MachineLICM.cpp revision 6c15fec3c5b4770570a4d681762a7bd510e65077
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrItineraries.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43using namespace llvm;
44
45static cl::opt<bool>
46AvoidSpeculation("avoid-speculation",
47                 cl::desc("MachineLICM should avoid speculation"),
48                 cl::init(false), cl::Hidden);
49
50STATISTIC(NumHoisted,
51          "Number of machine instructions hoisted out of loops");
52STATISTIC(NumLowRP,
53          "Number of instructions hoisted in low reg pressure situation");
54STATISTIC(NumHighLatency,
55          "Number of high latency instructions hoisted");
56STATISTIC(NumCSEed,
57          "Number of hoisted machine instructions CSEed");
58STATISTIC(NumPostRAHoisted,
59          "Number of machine instructions hoisted out of loops post regalloc");
60
61namespace {
62  class MachineLICM : public MachineFunctionPass {
63    bool PreRegAlloc;
64
65    const TargetMachine   *TM;
66    const TargetInstrInfo *TII;
67    const TargetLowering *TLI;
68    const TargetRegisterInfo *TRI;
69    const MachineFrameInfo *MFI;
70    MachineRegisterInfo *MRI;
71    const InstrItineraryData *InstrItins;
72
73    // Various analyses that we use...
74    AliasAnalysis        *AA;      // Alias analysis info.
75    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
76    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
77
78    // State that is updated as we process loops
79    bool         Changed;          // True if a loop is changed.
80    bool         FirstInLoop;      // True if it's the first LICM in the loop.
81    MachineLoop *CurLoop;          // The current loop we are working on.
82    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
83
84    BitVector AllocatableSet;
85
86    // Track 'estimated' register pressure.
87    SmallSet<unsigned, 32> RegSeen;
88    SmallVector<unsigned, 8> RegPressure;
89
90    // Register pressure "limit" per register class. If the pressure
91    // is higher than the limit, then it's considered high.
92    SmallVector<unsigned, 8> RegLimit;
93
94    // Register pressure on path leading from loop preheader to current BB.
95    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
96
97    // For each opcode, keep a list of potential CSE instructions.
98    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
99
100    enum {
101      SpeculateFalse   = 0,
102      SpeculateTrue    = 1,
103      SpeculateUnknown = 2
104    };
105
106    // If a MBB does not dominate loop exiting blocks then it may not safe
107    // to hoist loads from this block.
108    // Tri-state: 0 - false, 1 - true, 2 - unknown
109    unsigned SpeculationState;
110
111  public:
112    static char ID; // Pass identification, replacement for typeid
113    MachineLICM() :
114      MachineFunctionPass(ID), PreRegAlloc(true) {
115        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
116      }
117
118    explicit MachineLICM(bool PreRA) :
119      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
120        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
121      }
122
123    virtual bool runOnMachineFunction(MachineFunction &MF);
124
125    const char *getPassName() const { return "Machine Instruction LICM"; }
126
127    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
128      AU.addRequired<MachineLoopInfo>();
129      AU.addRequired<MachineDominatorTree>();
130      AU.addRequired<AliasAnalysis>();
131      AU.addPreserved<MachineLoopInfo>();
132      AU.addPreserved<MachineDominatorTree>();
133      MachineFunctionPass::getAnalysisUsage(AU);
134    }
135
136    virtual void releaseMemory() {
137      RegSeen.clear();
138      RegPressure.clear();
139      RegLimit.clear();
140      BackTrace.clear();
141      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
142             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
143        CI->second.clear();
144      CSEMap.clear();
145    }
146
147  private:
148    /// CandidateInfo - Keep track of information about hoisting candidates.
149    struct CandidateInfo {
150      MachineInstr *MI;
151      unsigned      Def;
152      int           FI;
153      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
154        : MI(mi), Def(def), FI(fi) {}
155    };
156
157    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
158    /// invariants out to the preheader.
159    void HoistRegionPostRA();
160
161    /// HoistPostRA - When an instruction is found to only use loop invariant
162    /// operands that is safe to hoist, this instruction is called to do the
163    /// dirty work.
164    void HoistPostRA(MachineInstr *MI, unsigned Def);
165
166    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
167    /// gather register def and frame object update information.
168    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
169                   SmallSet<int, 32> &StoredFIs,
170                   SmallVector<CandidateInfo, 32> &Candidates);
171
172    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
173    /// current loop.
174    void AddToLiveIns(unsigned Reg);
175
176    /// IsLICMCandidate - Returns true if the instruction may be a suitable
177    /// candidate for LICM. e.g. If the instruction is a call, then it's
178    /// obviously not safe to hoist it.
179    bool IsLICMCandidate(MachineInstr &I);
180
181    /// IsLoopInvariantInst - Returns true if the instruction is loop
182    /// invariant. I.e., all virtual register operands are defined outside of
183    /// the loop, physical registers aren't accessed (explicitly or implicitly),
184    /// and the instruction is hoistable.
185    ///
186    bool IsLoopInvariantInst(MachineInstr &I);
187
188    /// HasAnyPHIUse - Return true if the specified register is used by any
189    /// phi node.
190    bool HasAnyPHIUse(unsigned Reg) const;
191
192    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
193    /// and an use in the current loop, return true if the target considered
194    /// it 'high'.
195    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
196                               unsigned Reg) const;
197
198    bool IsCheapInstruction(MachineInstr &MI) const;
199
200    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
201    /// check if hoisting an instruction of the given cost matrix can cause high
202    /// register pressure.
203    bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
204
205    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
206    /// the current block and update their register pressures to reflect the
207    /// effect of hoisting MI from the current block to the preheader.
208    void UpdateBackTraceRegPressure(const MachineInstr *MI);
209
210    /// IsProfitableToHoist - Return true if it is potentially profitable to
211    /// hoist the given loop invariant.
212    bool IsProfitableToHoist(MachineInstr &MI);
213
214    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
215    /// If not then a load from this mbb may not be safe to hoist.
216    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
217
218    /// HoistRegion - Walk the specified region of the CFG (defined by all
219    /// blocks dominated by the specified block, and that are in the current
220    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
221    /// visit definitions before uses, allowing us to hoist a loop body in one
222    /// pass without iteration.
223    ///
224    void HoistRegion(MachineDomTreeNode *N, bool IsHeader = false);
225
226    /// getRegisterClassIDAndCost - For a given MI, register, and the operand
227    /// index, return the ID and cost of its representative register class by
228    /// reference.
229    void getRegisterClassIDAndCost(const MachineInstr *MI,
230                                   unsigned Reg, unsigned OpIdx,
231                                   unsigned &RCId, unsigned &RCCost) const;
232
233    /// InitRegPressure - Find all virtual register references that are liveout
234    /// of the preheader to initialize the starting "register pressure". Note
235    /// this does not count live through (livein but not used) registers.
236    void InitRegPressure(MachineBasicBlock *BB);
237
238    /// UpdateRegPressure - Update estimate of register pressure after the
239    /// specified instruction.
240    void UpdateRegPressure(const MachineInstr *MI);
241
242    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
243    /// the load itself could be hoisted. Return the unfolded and hoistable
244    /// load, or null if the load couldn't be unfolded or if it wouldn't
245    /// be hoistable.
246    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
247
248    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
249    /// duplicate of MI. Return this instruction if it's found.
250    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
251                                     std::vector<const MachineInstr*> &PrevMIs);
252
253    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
254    /// the preheader that compute the same value. If it's found, do a RAU on
255    /// with the definition of the existing instruction rather than hoisting
256    /// the instruction to the preheader.
257    bool EliminateCSE(MachineInstr *MI,
258           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
259
260    /// MayCSE - Return true if the given instruction will be CSE'd if it's
261    /// hoisted out of the loop.
262    bool MayCSE(MachineInstr *MI);
263
264    /// Hoist - When an instruction is found to only use loop invariant operands
265    /// that is safe to hoist, this instruction is called to do the dirty work.
266    /// It returns true if the instruction is hoisted.
267    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
268
269    /// InitCSEMap - Initialize the CSE map with instructions that are in the
270    /// current loop preheader that may become duplicates of instructions that
271    /// are hoisted out of the loop.
272    void InitCSEMap(MachineBasicBlock *BB);
273
274    /// getCurPreheader - Get the preheader for the current loop, splitting
275    /// a critical edge if needed.
276    MachineBasicBlock *getCurPreheader();
277  };
278} // end anonymous namespace
279
280char MachineLICM::ID = 0;
281INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
282                "Machine Loop Invariant Code Motion", false, false)
283INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
284INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
285INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
286INITIALIZE_PASS_END(MachineLICM, "machinelicm",
287                "Machine Loop Invariant Code Motion", false, false)
288
289FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
290  return new MachineLICM(PreRegAlloc);
291}
292
293/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
294/// loop that has a unique predecessor.
295static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
296  // Check whether this loop even has a unique predecessor.
297  if (!CurLoop->getLoopPredecessor())
298    return false;
299  // Ok, now check to see if any of its outer loops do.
300  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
301    if (L->getLoopPredecessor())
302      return false;
303  // None of them did, so this is the outermost with a unique predecessor.
304  return true;
305}
306
307bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
308  if (PreRegAlloc)
309    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
310  else
311    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
312  DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
313
314  Changed = FirstInLoop = false;
315  TM = &MF.getTarget();
316  TII = TM->getInstrInfo();
317  TLI = TM->getTargetLowering();
318  TRI = TM->getRegisterInfo();
319  MFI = MF.getFrameInfo();
320  MRI = &MF.getRegInfo();
321  InstrItins = TM->getInstrItineraryData();
322  AllocatableSet = TRI->getAllocatableSet(MF);
323
324  if (PreRegAlloc) {
325    // Estimate register pressure during pre-regalloc pass.
326    unsigned NumRC = TRI->getNumRegClasses();
327    RegPressure.resize(NumRC);
328    std::fill(RegPressure.begin(), RegPressure.end(), 0);
329    RegLimit.resize(NumRC);
330    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
331           E = TRI->regclass_end(); I != E; ++I)
332      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
333  }
334
335  // Get our Loop information...
336  MLI = &getAnalysis<MachineLoopInfo>();
337  DT  = &getAnalysis<MachineDominatorTree>();
338  AA  = &getAnalysis<AliasAnalysis>();
339
340  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
341  while (!Worklist.empty()) {
342    CurLoop = Worklist.pop_back_val();
343    CurPreheader = 0;
344
345    // If this is done before regalloc, only visit outer-most preheader-sporting
346    // loops.
347    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
348      Worklist.append(CurLoop->begin(), CurLoop->end());
349      continue;
350    }
351
352    if (!PreRegAlloc)
353      HoistRegionPostRA();
354    else {
355      // CSEMap is initialized for loop header when the first instruction is
356      // being hoisted.
357      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
358      FirstInLoop = true;
359      HoistRegion(N, true);
360      CSEMap.clear();
361    }
362  }
363
364  return Changed;
365}
366
367/// InstructionStoresToFI - Return true if instruction stores to the
368/// specified frame.
369static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
370  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
371         oe = MI->memoperands_end(); o != oe; ++o) {
372    if (!(*o)->isStore() || !(*o)->getValue())
373      continue;
374    if (const FixedStackPseudoSourceValue *Value =
375        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
376      if (Value->getFrameIndex() == FI)
377        return true;
378    }
379  }
380  return false;
381}
382
383/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
384/// gather register def and frame object update information.
385void MachineLICM::ProcessMI(MachineInstr *MI,
386                            unsigned *PhysRegDefs,
387                            SmallSet<int, 32> &StoredFIs,
388                            SmallVector<CandidateInfo, 32> &Candidates) {
389  bool RuledOut = false;
390  bool HasNonInvariantUse = false;
391  unsigned Def = 0;
392  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
393    const MachineOperand &MO = MI->getOperand(i);
394    if (MO.isFI()) {
395      // Remember if the instruction stores to the frame index.
396      int FI = MO.getIndex();
397      if (!StoredFIs.count(FI) &&
398          MFI->isSpillSlotObjectIndex(FI) &&
399          InstructionStoresToFI(MI, FI))
400        StoredFIs.insert(FI);
401      HasNonInvariantUse = true;
402      continue;
403    }
404
405    if (!MO.isReg())
406      continue;
407    unsigned Reg = MO.getReg();
408    if (!Reg)
409      continue;
410    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
411           "Not expecting virtual register!");
412
413    if (!MO.isDef()) {
414      if (Reg && PhysRegDefs[Reg])
415        // If it's using a non-loop-invariant register, then it's obviously not
416        // safe to hoist.
417        HasNonInvariantUse = true;
418      continue;
419    }
420
421    if (MO.isImplicit()) {
422      ++PhysRegDefs[Reg];
423      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
424        ++PhysRegDefs[*AS];
425      if (!MO.isDead())
426        // Non-dead implicit def? This cannot be hoisted.
427        RuledOut = true;
428      // No need to check if a dead implicit def is also defined by
429      // another instruction.
430      continue;
431    }
432
433    // FIXME: For now, avoid instructions with multiple defs, unless
434    // it's a dead implicit def.
435    if (Def)
436      RuledOut = true;
437    else
438      Def = Reg;
439
440    // If we have already seen another instruction that defines the same
441    // register, then this is not safe.
442    if (++PhysRegDefs[Reg] > 1)
443      // MI defined register is seen defined by another instruction in
444      // the loop, it cannot be a LICM candidate.
445      RuledOut = true;
446    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
447      if (++PhysRegDefs[*AS] > 1)
448        RuledOut = true;
449  }
450
451  // Only consider reloads for now and remats which do not have register
452  // operands. FIXME: Consider unfold load folding instructions.
453  if (Def && !RuledOut) {
454    int FI = INT_MIN;
455    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
456        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
457      Candidates.push_back(CandidateInfo(MI, Def, FI));
458  }
459}
460
461/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
462/// invariants out to the preheader.
463void MachineLICM::HoistRegionPostRA() {
464  unsigned NumRegs = TRI->getNumRegs();
465  unsigned *PhysRegDefs = new unsigned[NumRegs];
466  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
467
468  SmallVector<CandidateInfo, 32> Candidates;
469  SmallSet<int, 32> StoredFIs;
470
471  // Walk the entire region, count number of defs for each register, and
472  // collect potential LICM candidates.
473  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
474  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
475    MachineBasicBlock *BB = Blocks[i];
476
477    // If the header of the loop containing this basic block is a landing pad,
478    // then don't try to hoist instructions out of this loop.
479    const MachineLoop *ML = MLI->getLoopFor(BB);
480    if (ML && ML->getHeader()->isLandingPad()) continue;
481
482    // Conservatively treat live-in's as an external def.
483    // FIXME: That means a reload that're reused in successor block(s) will not
484    // be LICM'ed.
485    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
486           E = BB->livein_end(); I != E; ++I) {
487      unsigned Reg = *I;
488      ++PhysRegDefs[Reg];
489      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
490        ++PhysRegDefs[*AS];
491    }
492
493    SpeculationState = SpeculateUnknown;
494    for (MachineBasicBlock::iterator
495           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
496      MachineInstr *MI = &*MII;
497      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
498    }
499  }
500
501  // Now evaluate whether the potential candidates qualify.
502  // 1. Check if the candidate defined register is defined by another
503  //    instruction in the loop.
504  // 2. If the candidate is a load from stack slot (always true for now),
505  //    check if the slot is stored anywhere in the loop.
506  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
507    if (Candidates[i].FI != INT_MIN &&
508        StoredFIs.count(Candidates[i].FI))
509      continue;
510
511    if (PhysRegDefs[Candidates[i].Def] == 1) {
512      bool Safe = true;
513      MachineInstr *MI = Candidates[i].MI;
514      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
515        const MachineOperand &MO = MI->getOperand(j);
516        if (!MO.isReg() || MO.isDef() || !MO.getReg())
517          continue;
518        if (PhysRegDefs[MO.getReg()]) {
519          // If it's using a non-loop-invariant register, then it's obviously
520          // not safe to hoist.
521          Safe = false;
522          break;
523        }
524      }
525      if (Safe)
526        HoistPostRA(MI, Candidates[i].Def);
527    }
528  }
529
530  delete[] PhysRegDefs;
531}
532
533/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
534/// loop, and make sure it is not killed by any instructions in the loop.
535void MachineLICM::AddToLiveIns(unsigned Reg) {
536  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
537  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
538    MachineBasicBlock *BB = Blocks[i];
539    if (!BB->isLiveIn(Reg))
540      BB->addLiveIn(Reg);
541    for (MachineBasicBlock::iterator
542           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
543      MachineInstr *MI = &*MII;
544      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
545        MachineOperand &MO = MI->getOperand(i);
546        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
547        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
548          MO.setIsKill(false);
549      }
550    }
551  }
552}
553
554/// HoistPostRA - When an instruction is found to only use loop invariant
555/// operands that is safe to hoist, this instruction is called to do the
556/// dirty work.
557void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
558  MachineBasicBlock *Preheader = getCurPreheader();
559  if (!Preheader) return;
560
561  // Now move the instructions to the predecessor, inserting it before any
562  // terminator instructions.
563  DEBUG({
564      dbgs() << "Hoisting " << *MI;
565      if (Preheader->getBasicBlock())
566        dbgs() << " to MachineBasicBlock "
567               << Preheader->getName();
568      if (MI->getParent()->getBasicBlock())
569        dbgs() << " from MachineBasicBlock "
570               << MI->getParent()->getName();
571      dbgs() << "\n";
572    });
573
574  // Splice the instruction to the preheader.
575  MachineBasicBlock *MBB = MI->getParent();
576  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
577
578  // Add register to livein list to all the BBs in the current loop since a
579  // loop invariant must be kept live throughout the whole loop. This is
580  // important to ensure later passes do not scavenge the def register.
581  AddToLiveIns(Def);
582
583  ++NumPostRAHoisted;
584  Changed = true;
585}
586
587// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
588// If not then a load from this mbb may not be safe to hoist.
589bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
590  if (SpeculationState != SpeculateUnknown)
591    return SpeculationState == SpeculateFalse;
592
593  if (BB != CurLoop->getHeader()) {
594    // Check loop exiting blocks.
595    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
596    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
597    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
598      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
599        SpeculationState = SpeculateTrue;
600        return false;
601      }
602  }
603
604  SpeculationState = SpeculateFalse;
605  return true;
606}
607
608/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
609/// dominated by the specified block, and that are in the current loop) in depth
610/// first order w.r.t the DominatorTree. This allows us to visit definitions
611/// before uses, allowing us to hoist a loop body in one pass without iteration.
612///
613void MachineLICM::HoistRegion(MachineDomTreeNode *N, bool IsHeader) {
614  assert(N != 0 && "Null dominator tree node?");
615  MachineBasicBlock *BB = N->getBlock();
616
617  // If the header of the loop containing this basic block is a landing pad,
618  // then don't try to hoist instructions out of this loop.
619  const MachineLoop *ML = MLI->getLoopFor(BB);
620  if (ML && ML->getHeader()->isLandingPad()) return;
621
622  // If this subregion is not in the top level loop at all, exit.
623  if (!CurLoop->contains(BB)) return;
624
625  MachineBasicBlock *Preheader = getCurPreheader();
626  if (!Preheader)
627    return;
628
629  if (IsHeader) {
630    // Compute registers which are livein into the loop headers.
631    RegSeen.clear();
632    BackTrace.clear();
633    InitRegPressure(Preheader);
634  }
635
636  // Remember livein register pressure.
637  BackTrace.push_back(RegPressure);
638
639  SpeculationState = SpeculateUnknown;
640  for (MachineBasicBlock::iterator
641         MII = BB->begin(), E = BB->end(); MII != E; ) {
642    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
643    MachineInstr *MI = &*MII;
644    if (!Hoist(MI, Preheader))
645      UpdateRegPressure(MI);
646    MII = NextMII;
647  }
648
649  // Don't hoist things out of a large switch statement.  This often causes
650  // code to be hoisted that wasn't going to be executed, and increases
651  // register pressure in a situation where it's likely to matter.
652  if (BB->succ_size() < 25) {
653    const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
654    for (unsigned I = 0, E = Children.size(); I != E; ++I)
655      HoistRegion(Children[I]);
656  }
657
658  BackTrace.pop_back();
659}
660
661static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
662  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
663}
664
665/// getRegisterClassIDAndCost - For a given MI, register, and the operand
666/// index, return the ID and cost of its representative register class.
667void
668MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
669                                       unsigned Reg, unsigned OpIdx,
670                                       unsigned &RCId, unsigned &RCCost) const {
671  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
672  EVT VT = *RC->vt_begin();
673  if (VT == MVT::untyped) {
674    RCId = RC->getID();
675    RCCost = 1;
676  } else {
677    RCId = TLI->getRepRegClassFor(VT)->getID();
678    RCCost = TLI->getRepRegClassCostFor(VT);
679  }
680}
681
682/// InitRegPressure - Find all virtual register references that are liveout of
683/// the preheader to initialize the starting "register pressure". Note this
684/// does not count live through (livein but not used) registers.
685void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
686  std::fill(RegPressure.begin(), RegPressure.end(), 0);
687
688  // If the preheader has only a single predecessor and it ends with a
689  // fallthrough or an unconditional branch, then scan its predecessor for live
690  // defs as well. This happens whenever the preheader is created by splitting
691  // the critical edge from the loop predecessor to the loop header.
692  if (BB->pred_size() == 1) {
693    MachineBasicBlock *TBB = 0, *FBB = 0;
694    SmallVector<MachineOperand, 4> Cond;
695    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
696      InitRegPressure(*BB->pred_begin());
697  }
698
699  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
700       MII != E; ++MII) {
701    MachineInstr *MI = &*MII;
702    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
703      const MachineOperand &MO = MI->getOperand(i);
704      if (!MO.isReg() || MO.isImplicit())
705        continue;
706      unsigned Reg = MO.getReg();
707      if (!TargetRegisterInfo::isVirtualRegister(Reg))
708        continue;
709
710      bool isNew = RegSeen.insert(Reg);
711      unsigned RCId, RCCost;
712      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
713      if (MO.isDef())
714        RegPressure[RCId] += RCCost;
715      else {
716        bool isKill = isOperandKill(MO, MRI);
717        if (isNew && !isKill)
718          // Haven't seen this, it must be a livein.
719          RegPressure[RCId] += RCCost;
720        else if (!isNew && isKill)
721          RegPressure[RCId] -= RCCost;
722      }
723    }
724  }
725}
726
727/// UpdateRegPressure - Update estimate of register pressure after the
728/// specified instruction.
729void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
730  if (MI->isImplicitDef())
731    return;
732
733  SmallVector<unsigned, 4> Defs;
734  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
735    const MachineOperand &MO = MI->getOperand(i);
736    if (!MO.isReg() || MO.isImplicit())
737      continue;
738    unsigned Reg = MO.getReg();
739    if (!TargetRegisterInfo::isVirtualRegister(Reg))
740      continue;
741
742    bool isNew = RegSeen.insert(Reg);
743    if (MO.isDef())
744      Defs.push_back(Reg);
745    else if (!isNew && isOperandKill(MO, MRI)) {
746      unsigned RCId, RCCost;
747      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
748      if (RCCost > RegPressure[RCId])
749        RegPressure[RCId] = 0;
750      else
751        RegPressure[RCId] -= RCCost;
752    }
753  }
754
755  unsigned Idx = 0;
756  while (!Defs.empty()) {
757    unsigned Reg = Defs.pop_back_val();
758    unsigned RCId, RCCost;
759    getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
760    RegPressure[RCId] += RCCost;
761    ++Idx;
762  }
763}
764
765/// isLoadFromGOT - Return true if this machine instruction loads from
766/// global offset table.
767static bool isLoadFromGOT(MachineInstr &MI) {
768  assert (MI.getDesc().mayLoad() && "Expected MI that loads!");
769  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
770	 E = MI.memoperands_end(); I != E; ++I) {
771    if (const Value *V = (*I)->getValue()) {
772      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
773        if (PSV == PSV->getGOT())
774	  return true;
775    }
776  }
777  return false;
778}
779
780/// IsLICMCandidate - Returns true if the instruction may be a suitable
781/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
782/// not safe to hoist it.
783bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
784  // Check if it's safe to move the instruction.
785  bool DontMoveAcrossStore = true;
786  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
787    return false;
788
789  // If it is load then check if it is guaranteed to execute by making sure that
790  // it dominates all exiting blocks. If it doesn't, then there is a path out of
791  // the loop which does not execute this load, so we can't hoist it.
792  // Stores and side effects are already checked by isSafeToMove.
793  if (I.getDesc().mayLoad() && !isLoadFromGOT(I) &&
794      !IsGuaranteedToExecute(I.getParent()))
795    return false;
796
797  return true;
798}
799
800/// IsLoopInvariantInst - Returns true if the instruction is loop
801/// invariant. I.e., all virtual register operands are defined outside of the
802/// loop, physical registers aren't accessed explicitly, and there are no side
803/// effects that aren't captured by the operands or other flags.
804///
805bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
806  if (!IsLICMCandidate(I))
807    return false;
808
809  // The instruction is loop invariant if all of its operands are.
810  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
811    const MachineOperand &MO = I.getOperand(i);
812
813    if (!MO.isReg())
814      continue;
815
816    unsigned Reg = MO.getReg();
817    if (Reg == 0) continue;
818
819    // Don't hoist an instruction that uses or defines a physical register.
820    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
821      if (MO.isUse()) {
822        // If the physreg has no defs anywhere, it's just an ambient register
823        // and we can freely move its uses. Alternatively, if it's allocatable,
824        // it could get allocated to something with a def during allocation.
825        if (!MRI->def_empty(Reg))
826          return false;
827        if (AllocatableSet.test(Reg))
828          return false;
829        // Check for a def among the register's aliases too.
830        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
831          unsigned AliasReg = *Alias;
832          if (!MRI->def_empty(AliasReg))
833            return false;
834          if (AllocatableSet.test(AliasReg))
835            return false;
836        }
837        // Otherwise it's safe to move.
838        continue;
839      } else if (!MO.isDead()) {
840        // A def that isn't dead. We can't move it.
841        return false;
842      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
843        // If the reg is live into the loop, we can't hoist an instruction
844        // which would clobber it.
845        return false;
846      }
847    }
848
849    if (!MO.isUse())
850      continue;
851
852    assert(MRI->getVRegDef(Reg) &&
853           "Machine instr not mapped for this vreg?!");
854
855    // If the loop contains the definition of an operand, then the instruction
856    // isn't loop invariant.
857    if (CurLoop->contains(MRI->getVRegDef(Reg)))
858      return false;
859  }
860
861  // If we got this far, the instruction is loop invariant!
862  return true;
863}
864
865
866/// HasAnyPHIUse - Return true if the specified register is used by any
867/// phi node.
868bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
869  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
870         UE = MRI->use_end(); UI != UE; ++UI) {
871    MachineInstr *UseMI = &*UI;
872    if (UseMI->isPHI())
873      return true;
874    // Look pass copies as well.
875    if (UseMI->isCopy()) {
876      unsigned Def = UseMI->getOperand(0).getReg();
877      if (TargetRegisterInfo::isVirtualRegister(Def) &&
878          HasAnyPHIUse(Def))
879        return true;
880    }
881  }
882  return false;
883}
884
885/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
886/// and an use in the current loop, return true if the target considered
887/// it 'high'.
888bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
889                                        unsigned DefIdx, unsigned Reg) const {
890  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
891    return false;
892
893  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
894         E = MRI->use_nodbg_end(); I != E; ++I) {
895    MachineInstr *UseMI = &*I;
896    if (UseMI->isCopyLike())
897      continue;
898    if (!CurLoop->contains(UseMI->getParent()))
899      continue;
900    for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
901      const MachineOperand &MO = UseMI->getOperand(i);
902      if (!MO.isReg() || !MO.isUse())
903        continue;
904      unsigned MOReg = MO.getReg();
905      if (MOReg != Reg)
906        continue;
907
908      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
909        return true;
910    }
911
912    // Only look at the first in loop use.
913    break;
914  }
915
916  return false;
917}
918
919/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
920/// the operand latency between its def and a use is one or less.
921bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
922  if (MI.getDesc().isAsCheapAsAMove() || MI.isCopyLike())
923    return true;
924  if (!InstrItins || InstrItins->isEmpty())
925    return false;
926
927  bool isCheap = false;
928  unsigned NumDefs = MI.getDesc().getNumDefs();
929  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
930    MachineOperand &DefMO = MI.getOperand(i);
931    if (!DefMO.isReg() || !DefMO.isDef())
932      continue;
933    --NumDefs;
934    unsigned Reg = DefMO.getReg();
935    if (TargetRegisterInfo::isPhysicalRegister(Reg))
936      continue;
937
938    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
939      return false;
940    isCheap = true;
941  }
942
943  return isCheap;
944}
945
946/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
947/// if hoisting an instruction of the given cost matrix can cause high
948/// register pressure.
949bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
950  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
951       CI != CE; ++CI) {
952    if (CI->second <= 0)
953      continue;
954
955    unsigned RCId = CI->first;
956    for (unsigned i = BackTrace.size(); i != 0; --i) {
957      SmallVector<unsigned, 8> &RP = BackTrace[i-1];
958      if (RP[RCId] + CI->second >= RegLimit[RCId])
959        return true;
960    }
961  }
962
963  return false;
964}
965
966/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
967/// current block and update their register pressures to reflect the effect
968/// of hoisting MI from the current block to the preheader.
969void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
970  if (MI->isImplicitDef())
971    return;
972
973  // First compute the 'cost' of the instruction, i.e. its contribution
974  // to register pressure.
975  DenseMap<unsigned, int> Cost;
976  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
977    const MachineOperand &MO = MI->getOperand(i);
978    if (!MO.isReg() || MO.isImplicit())
979      continue;
980    unsigned Reg = MO.getReg();
981    if (!TargetRegisterInfo::isVirtualRegister(Reg))
982      continue;
983
984    unsigned RCId, RCCost;
985    getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
986    if (MO.isDef()) {
987      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
988      if (CI != Cost.end())
989        CI->second += RCCost;
990      else
991        Cost.insert(std::make_pair(RCId, RCCost));
992    } else if (isOperandKill(MO, MRI)) {
993      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
994      if (CI != Cost.end())
995        CI->second -= RCCost;
996      else
997        Cost.insert(std::make_pair(RCId, -RCCost));
998    }
999  }
1000
1001  // Update register pressure of blocks from loop header to current block.
1002  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1003    SmallVector<unsigned, 8> &RP = BackTrace[i];
1004    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1005         CI != CE; ++CI) {
1006      unsigned RCId = CI->first;
1007      RP[RCId] += CI->second;
1008    }
1009  }
1010}
1011
1012/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1013/// the given loop invariant.
1014bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1015  if (MI.isImplicitDef())
1016    return true;
1017
1018  // If the instruction is cheap, only hoist if it is re-materilizable. LICM
1019  // will increase register pressure. It's probably not worth it if the
1020  // instruction is cheap.
1021  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
1022  // these tend to help performance in low register pressure situation. The
1023  // trade off is it may cause spill in high pressure situation. It will end up
1024  // adding a store in the loop preheader. But the reload is no more expensive.
1025  // The side benefit is these loads are frequently CSE'ed.
1026  if (IsCheapInstruction(MI)) {
1027    if (!TII->isTriviallyReMaterializable(&MI, AA))
1028      return false;
1029  } else {
1030    // Estimate register pressure to determine whether to LICM the instruction.
1031    // In low register pressure situation, we can be more aggressive about
1032    // hoisting. Also, favors hoisting long latency instructions even in
1033    // moderately high pressure situation.
1034    // FIXME: If there are long latency loop-invariant instructions inside the
1035    // loop at this point, why didn't the optimizer's LICM hoist them?
1036    DenseMap<unsigned, int> Cost;
1037    for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1038      const MachineOperand &MO = MI.getOperand(i);
1039      if (!MO.isReg() || MO.isImplicit())
1040        continue;
1041      unsigned Reg = MO.getReg();
1042      if (!TargetRegisterInfo::isVirtualRegister(Reg))
1043        continue;
1044
1045      unsigned RCId, RCCost;
1046      getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1047      if (MO.isDef()) {
1048        if (HasHighOperandLatency(MI, i, Reg)) {
1049          ++NumHighLatency;
1050          return true;
1051        }
1052
1053        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1054        if (CI != Cost.end())
1055          CI->second += RCCost;
1056        else
1057          Cost.insert(std::make_pair(RCId, RCCost));
1058      } else if (isOperandKill(MO, MRI)) {
1059        // Is a virtual register use is a kill, hoisting it out of the loop
1060        // may actually reduce register pressure or be register pressure
1061        // neutral.
1062        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1063        if (CI != Cost.end())
1064          CI->second -= RCCost;
1065        else
1066          Cost.insert(std::make_pair(RCId, -RCCost));
1067      }
1068    }
1069
1070    // Visit BBs from header to current BB, if hoisting this doesn't cause
1071    // high register pressure, then it's safe to proceed.
1072    if (!CanCauseHighRegPressure(Cost)) {
1073      ++NumLowRP;
1074      return true;
1075    }
1076
1077    // Do not "speculate" in high register pressure situation. If an
1078    // instruction is not guaranteed to be executed in the loop, it's best to be
1079    // conservative.
1080    if (AvoidSpeculation &&
1081        (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)))
1082      return false;
1083
1084    // High register pressure situation, only hoist if the instruction is going to
1085    // be remat'ed.
1086    if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1087        !MI.isInvariantLoad(AA))
1088      return false;
1089  }
1090
1091  // If result(s) of this instruction is used by PHIs outside of the loop, then
1092  // don't hoist it if the instruction because it will introduce an extra copy.
1093  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1094    const MachineOperand &MO = MI.getOperand(i);
1095    if (!MO.isReg() || !MO.isDef())
1096      continue;
1097    if (HasAnyPHIUse(MO.getReg()))
1098      return false;
1099  }
1100
1101  return true;
1102}
1103
1104MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1105  // Don't unfold simple loads.
1106  if (MI->getDesc().canFoldAsLoad())
1107    return 0;
1108
1109  // If not, we may be able to unfold a load and hoist that.
1110  // First test whether the instruction is loading from an amenable
1111  // memory location.
1112  if (!MI->isInvariantLoad(AA))
1113    return 0;
1114
1115  // Next determine the register class for a temporary register.
1116  unsigned LoadRegIndex;
1117  unsigned NewOpc =
1118    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1119                                    /*UnfoldLoad=*/true,
1120                                    /*UnfoldStore=*/false,
1121                                    &LoadRegIndex);
1122  if (NewOpc == 0) return 0;
1123  const MCInstrDesc &MID = TII->get(NewOpc);
1124  if (MID.getNumDefs() != 1) return 0;
1125  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
1126  // Ok, we're unfolding. Create a temporary register and do the unfold.
1127  unsigned Reg = MRI->createVirtualRegister(RC);
1128
1129  MachineFunction &MF = *MI->getParent()->getParent();
1130  SmallVector<MachineInstr *, 2> NewMIs;
1131  bool Success =
1132    TII->unfoldMemoryOperand(MF, MI, Reg,
1133                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1134                             NewMIs);
1135  (void)Success;
1136  assert(Success &&
1137         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1138         "succeeded!");
1139  assert(NewMIs.size() == 2 &&
1140         "Unfolded a load into multiple instructions!");
1141  MachineBasicBlock *MBB = MI->getParent();
1142  MBB->insert(MI, NewMIs[0]);
1143  MBB->insert(MI, NewMIs[1]);
1144  // If unfolding produced a load that wasn't loop-invariant or profitable to
1145  // hoist, discard the new instructions and bail.
1146  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1147    NewMIs[0]->eraseFromParent();
1148    NewMIs[1]->eraseFromParent();
1149    return 0;
1150  }
1151
1152  // Update register pressure for the unfolded instruction.
1153  UpdateRegPressure(NewMIs[1]);
1154
1155  // Otherwise we successfully unfolded a load that we can hoist.
1156  MI->eraseFromParent();
1157  return NewMIs[0];
1158}
1159
1160void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1161  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1162    const MachineInstr *MI = &*I;
1163    unsigned Opcode = MI->getOpcode();
1164    DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1165      CI = CSEMap.find(Opcode);
1166    if (CI != CSEMap.end())
1167      CI->second.push_back(MI);
1168    else {
1169      std::vector<const MachineInstr*> CSEMIs;
1170      CSEMIs.push_back(MI);
1171      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1172    }
1173  }
1174}
1175
1176const MachineInstr*
1177MachineLICM::LookForDuplicate(const MachineInstr *MI,
1178                              std::vector<const MachineInstr*> &PrevMIs) {
1179  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1180    const MachineInstr *PrevMI = PrevMIs[i];
1181    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1182      return PrevMI;
1183  }
1184  return 0;
1185}
1186
1187bool MachineLICM::EliminateCSE(MachineInstr *MI,
1188          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1189  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1190  // the undef property onto uses.
1191  if (CI == CSEMap.end() || MI->isImplicitDef())
1192    return false;
1193
1194  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1195    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1196
1197    // Replace virtual registers defined by MI by their counterparts defined
1198    // by Dup.
1199    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1200      const MachineOperand &MO = MI->getOperand(i);
1201
1202      // Physical registers may not differ here.
1203      assert((!MO.isReg() || MO.getReg() == 0 ||
1204              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1205              MO.getReg() == Dup->getOperand(i).getReg()) &&
1206             "Instructions with different phys regs are not identical!");
1207
1208      if (MO.isReg() && MO.isDef() &&
1209          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1210        MRI->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
1211        MRI->clearKillFlags(Dup->getOperand(i).getReg());
1212      }
1213    }
1214    MI->eraseFromParent();
1215    ++NumCSEed;
1216    return true;
1217  }
1218  return false;
1219}
1220
1221/// MayCSE - Return true if the given instruction will be CSE'd if it's
1222/// hoisted out of the loop.
1223bool MachineLICM::MayCSE(MachineInstr *MI) {
1224  unsigned Opcode = MI->getOpcode();
1225  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1226    CI = CSEMap.find(Opcode);
1227  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1228  // the undef property onto uses.
1229  if (CI == CSEMap.end() || MI->isImplicitDef())
1230    return false;
1231
1232  return LookForDuplicate(MI, CI->second) != 0;
1233}
1234
1235/// Hoist - When an instruction is found to use only loop invariant operands
1236/// that are safe to hoist, this instruction is called to do the dirty work.
1237///
1238bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1239  // First check whether we should hoist this instruction.
1240  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1241    // If not, try unfolding a hoistable load.
1242    MI = ExtractHoistableLoad(MI);
1243    if (!MI) return false;
1244  }
1245
1246  // Now move the instructions to the predecessor, inserting it before any
1247  // terminator instructions.
1248  DEBUG({
1249      dbgs() << "Hoisting " << *MI;
1250      if (Preheader->getBasicBlock())
1251        dbgs() << " to MachineBasicBlock "
1252               << Preheader->getName();
1253      if (MI->getParent()->getBasicBlock())
1254        dbgs() << " from MachineBasicBlock "
1255               << MI->getParent()->getName();
1256      dbgs() << "\n";
1257    });
1258
1259  // If this is the first instruction being hoisted to the preheader,
1260  // initialize the CSE map with potential common expressions.
1261  if (FirstInLoop) {
1262    InitCSEMap(Preheader);
1263    FirstInLoop = false;
1264  }
1265
1266  // Look for opportunity to CSE the hoisted instruction.
1267  unsigned Opcode = MI->getOpcode();
1268  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1269    CI = CSEMap.find(Opcode);
1270  if (!EliminateCSE(MI, CI)) {
1271    // Otherwise, splice the instruction to the preheader.
1272    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1273
1274    // Update register pressure for BBs from header to this block.
1275    UpdateBackTraceRegPressure(MI);
1276
1277    // Clear the kill flags of any register this instruction defines,
1278    // since they may need to be live throughout the entire loop
1279    // rather than just live for part of it.
1280    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1281      MachineOperand &MO = MI->getOperand(i);
1282      if (MO.isReg() && MO.isDef() && !MO.isDead())
1283        MRI->clearKillFlags(MO.getReg());
1284    }
1285
1286    // Add to the CSE map.
1287    if (CI != CSEMap.end())
1288      CI->second.push_back(MI);
1289    else {
1290      std::vector<const MachineInstr*> CSEMIs;
1291      CSEMIs.push_back(MI);
1292      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1293    }
1294  }
1295
1296  ++NumHoisted;
1297  Changed = true;
1298
1299  return true;
1300}
1301
1302MachineBasicBlock *MachineLICM::getCurPreheader() {
1303  // Determine the block to which to hoist instructions. If we can't find a
1304  // suitable loop predecessor, we can't do any hoisting.
1305
1306  // If we've tried to get a preheader and failed, don't try again.
1307  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1308    return 0;
1309
1310  if (!CurPreheader) {
1311    CurPreheader = CurLoop->getLoopPreheader();
1312    if (!CurPreheader) {
1313      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1314      if (!Pred) {
1315        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1316        return 0;
1317      }
1318
1319      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1320      if (!CurPreheader) {
1321        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1322        return 0;
1323      }
1324    }
1325  }
1326  return CurPreheader;
1327}
1328