MachineLICM.cpp revision 7e116d468e600c91a625df282bb9ad162915abbc
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
44STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
45STATISTIC(NumPostRAHoisted,
46          "Number of machine instructions hoisted out of loops post regalloc");
47
48namespace {
49  class MachineLICM : public MachineFunctionPass {
50    bool PreRegAlloc;
51
52    const TargetMachine   *TM;
53    const TargetInstrInfo *TII;
54    const TargetRegisterInfo *TRI;
55    const MachineFrameInfo *MFI;
56    MachineRegisterInfo *RegInfo;
57
58    // Various analyses that we use...
59    AliasAnalysis        *AA;      // Alias analysis info.
60    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
61    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
62
63    // State that is updated as we process loops
64    bool         Changed;          // True if a loop is changed.
65    MachineLoop *CurLoop;          // The current loop we are working on.
66    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
67
68    BitVector AllocatableSet;
69
70    // For each opcode, keep a list of potentail CSE instructions.
71    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
72
73  public:
74    static char ID; // Pass identification, replacement for typeid
75    MachineLICM() :
76      MachineFunctionPass(&ID), PreRegAlloc(true) {}
77
78    explicit MachineLICM(bool PreRA) :
79      MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
80
81    virtual bool runOnMachineFunction(MachineFunction &MF);
82
83    const char *getPassName() const { return "Machine Instruction LICM"; }
84
85    // FIXME: Loop preheaders?
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88      AU.addRequired<MachineLoopInfo>();
89      AU.addRequired<MachineDominatorTree>();
90      AU.addRequired<AliasAnalysis>();
91      AU.addPreserved<MachineLoopInfo>();
92      AU.addPreserved<MachineDominatorTree>();
93      MachineFunctionPass::getAnalysisUsage(AU);
94    }
95
96    virtual void releaseMemory() {
97      CSEMap.clear();
98    }
99
100  private:
101    /// CandidateInfo - Keep track of information about hoisting candidates.
102    struct CandidateInfo {
103      MachineInstr *MI;
104      unsigned      Def;
105      int           FI;
106      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
107        : MI(mi), Def(def), FI(fi) {}
108    };
109
110    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
111    /// invariants out to the preheader.
112    void HoistRegionPostRA();
113
114    /// HoistPostRA - When an instruction is found to only use loop invariant
115    /// operands that is safe to hoist, this instruction is called to do the
116    /// dirty work.
117    void HoistPostRA(MachineInstr *MI, unsigned Def);
118
119    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
120    /// gather register def and frame object update information.
121    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
122                   SmallSet<int, 32> &StoredFIs,
123                   SmallVector<CandidateInfo, 32> &Candidates);
124
125    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
126    /// current loop.
127    void AddToLiveIns(unsigned Reg);
128
129    /// IsLICMCandidate - Returns true if the instruction may be a suitable
130    /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
131    /// not safe to hoist it.
132    bool IsLICMCandidate(MachineInstr &I);
133
134    /// IsLoopInvariantInst - Returns true if the instruction is loop
135    /// invariant. I.e., all virtual register operands are defined outside of
136    /// the loop, physical registers aren't accessed (explicitly or implicitly),
137    /// and the instruction is hoistable.
138    ///
139    bool IsLoopInvariantInst(MachineInstr &I);
140
141    /// IsProfitableToHoist - Return true if it is potentially profitable to
142    /// hoist the given loop invariant.
143    bool IsProfitableToHoist(MachineInstr &MI);
144
145    /// HoistRegion - Walk the specified region of the CFG (defined by all
146    /// blocks dominated by the specified block, and that are in the current
147    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
148    /// visit definitions before uses, allowing us to hoist a loop body in one
149    /// pass without iteration.
150    ///
151    void HoistRegion(MachineDomTreeNode *N);
152
153    /// isLoadFromConstantMemory - Return true if the given instruction is a
154    /// load from constant memory.
155    bool isLoadFromConstantMemory(MachineInstr *MI);
156
157    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
158    /// the load itself could be hoisted. Return the unfolded and hoistable
159    /// load, or null if the load couldn't be unfolded or if it wouldn't
160    /// be hoistable.
161    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
162
163    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
164    /// duplicate of MI. Return this instruction if it's found.
165    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
166                                     std::vector<const MachineInstr*> &PrevMIs);
167
168    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
169    /// the preheader that compute the same value. If it's found, do a RAU on
170    /// with the definition of the existing instruction rather than hoisting
171    /// the instruction to the preheader.
172    bool EliminateCSE(MachineInstr *MI,
173           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
174
175    /// Hoist - When an instruction is found to only use loop invariant operands
176    /// that is safe to hoist, this instruction is called to do the dirty work.
177    ///
178    void Hoist(MachineInstr *MI);
179
180    /// InitCSEMap - Initialize the CSE map with instructions that are in the
181    /// current loop preheader that may become duplicates of instructions that
182    /// are hoisted out of the loop.
183    void InitCSEMap(MachineBasicBlock *BB);
184  };
185} // end anonymous namespace
186
187char MachineLICM::ID = 0;
188static RegisterPass<MachineLICM>
189X("machinelicm", "Machine Loop Invariant Code Motion");
190
191FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
192  return new MachineLICM(PreRegAlloc);
193}
194
195/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
196/// loop that has a preheader.
197static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
198  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
199    if (L->getLoopPreheader())
200      return false;
201  return true;
202}
203
204bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
205  if (PreRegAlloc)
206    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
207  else
208    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
209
210  Changed = false;
211  TM = &MF.getTarget();
212  TII = TM->getInstrInfo();
213  TRI = TM->getRegisterInfo();
214  MFI = MF.getFrameInfo();
215  RegInfo = &MF.getRegInfo();
216  AllocatableSet = TRI->getAllocatableSet(MF);
217
218  // Get our Loop information...
219  MLI = &getAnalysis<MachineLoopInfo>();
220  DT  = &getAnalysis<MachineDominatorTree>();
221  AA  = &getAnalysis<AliasAnalysis>();
222
223  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I){
224    CurLoop = *I;
225
226    // If this is done before regalloc, only visit outer-most preheader-sporting
227    // loops.
228    if (PreRegAlloc && !LoopIsOuterMostWithPreheader(CurLoop))
229      continue;
230
231    // Determine the block to which to hoist instructions. If we can't find a
232    // suitable loop preheader, we can't do any hoisting.
233    //
234    // FIXME: We are only hoisting if the basic block coming into this loop
235    // has only one successor. This isn't the case in general because we haven't
236    // broken critical edges or added preheaders.
237    CurPreheader = CurLoop->getLoopPreheader();
238    if (!CurPreheader)
239      continue;
240
241    if (!PreRegAlloc)
242      HoistRegionPostRA();
243    else {
244      // CSEMap is initialized for loop header when the first instruction is
245      // being hoisted.
246      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
247      HoistRegion(N);
248      CSEMap.clear();
249    }
250  }
251
252  return Changed;
253}
254
255/// InstructionStoresToFI - Return true if instruction stores to the
256/// specified frame.
257static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
258  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
259         oe = MI->memoperands_end(); o != oe; ++o) {
260    if (!(*o)->isStore() || !(*o)->getValue())
261      continue;
262    if (const FixedStackPseudoSourceValue *Value =
263        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
264      if (Value->getFrameIndex() == FI)
265        return true;
266    }
267  }
268  return false;
269}
270
271/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
272/// gather register def and frame object update information.
273void MachineLICM::ProcessMI(MachineInstr *MI,
274                            unsigned *PhysRegDefs,
275                            SmallSet<int, 32> &StoredFIs,
276                            SmallVector<CandidateInfo, 32> &Candidates) {
277  bool RuledOut = false;
278  bool HasNonInvariantUse = false;
279  unsigned Def = 0;
280  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
281    const MachineOperand &MO = MI->getOperand(i);
282    if (MO.isFI()) {
283      // Remember if the instruction stores to the frame index.
284      int FI = MO.getIndex();
285      if (!StoredFIs.count(FI) &&
286          MFI->isSpillSlotObjectIndex(FI) &&
287          InstructionStoresToFI(MI, FI))
288        StoredFIs.insert(FI);
289      HasNonInvariantUse = true;
290      continue;
291    }
292
293    if (!MO.isReg())
294      continue;
295    unsigned Reg = MO.getReg();
296    if (!Reg)
297      continue;
298    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
299           "Not expecting virtual register!");
300
301    if (!MO.isDef()) {
302      if (Reg && PhysRegDefs[Reg])
303        // If it's using a non-loop-invariant register, then it's obviously not
304        // safe to hoist.
305        HasNonInvariantUse = true;
306      continue;
307    }
308
309    if (MO.isImplicit()) {
310      ++PhysRegDefs[Reg];
311      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
312        ++PhysRegDefs[*AS];
313      if (!MO.isDead())
314        // Non-dead implicit def? This cannot be hoisted.
315        RuledOut = true;
316      // No need to check if a dead implicit def is also defined by
317      // another instruction.
318      continue;
319    }
320
321    // FIXME: For now, avoid instructions with multiple defs, unless
322    // it's a dead implicit def.
323    if (Def)
324      RuledOut = true;
325    else
326      Def = Reg;
327
328    // If we have already seen another instruction that defines the same
329    // register, then this is not safe.
330    if (++PhysRegDefs[Reg] > 1)
331      // MI defined register is seen defined by another instruction in
332      // the loop, it cannot be a LICM candidate.
333      RuledOut = true;
334    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
335      if (++PhysRegDefs[*AS] > 1)
336        RuledOut = true;
337  }
338
339  // Only consider reloads for now and remats which do not have register
340  // operands. FIXME: Consider unfold load folding instructions.
341  if (Def && !RuledOut) {
342    int FI = INT_MIN;
343    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
344        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
345      Candidates.push_back(CandidateInfo(MI, Def, FI));
346  }
347}
348
349/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
350/// invariants out to the preheader.
351void MachineLICM::HoistRegionPostRA() {
352  unsigned NumRegs = TRI->getNumRegs();
353  unsigned *PhysRegDefs = new unsigned[NumRegs];
354  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
355
356  SmallVector<CandidateInfo, 32> Candidates;
357  SmallSet<int, 32> StoredFIs;
358
359  // Walk the entire region, count number of defs for each register, and
360  // collect potential LICM candidates.
361  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
362  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
363    MachineBasicBlock *BB = Blocks[i];
364    // Conservatively treat live-in's as an external def.
365    // FIXME: That means a reload that're reused in successor block(s) will not
366    // be LICM'ed.
367    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
368           E = BB->livein_end(); I != E; ++I) {
369      unsigned Reg = *I;
370      ++PhysRegDefs[Reg];
371      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
372        ++PhysRegDefs[*AS];
373    }
374
375    for (MachineBasicBlock::iterator
376           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
377      MachineInstr *MI = &*MII;
378      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
379    }
380  }
381
382  // Now evaluate whether the potential candidates qualify.
383  // 1. Check if the candidate defined register is defined by another
384  //    instruction in the loop.
385  // 2. If the candidate is a load from stack slot (always true for now),
386  //    check if the slot is stored anywhere in the loop.
387  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
388    if (Candidates[i].FI != INT_MIN &&
389        StoredFIs.count(Candidates[i].FI))
390      continue;
391
392    if (PhysRegDefs[Candidates[i].Def] == 1) {
393      bool Safe = true;
394      MachineInstr *MI = Candidates[i].MI;
395      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
396        const MachineOperand &MO = MI->getOperand(j);
397        if (!MO.isReg() || MO.isDef() || !MO.getReg())
398          continue;
399        if (PhysRegDefs[MO.getReg()]) {
400          // If it's using a non-loop-invariant register, then it's obviously
401          // not safe to hoist.
402          Safe = false;
403          break;
404        }
405      }
406      if (Safe)
407        HoistPostRA(MI, Candidates[i].Def);
408    }
409  }
410
411  delete[] PhysRegDefs;
412}
413
414/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
415/// current loop.
416void MachineLICM::AddToLiveIns(unsigned Reg) {
417  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
418  for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
419    Blocks[i]->addLiveIn(Reg);
420}
421
422/// HoistPostRA - When an instruction is found to only use loop invariant
423/// operands that is safe to hoist, this instruction is called to do the
424/// dirty work.
425void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
426  // Now move the instructions to the predecessor, inserting it before any
427  // terminator instructions.
428  DEBUG({
429      dbgs() << "Hoisting " << *MI;
430      if (CurPreheader->getBasicBlock())
431        dbgs() << " to MachineBasicBlock "
432               << CurPreheader->getName();
433      if (MI->getParent()->getBasicBlock())
434        dbgs() << " from MachineBasicBlock "
435               << MI->getParent()->getName();
436      dbgs() << "\n";
437    });
438
439  // Splice the instruction to the preheader.
440  MachineBasicBlock *MBB = MI->getParent();
441  CurPreheader->splice(CurPreheader->getFirstTerminator(), MBB, MI);
442
443  // Add register to livein list to all the BBs in the current loop since a
444  // loop invariant must be kept live throughout the whole loop. This is
445  // important to ensure later passes do not scavenge the def register.
446  AddToLiveIns(Def);
447
448  ++NumPostRAHoisted;
449  Changed = true;
450}
451
452/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
453/// dominated by the specified block, and that are in the current loop) in depth
454/// first order w.r.t the DominatorTree. This allows us to visit definitions
455/// before uses, allowing us to hoist a loop body in one pass without iteration.
456///
457void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
458  assert(N != 0 && "Null dominator tree node?");
459  MachineBasicBlock *BB = N->getBlock();
460
461  // If this subregion is not in the top level loop at all, exit.
462  if (!CurLoop->contains(BB)) return;
463
464  for (MachineBasicBlock::iterator
465         MII = BB->begin(), E = BB->end(); MII != E; ) {
466    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
467    Hoist(&*MII);
468    MII = NextMII;
469  }
470
471  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
472  for (unsigned I = 0, E = Children.size(); I != E; ++I)
473    HoistRegion(Children[I]);
474}
475
476/// IsLICMCandidate - Returns true if the instruction may be a suitable
477/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
478/// not safe to hoist it.
479bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
480  if (I.isImplicitDef())
481    return false;
482
483  const TargetInstrDesc &TID = I.getDesc();
484
485  // Ignore stuff that we obviously can't hoist.
486  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
487      TID.hasUnmodeledSideEffects())
488    return false;
489
490  if (TID.mayLoad()) {
491    // Okay, this instruction does a load. As a refinement, we allow the target
492    // to decide whether the loaded value is actually a constant. If so, we can
493    // actually use it as a load.
494    if (!I.isInvariantLoad(AA))
495      // FIXME: we should be able to hoist loads with no other side effects if
496      // there are no other instructions which can change memory in this loop.
497      // This is a trivial form of alias analysis.
498      return false;
499  }
500  return true;
501}
502
503/// IsLoopInvariantInst - Returns true if the instruction is loop
504/// invariant. I.e., all virtual register operands are defined outside of the
505/// loop, physical registers aren't accessed explicitly, and there are no side
506/// effects that aren't captured by the operands or other flags.
507///
508bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
509  if (!IsLICMCandidate(I))
510    return false;
511
512  // The instruction is loop invariant if all of its operands are.
513  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
514    const MachineOperand &MO = I.getOperand(i);
515
516    if (!MO.isReg())
517      continue;
518
519    unsigned Reg = MO.getReg();
520    if (Reg == 0) continue;
521
522    // Don't hoist an instruction that uses or defines a physical register.
523    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
524      if (MO.isUse()) {
525        // If the physreg has no defs anywhere, it's just an ambient register
526        // and we can freely move its uses. Alternatively, if it's allocatable,
527        // it could get allocated to something with a def during allocation.
528        if (!RegInfo->def_empty(Reg))
529          return false;
530        if (AllocatableSet.test(Reg))
531          return false;
532        // Check for a def among the register's aliases too.
533        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
534          unsigned AliasReg = *Alias;
535          if (!RegInfo->def_empty(AliasReg))
536            return false;
537          if (AllocatableSet.test(AliasReg))
538            return false;
539        }
540        // Otherwise it's safe to move.
541        continue;
542      } else if (!MO.isDead()) {
543        // A def that isn't dead. We can't move it.
544        return false;
545      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
546        // If the reg is live into the loop, we can't hoist an instruction
547        // which would clobber it.
548        return false;
549      }
550    }
551
552    if (!MO.isUse())
553      continue;
554
555    assert(RegInfo->getVRegDef(Reg) &&
556           "Machine instr not mapped for this vreg?!");
557
558    // If the loop contains the definition of an operand, then the instruction
559    // isn't loop invariant.
560    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
561      return false;
562  }
563
564  // If we got this far, the instruction is loop invariant!
565  return true;
566}
567
568
569/// HasPHIUses - Return true if the specified register has any PHI use.
570static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
571  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
572         UE = RegInfo->use_end(); UI != UE; ++UI) {
573    MachineInstr *UseMI = &*UI;
574    if (UseMI->isPHI())
575      return true;
576  }
577  return false;
578}
579
580/// isLoadFromConstantMemory - Return true if the given instruction is a
581/// load from constant memory. Machine LICM will hoist these even if they are
582/// not re-materializable.
583bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
584  if (!MI->getDesc().mayLoad()) return false;
585  if (!MI->hasOneMemOperand()) return false;
586  MachineMemOperand *MMO = *MI->memoperands_begin();
587  if (MMO->isVolatile()) return false;
588  if (!MMO->getValue()) return false;
589  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
590  if (PSV) {
591    MachineFunction &MF = *MI->getParent()->getParent();
592    return PSV->isConstant(MF.getFrameInfo());
593  } else {
594    return AA->pointsToConstantMemory(MMO->getValue());
595  }
596}
597
598/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
599/// the given loop invariant.
600bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
601  // FIXME: For now, only hoist re-materilizable instructions. LICM will
602  // increase register pressure. We want to make sure it doesn't increase
603  // spilling.
604  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
605  // these tend to help performance in low register pressure situation. The
606  // trade off is it may cause spill in high pressure situation. It will end up
607  // adding a store in the loop preheader. But the reload is no more expensive.
608  // The side benefit is these loads are frequently CSE'ed.
609  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
610    if (!isLoadFromConstantMemory(&MI))
611      return false;
612  }
613
614  // If result(s) of this instruction is used by PHIs, then don't hoist it.
615  // The presence of joins makes it difficult for current register allocator
616  // implementation to perform remat.
617  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
618    const MachineOperand &MO = MI.getOperand(i);
619    if (!MO.isReg() || !MO.isDef())
620      continue;
621    if (HasPHIUses(MO.getReg(), RegInfo))
622      return false;
623  }
624
625  return true;
626}
627
628MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
629  // If not, we may be able to unfold a load and hoist that.
630  // First test whether the instruction is loading from an amenable
631  // memory location.
632  if (!isLoadFromConstantMemory(MI))
633    return 0;
634
635  // Next determine the register class for a temporary register.
636  unsigned LoadRegIndex;
637  unsigned NewOpc =
638    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
639                                    /*UnfoldLoad=*/true,
640                                    /*UnfoldStore=*/false,
641                                    &LoadRegIndex);
642  if (NewOpc == 0) return 0;
643  const TargetInstrDesc &TID = TII->get(NewOpc);
644  if (TID.getNumDefs() != 1) return 0;
645  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
646  // Ok, we're unfolding. Create a temporary register and do the unfold.
647  unsigned Reg = RegInfo->createVirtualRegister(RC);
648
649  MachineFunction &MF = *MI->getParent()->getParent();
650  SmallVector<MachineInstr *, 2> NewMIs;
651  bool Success =
652    TII->unfoldMemoryOperand(MF, MI, Reg,
653                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
654                             NewMIs);
655  (void)Success;
656  assert(Success &&
657         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
658         "succeeded!");
659  assert(NewMIs.size() == 2 &&
660         "Unfolded a load into multiple instructions!");
661  MachineBasicBlock *MBB = MI->getParent();
662  MBB->insert(MI, NewMIs[0]);
663  MBB->insert(MI, NewMIs[1]);
664  // If unfolding produced a load that wasn't loop-invariant or profitable to
665  // hoist, discard the new instructions and bail.
666  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
667    NewMIs[0]->eraseFromParent();
668    NewMIs[1]->eraseFromParent();
669    return 0;
670  }
671  // Otherwise we successfully unfolded a load that we can hoist.
672  MI->eraseFromParent();
673  return NewMIs[0];
674}
675
676void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
677  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
678    const MachineInstr *MI = &*I;
679    // FIXME: For now, only hoist re-materilizable instructions. LICM will
680    // increase register pressure. We want to make sure it doesn't increase
681    // spilling.
682    if (TII->isTriviallyReMaterializable(MI, AA)) {
683      unsigned Opcode = MI->getOpcode();
684      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
685        CI = CSEMap.find(Opcode);
686      if (CI != CSEMap.end())
687        CI->second.push_back(MI);
688      else {
689        std::vector<const MachineInstr*> CSEMIs;
690        CSEMIs.push_back(MI);
691        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
692      }
693    }
694  }
695}
696
697const MachineInstr*
698MachineLICM::LookForDuplicate(const MachineInstr *MI,
699                              std::vector<const MachineInstr*> &PrevMIs) {
700  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
701    const MachineInstr *PrevMI = PrevMIs[i];
702    if (TII->produceSameValue(MI, PrevMI))
703      return PrevMI;
704  }
705  return 0;
706}
707
708bool MachineLICM::EliminateCSE(MachineInstr *MI,
709          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
710  if (CI == CSEMap.end())
711    return false;
712
713  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
714    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
715
716    // Replace virtual registers defined by MI by their counterparts defined
717    // by Dup.
718    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
719      const MachineOperand &MO = MI->getOperand(i);
720
721      // Physical registers may not differ here.
722      assert((!MO.isReg() || MO.getReg() == 0 ||
723              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
724              MO.getReg() == Dup->getOperand(i).getReg()) &&
725             "Instructions with different phys regs are not identical!");
726
727      if (MO.isReg() && MO.isDef() &&
728          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
729        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
730    }
731    MI->eraseFromParent();
732    ++NumCSEed;
733    return true;
734  }
735  return false;
736}
737
738/// Hoist - When an instruction is found to use only loop invariant operands
739/// that are safe to hoist, this instruction is called to do the dirty work.
740///
741void MachineLICM::Hoist(MachineInstr *MI) {
742  // First check whether we should hoist this instruction.
743  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
744    // If not, try unfolding a hoistable load.
745    MI = ExtractHoistableLoad(MI);
746    if (!MI) return;
747  }
748
749  // Now move the instructions to the predecessor, inserting it before any
750  // terminator instructions.
751  DEBUG({
752      dbgs() << "Hoisting " << *MI;
753      if (CurPreheader->getBasicBlock())
754        dbgs() << " to MachineBasicBlock "
755               << CurPreheader->getName();
756      if (MI->getParent()->getBasicBlock())
757        dbgs() << " from MachineBasicBlock "
758               << MI->getParent()->getName();
759      dbgs() << "\n";
760    });
761
762  // If this is the first instruction being hoisted to the preheader,
763  // initialize the CSE map with potential common expressions.
764  InitCSEMap(CurPreheader);
765
766  // Look for opportunity to CSE the hoisted instruction.
767  unsigned Opcode = MI->getOpcode();
768  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
769    CI = CSEMap.find(Opcode);
770  if (!EliminateCSE(MI, CI)) {
771    // Otherwise, splice the instruction to the preheader.
772    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
773
774    // Add to the CSE map.
775    if (CI != CSEMap.end())
776      CI->second.push_back(MI);
777    else {
778      std::vector<const MachineInstr*> CSEMIs;
779      CSEMIs.push_back(MI);
780      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
781    }
782  }
783
784  ++NumHoisted;
785  Changed = true;
786}
787