MachineLICM.cpp revision 6ac33b4533889f132ba10c812ae574d779c827b9
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
43STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
44
45namespace {
46  class MachineLICM : public MachineFunctionPass {
47    MachineConstantPool *MCP;
48    const TargetMachine   *TM;
49    const TargetInstrInfo *TII;
50    const TargetRegisterInfo *TRI;
51    BitVector AllocatableSet;
52
53    // Various analyses that we use...
54    AliasAnalysis        *AA;      // Alias analysis info.
55    MachineLoopInfo      *LI;      // Current MachineLoopInfo
56    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
57    MachineRegisterInfo  *RegInfo; // Machine register information
58
59    // State that is updated as we process loops
60    bool         Changed;          // True if a loop is changed.
61    bool         FirstInLoop;      // True if it's the first LICM in the loop.
62    MachineLoop *CurLoop;          // The current loop we are working on.
63    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
64
65    // For each opcode, keep a list of potentail CSE instructions.
66    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
67  public:
68    static char ID; // Pass identification, replacement for typeid
69    MachineLICM() : MachineFunctionPass(&ID) {}
70
71    virtual bool runOnMachineFunction(MachineFunction &MF);
72
73    const char *getPassName() const { return "Machine Instruction LICM"; }
74
75    // FIXME: Loop preheaders?
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<MachineLoopInfo>();
79      AU.addRequired<MachineDominatorTree>();
80      AU.addRequired<AliasAnalysis>();
81      AU.addPreserved<MachineLoopInfo>();
82      AU.addPreserved<MachineDominatorTree>();
83      MachineFunctionPass::getAnalysisUsage(AU);
84    }
85
86    virtual void releaseMemory() {
87      CSEMap.clear();
88    }
89
90  private:
91    /// IsLoopInvariantInst - Returns true if the instruction is loop
92    /// invariant. I.e., all virtual register operands are defined outside of
93    /// the loop, physical registers aren't accessed (explicitly or implicitly),
94    /// and the instruction is hoistable.
95    ///
96    bool IsLoopInvariantInst(MachineInstr &I);
97
98    /// IsProfitableToHoist - Return true if it is potentially profitable to
99    /// hoist the given loop invariant.
100    bool IsProfitableToHoist(MachineInstr &MI);
101
102    /// HoistRegion - Walk the specified region of the CFG (defined by all
103    /// blocks dominated by the specified block, and that are in the current
104    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
105    /// visit definitions before uses, allowing us to hoist a loop body in one
106    /// pass without iteration.
107    ///
108    void HoistRegion(MachineDomTreeNode *N);
109
110    /// isLoadFromConstantMemory - Return true if the given instruction is a
111    /// load from constant memory.
112    bool isLoadFromConstantMemory(MachineInstr *MI);
113
114    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
115    /// the load itself could be hoisted. Return the unfolded and hoistable
116    /// load, or null if the load couldn't be unfolded or if it wouldn't
117    /// be hoistable.
118    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
119
120    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
121    /// duplicate of MI. Return this instruction if it's found.
122    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
123                                     std::vector<const MachineInstr*> &PrevMIs);
124
125    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
126    /// the preheader that compute the same value. If it's found, do a RAU on
127    /// with the definition of the existing instruction rather than hoisting
128    /// the instruction to the preheader.
129    bool EliminateCSE(MachineInstr *MI,
130           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
131
132    /// Hoist - When an instruction is found to only use loop invariant operands
133    /// that is safe to hoist, this instruction is called to do the dirty work.
134    ///
135    void Hoist(MachineInstr *MI);
136
137    /// InitCSEMap - Initialize the CSE map with instructions that are in the
138    /// current loop preheader that may become duplicates of instructions that
139    /// are hoisted out of the loop.
140    void InitCSEMap(MachineBasicBlock *BB);
141  };
142} // end anonymous namespace
143
144char MachineLICM::ID = 0;
145static RegisterPass<MachineLICM>
146X("machinelicm", "Machine Loop Invariant Code Motion");
147
148FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }
149
150/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
151/// loop that has a preheader.
152static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
153  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
154    if (L->getLoopPreheader())
155      return false;
156  return true;
157}
158
159/// Hoist expressions out of the specified loop. Note, alias info for inner loop
160/// is not preserved so it is not a good idea to run LICM multiple times on one
161/// loop.
162///
163bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
164  DEBUG(dbgs() << "******** Machine LICM ********\n");
165
166  Changed = FirstInLoop = false;
167  MCP = MF.getConstantPool();
168  TM = &MF.getTarget();
169  TII = TM->getInstrInfo();
170  TRI = TM->getRegisterInfo();
171  RegInfo = &MF.getRegInfo();
172  AllocatableSet = TRI->getAllocatableSet(MF);
173
174  // Get our Loop information...
175  LI = &getAnalysis<MachineLoopInfo>();
176  DT = &getAnalysis<MachineDominatorTree>();
177  AA = &getAnalysis<AliasAnalysis>();
178
179  for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
180    CurLoop = *I;
181
182    // Only visit outer-most preheader-sporting loops.
183    if (!LoopIsOuterMostWithPreheader(CurLoop))
184      continue;
185
186    // Determine the block to which to hoist instructions. If we can't find a
187    // suitable loop preheader, we can't do any hoisting.
188    //
189    // FIXME: We are only hoisting if the basic block coming into this loop
190    // has only one successor. This isn't the case in general because we haven't
191    // broken critical edges or added preheaders.
192    CurPreheader = CurLoop->getLoopPreheader();
193    if (!CurPreheader)
194      continue;
195
196    // CSEMap is initialized for loop header when the first instruction is
197    // being hoisted.
198    FirstInLoop = true;
199    HoistRegion(DT->getNode(CurLoop->getHeader()));
200    CSEMap.clear();
201  }
202
203  return Changed;
204}
205
206/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
207/// dominated by the specified block, and that are in the current loop) in depth
208/// first order w.r.t the DominatorTree. This allows us to visit definitions
209/// before uses, allowing us to hoist a loop body in one pass without iteration.
210///
211void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
212  assert(N != 0 && "Null dominator tree node?");
213  MachineBasicBlock *BB = N->getBlock();
214
215  // If this subregion is not in the top level loop at all, exit.
216  if (!CurLoop->contains(BB)) return;
217
218  for (MachineBasicBlock::iterator
219         MII = BB->begin(), E = BB->end(); MII != E; ) {
220    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
221    Hoist(&*MII);
222    MII = NextMII;
223  }
224
225  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
226
227  for (unsigned I = 0, E = Children.size(); I != E; ++I)
228    HoistRegion(Children[I]);
229}
230
231/// IsLoopInvariantInst - Returns true if the instruction is loop
232/// invariant. I.e., all virtual register operands are defined outside of the
233/// loop, physical registers aren't accessed explicitly, and there are no side
234/// effects that aren't captured by the operands or other flags.
235///
236bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
237  const TargetInstrDesc &TID = I.getDesc();
238
239  // Ignore stuff that we obviously can't hoist.
240  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
241      TID.hasUnmodeledSideEffects())
242    return false;
243
244  if (TID.mayLoad()) {
245    // Okay, this instruction does a load. As a refinement, we allow the target
246    // to decide whether the loaded value is actually a constant. If so, we can
247    // actually use it as a load.
248    if (!I.isInvariantLoad(AA))
249      // FIXME: we should be able to hoist loads with no other side effects if
250      // there are no other instructions which can change memory in this loop.
251      // This is a trivial form of alias analysis.
252      return false;
253  }
254
255  // The instruction is loop invariant if all of its operands are.
256  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
257    const MachineOperand &MO = I.getOperand(i);
258
259    if (!MO.isReg())
260      continue;
261
262    unsigned Reg = MO.getReg();
263    if (Reg == 0) continue;
264
265    // Don't hoist an instruction that uses or defines a physical register.
266    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
267      if (MO.isUse()) {
268        // If the physreg has no defs anywhere, it's just an ambient register
269        // and we can freely move its uses. Alternatively, if it's allocatable,
270        // it could get allocated to something with a def during allocation.
271        if (!RegInfo->def_empty(Reg))
272          return false;
273        if (AllocatableSet.test(Reg))
274          return false;
275        // Check for a def among the register's aliases too.
276        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
277          unsigned AliasReg = *Alias;
278          if (!RegInfo->def_empty(AliasReg))
279            return false;
280          if (AllocatableSet.test(AliasReg))
281            return false;
282        }
283        // Otherwise it's safe to move.
284        continue;
285      } else if (!MO.isDead()) {
286        // A def that isn't dead. We can't move it.
287        return false;
288      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
289        // If the reg is live into the loop, we can't hoist an instruction
290        // which would clobber it.
291        return false;
292      }
293    }
294
295    if (!MO.isUse())
296      continue;
297
298    assert(RegInfo->getVRegDef(Reg) &&
299           "Machine instr not mapped for this vreg?!");
300
301    // If the loop contains the definition of an operand, then the instruction
302    // isn't loop invariant.
303    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
304      return false;
305  }
306
307  // If we got this far, the instruction is loop invariant!
308  return true;
309}
310
311
312/// HasPHIUses - Return true if the specified register has any PHI use.
313static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
314  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
315         UE = RegInfo->use_end(); UI != UE; ++UI) {
316    MachineInstr *UseMI = &*UI;
317    if (UseMI->isPHI())
318      return true;
319  }
320  return false;
321}
322
323/// isLoadFromConstantMemory - Return true if the given instruction is a
324/// load from constant memory. Machine LICM will hoist these even if they are
325/// not re-materializable.
326bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
327  if (!MI->getDesc().mayLoad()) return false;
328  if (!MI->hasOneMemOperand()) return false;
329  MachineMemOperand *MMO = *MI->memoperands_begin();
330  if (MMO->isVolatile()) return false;
331  if (!MMO->getValue()) return false;
332  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
333  if (PSV) {
334    MachineFunction &MF = *MI->getParent()->getParent();
335    return PSV->isConstant(MF.getFrameInfo());
336  } else {
337    return AA->pointsToConstantMemory(MMO->getValue());
338  }
339}
340
341/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
342/// the given loop invariant.
343bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
344  if (MI.isImplicitDef())
345    return false;
346
347  // FIXME: For now, only hoist re-materilizable instructions. LICM will
348  // increase register pressure. We want to make sure it doesn't increase
349  // spilling.
350  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
351  // these tend to help performance in low register pressure situation. The
352  // trade off is it may cause spill in high pressure situation. It will end up
353  // adding a store in the loop preheader. But the reload is no more expensive.
354  // The side benefit is these loads are frequently CSE'ed.
355  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
356    if (!isLoadFromConstantMemory(&MI))
357      return false;
358  }
359
360  // If result(s) of this instruction is used by PHIs, then don't hoist it.
361  // The presence of joins makes it difficult for current register allocator
362  // implementation to perform remat.
363  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
364    const MachineOperand &MO = MI.getOperand(i);
365    if (!MO.isReg() || !MO.isDef())
366      continue;
367    if (HasPHIUses(MO.getReg(), RegInfo))
368      return false;
369  }
370
371  return true;
372}
373
374MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
375  // If not, we may be able to unfold a load and hoist that.
376  // First test whether the instruction is loading from an amenable
377  // memory location.
378  if (!isLoadFromConstantMemory(MI))
379    return 0;
380
381  // Next determine the register class for a temporary register.
382  unsigned LoadRegIndex;
383  unsigned NewOpc =
384    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
385                                    /*UnfoldLoad=*/true,
386                                    /*UnfoldStore=*/false,
387                                    &LoadRegIndex);
388  if (NewOpc == 0) return 0;
389  const TargetInstrDesc &TID = TII->get(NewOpc);
390  if (TID.getNumDefs() != 1) return 0;
391  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
392  // Ok, we're unfolding. Create a temporary register and do the unfold.
393  unsigned Reg = RegInfo->createVirtualRegister(RC);
394
395  MachineFunction &MF = *MI->getParent()->getParent();
396  SmallVector<MachineInstr *, 2> NewMIs;
397  bool Success =
398    TII->unfoldMemoryOperand(MF, MI, Reg,
399                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
400                             NewMIs);
401  (void)Success;
402  assert(Success &&
403         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
404         "succeeded!");
405  assert(NewMIs.size() == 2 &&
406         "Unfolded a load into multiple instructions!");
407  MachineBasicBlock *MBB = MI->getParent();
408  MBB->insert(MI, NewMIs[0]);
409  MBB->insert(MI, NewMIs[1]);
410  // If unfolding produced a load that wasn't loop-invariant or profitable to
411  // hoist, discard the new instructions and bail.
412  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
413    NewMIs[0]->eraseFromParent();
414    NewMIs[1]->eraseFromParent();
415    return 0;
416  }
417  // Otherwise we successfully unfolded a load that we can hoist.
418  MI->eraseFromParent();
419  return NewMIs[0];
420}
421
422void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
423  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
424    const MachineInstr *MI = &*I;
425    // FIXME: For now, only hoist re-materilizable instructions. LICM will
426    // increase register pressure. We want to make sure it doesn't increase
427    // spilling.
428    if (TII->isTriviallyReMaterializable(MI, AA)) {
429      unsigned Opcode = MI->getOpcode();
430      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
431        CI = CSEMap.find(Opcode);
432      if (CI != CSEMap.end())
433        CI->second.push_back(MI);
434      else {
435        std::vector<const MachineInstr*> CSEMIs;
436        CSEMIs.push_back(MI);
437        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
438      }
439    }
440  }
441}
442
443const MachineInstr*
444MachineLICM::LookForDuplicate(const MachineInstr *MI,
445                              std::vector<const MachineInstr*> &PrevMIs) {
446  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
447    const MachineInstr *PrevMI = PrevMIs[i];
448    if (TII->isIdentical(MI, PrevMI, RegInfo))
449      return PrevMI;
450  }
451  return 0;
452}
453
454bool MachineLICM::EliminateCSE(MachineInstr *MI,
455          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
456  if (CI == CSEMap.end())
457    return false;
458
459  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
460    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
461
462    // Replace virtual registers defined by MI by their counterparts defined
463    // by Dup.
464    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
465      const MachineOperand &MO = MI->getOperand(i);
466
467      // Physical registers may not differ here.
468      assert((!MO.isReg() || MO.getReg() == 0 ||
469              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
470              MO.getReg() == Dup->getOperand(i).getReg()) &&
471             "Instructions with different phys regs are not identical!");
472
473      if (MO.isReg() && MO.isDef() &&
474          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
475        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
476    }
477    MI->eraseFromParent();
478    ++NumCSEed;
479    return true;
480  }
481  return false;
482}
483
484/// Hoist - When an instruction is found to use only loop invariant operands
485/// that are safe to hoist, this instruction is called to do the dirty work.
486///
487void MachineLICM::Hoist(MachineInstr *MI) {
488  // First check whether we should hoist this instruction.
489  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
490    // If not, try unfolding a hoistable load.
491    MI = ExtractHoistableLoad(MI);
492    if (!MI) return;
493  }
494
495  // Now move the instructions to the predecessor, inserting it before any
496  // terminator instructions.
497  DEBUG({
498      dbgs() << "Hoisting " << *MI;
499      if (CurPreheader->getBasicBlock())
500        dbgs() << " to MachineBasicBlock "
501               << CurPreheader->getName();
502      if (MI->getParent()->getBasicBlock())
503        dbgs() << " from MachineBasicBlock "
504               << MI->getParent()->getName();
505      dbgs() << "\n";
506    });
507
508  // If this is the first instruction being hoisted to the preheader,
509  // initialize the CSE map with potential common expressions.
510  InitCSEMap(CurPreheader);
511
512  // Look for opportunity to CSE the hoisted instruction.
513  unsigned Opcode = MI->getOpcode();
514  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
515    CI = CSEMap.find(Opcode);
516  if (!EliminateCSE(MI, CI)) {
517    // Otherwise, splice the instruction to the preheader.
518    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
519
520    // Add to the CSE map.
521    if (CI != CSEMap.end())
522      CI->second.push_back(MI);
523    else {
524      std::vector<const MachineInstr*> CSEMIs;
525      CSEMIs.push_back(MI);
526      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
527    }
528  }
529
530  ++NumHoisted;
531  Changed = true;
532}
533