1105  // instruction is cheap.
1106  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
1107  // these tend to help performance in low register pressure situation. The
1108  // trade off is it may cause spill in high pressure situation. It will end up
1109  // adding a store in the loop preheader. But the reload is no more expensive.
1110  // The side benefit is these loads are frequently CSE'ed.
1111  if (IsCheapInstruction(MI)) {
1112    if (!TII->isTriviallyReMaterializable(&MI, AA))
1113      return false;
1114  } else {
1115    // Estimate register pressure to determine whether to LICM the instruction.
1116    // In low register pressure situation, we can be more aggressive about
1117    // hoisting. Also, favors hoisting long latency instructions even in
1118    // moderately high pressure situation.
1119    // FIXME: If there are long latency loop-invariant instructions inside the
1120    // loop at this point, why didn't the optimizer's LICM hoist them?
1121    DenseMap<unsigned, int> Cost;
1122    for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1123      const MachineOperand &MO = MI.getOperand(i);
1124      if (!MO.isReg() || MO.isImplicit())
1125        continue;
1126      unsigned Reg = MO.getReg();
1127      if (!TargetRegisterInfo::isVirtualRegister(Reg))
1128        continue;
1129
1130      unsigned RCId, RCCost;
1131      getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1132      if (MO.isDef()) {
1133        if (HasHighOperandLatency(MI, i, Reg)) {
1134          ++NumHighLatency;
1135          return true;
1136        }
1137
1138        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1139        if (CI != Cost.end())
1140          CI->second += RCCost;
1141        else
1142          Cost.insert(std::make_pair(RCId, RCCost));
1143      } else if (isOperandKill(MO, MRI)) {
1144        // Is a virtual register use is a kill, hoisting it out of the loop
1145        // may actually reduce register pressure or be register pressure
1146        // neutral.
1147        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1148        if (CI != Cost.end())
1149          CI->second -= RCCost;
1150        else
1151          Cost.insert(std::make_pair(RCId, -RCCost));
1152      }
1153    }
1154
1155    // Visit BBs from header to current BB, if hoisting this doesn't cause
1156    // high register pressure, then it's safe to proceed.
1157    if (!CanCauseHighRegPressure(Cost)) {
1158      ++NumLowRP;
1159      return true;
1160    }
1161
1162    // Do not "speculate" in high register pressure situation. If an
1163    // instruction is not guaranteed to be executed in the loop, it's best to be
1164    // conservative.
1165    if (AvoidSpeculation &&
1166        (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)))
1167      return false;
1168
1169    // High register pressure situation, only hoist if the instruction is going to
1170    // be remat'ed.
1171    if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1172        !MI.isInvariantLoad(AA))
1173      return false;
1174  }
1175
1176  // If result(s) of this instruction is used by PHIs outside of the loop, then
1177  // don't hoist it if the instruction because it will introduce an extra copy.
1178  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1179    const MachineOperand &MO = MI.getOperand(i);
1180    if (!MO.isReg() || !MO.isDef())
1181      continue;
1182    if (HasAnyPHIUse(MO.getReg()))
1183      return false;
1184  }
1185
1186  return true;
1187}
1188
1189MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1190  // Don't unfold simple loads.
1191  if (MI->canFoldAsLoad())
1192    return 0;
1193
1194  // If not, we may be able to unfold a load and hoist that.
1195  // First test whether the instruction is loading from an amenable
1196  // memory location.
1197  if (!MI->isInvariantLoad(AA))
1198    return 0;
1199
1200  // Next determine the register class for a temporary register.
1201  unsigned LoadRegIndex;
1202  unsigned NewOpc =
1203    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1204                                    /*UnfoldLoad=*/true,
1205                                    /*UnfoldStore=*/false,
1206                                    &LoadRegIndex);
1207  if (NewOpc == 0) return 0;
1208  const MCInstrDesc &MID = TII->get(NewOpc);
1209  if (MID.getNumDefs() != 1) return 0;
1210  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
1211  // Ok, we're unfolding. Create a temporary register and do the unfold.
1212  unsigned Reg = MRI->createVirtualRegister(RC);
1213
1214  MachineFunction &MF = *MI->getParent()->getParent();
1215  SmallVector<MachineInstr *, 2> NewMIs;
1216  bool Success =
1217    TII->unfoldMemoryOperand(MF, MI, Reg,
1218                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1219                             NewMIs);
1220  (void)Success;
1221  assert(Success &&
1222         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1223         "succeeded!");
1224  assert(NewMIs.size() == 2 &&
1225         "Unfolded a load into multiple instructions!");
1226  MachineBasicBlock *MBB = MI->getParent();
1227  MachineBasicBlock::iterator Pos = MI;
1228  MBB->insert(Pos, NewMIs[0]);
1229  MBB->insert(Pos, NewMIs[1]);
1230  // If unfolding produced a load that wasn't loop-invariant or profitable to
1231  // hoist, discard the new instructions and bail.
1232  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1233    NewMIs[0]->eraseFromParent();
1234    NewMIs[1]->eraseFromParent();
1235    return 0;
1236  }
1237
1238  // Update register pressure for the unfolded instruction.
1239  UpdateRegPressure(NewMIs[1]);
1240
1241  // Otherwise we successfully unfolded a load that we can hoist.
1242  MI->eraseFromParent();
1243  return NewMIs[0];
1244}
1245
1246void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1247  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1248    const MachineInstr *MI = &*I;
1249    unsigned Opcode = MI->getOpcode();
1250    DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1251      CI = CSEMap.find(Opcode);
1252    if (CI != CSEMap.end())
1253      CI->second.push_back(MI);
1254    else {
1255      std::vector<const MachineInstr*> CSEMIs;
1256      CSEMIs.push_back(MI);
1257      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1258    }
1259  }
1260}
1261
1262const MachineInstr*
1263MachineLICM::LookForDuplicate(const MachineInstr *MI,
1264                              std::vector<const MachineInstr*> &PrevMIs) {
1265  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1266    const MachineInstr *PrevMI = PrevMIs[i];
1267    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1268      return PrevMI;
1269  }
1270  return 0;
1271}
1272
1273bool MachineLICM::EliminateCSE(MachineInstr *MI,
1274          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1275  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1276  // the undef property onto uses.
1277  if (CI == CSEMap.end() || MI->isImplicitDef())
1278    return false;
1279
1280  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1281    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1282
1283    // Replace virtual registers defined by MI by their counterparts defined
1284    // by Dup.
1285    SmallVector<unsigned, 2> Defs;
1286    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1287      const MachineOperand &MO = MI->getOperand(i);
1288
1289      // Physical registers may not differ here.
1290      assert((!MO.isReg() || MO.getReg() == 0 ||
1291              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1292              MO.getReg() == Dup->getOperand(i).getReg()) &&
1293             "Instructions with different phys regs are not identical!");
1294
1295      if (MO.isReg() && MO.isDef() &&
1296          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1297        Defs.push_back(i);
1298    }
1299
1300    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1301    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1302      unsigned Idx = Defs[i];
1303      unsigned Reg = MI->getOperand(Idx).getReg();
1304      unsigned DupReg = Dup->getOperand(Idx).getReg();
1305      OrigRCs.push_back(MRI->getRegClass(DupReg));
1306
1307      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1308        // Restore old RCs if more than one defs.
1309        for (unsigned j = 0; j != i; ++j)
1310          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1311        return false;
1312      }
1313    }
1314
1315    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1316      unsigned Idx = Defs[i];
1317      unsigned Reg = MI->getOperand(Idx).getReg();
1318      unsigned DupReg = Dup->getOperand(Idx).getReg();
1319      MRI->replaceRegWith(Reg, DupReg);
1320      MRI->clearKillFlags(DupReg);
1321    }
1322
1323    MI->eraseFromParent();
1324    ++NumCSEed;
1325    return true;
1326  }
1327  return false;
1328}
1329
1330/// MayCSE - Return true if the given instruction will be CSE'd if it's
1331/// hoisted out of the loop.
1332bool MachineLICM::MayCSE(MachineInstr *MI) {
1333  unsigned Opcode = MI->getOpcode();
1334  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1335    CI = CSEMap.find(Opcode);
1336  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1337  // the undef property onto uses.
1338  if (CI == CSEMap.end() || MI->isImplicitDef())
1339    return false;
1340
1341  return LookForDuplicate(MI, CI->second) != 0;
1342}
1343
1344/// Hoist - When an instruction is found to use only loop invariant operands
1345/// that are safe to hoist, this instruction is called to do the dirty work.
1346///
1347bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1348  // First check whether we should hoist this instruction.
1349  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1350    // If not, try unfolding a hoistable load.
1351    MI = ExtractHoistableLoad(MI);
1352    if (!MI) return false;
1353  }
1354
1355  // Now move the instructions to the predecessor, inserting it before any
1356  // terminator instructions.
1357  DEBUG({
1358      dbgs() << "Hoisting " << *MI;
1359      if (Preheader->getBasicBlock())
1360        dbgs() << " to MachineBasicBlock "
1361               << Preheader->getName();
1362      if (MI->getParent()->getBasicBlock())
1363        dbgs() << " from MachineBasicBlock "
1364               << MI->getParent()->getName();
1365      dbgs() << "\n";
1366    });
1367
1368  // If this is the first instruction being hoisted to the preheader,
1369  // initialize the CSE map with potential common expressions.
1370  if (FirstInLoop) {
1371    InitCSEMap(Preheader);
1372    FirstInLoop = false;
1373  }
1374
1375  // Look for opportunity to CSE the hoisted instruction.
1376  unsigned Opcode = MI->getOpcode();
1377  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1378    CI = CSEMap.find(Opcode);
1379  if (!EliminateCSE(MI, CI)) {
1380    // Otherwise, splice the instruction to the preheader.
1381    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1382
1383    // Update register pressure for BBs from header to this block.
1384    UpdateBackTraceRegPressure(MI);
1385
1386    // Clear the kill flags of any register this instruction defines,
1387    // since they may need to be live throughout the entire loop
1388    // rather than just live for part of it.
1389    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1390      MachineOperand &MO = MI->getOperand(i);
1391      if (MO.isReg() && MO.isDef() && !MO.isDead())
1392        MRI->clearKillFlags(MO.getReg());
1393    }
1394
1395    // Add to the CSE map.
1396    if (CI != CSEMap.end())
1397      CI->second.push_back(MI);
1398    else {
1399      std::vector<const MachineInstr*> CSEMIs;
1400      CSEMIs.push_back(MI);
1401      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1402    }
1403  }
1404
1405  ++NumHoisted;
1406  Changed = true;
1407
1408  return true;
1409}
1410
1411MachineBasicBlock *MachineLICM::getCurPreheader() {
1412  // Determine the block to which to hoist instructions. If we can't find a
1413  // suitable loop predecessor, we can't do any hoisting.
1414
1415  // If we've tried to get a preheader and failed, don't try again.
1416  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1417    return 0;
1418
1419  if (!CurPreheader) {
1420    CurPreheader = CurLoop->getLoopPreheader();
1421    if (!CurPreheader) {
1422      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1423      if (!Pred) {
1424        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1425        return 0;
1426      }
1427
1428      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1429      if (!CurPreheader) {
1430        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1431        return 0;
1432      }
1433    }
1434  }
1435  return CurPreheader;
1436}
1437