MachineLICM.cpp revision 82e0a1a1a81ad54452823a8eb1e8d743cf38f098
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
44STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
45STATISTIC(NumPostRAHoisted,
46          "Number of machine instructions hoisted out of loops post regalloc");
47
48namespace {
49  class MachineLICM : public MachineFunctionPass {
50    bool PreRegAlloc;
51
52    const TargetMachine   *TM;
53    const TargetInstrInfo *TII;
54    const TargetRegisterInfo *TRI;
55    const MachineFrameInfo *MFI;
56    MachineRegisterInfo *RegInfo;
57
58    // Various analyses that we use...
59    AliasAnalysis        *AA;      // Alias analysis info.
60    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
61    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
62
63    // State that is updated as we process loops
64    bool         Changed;          // True if a loop is changed.
65    bool         FirstInLoop;      // True if it's the first LICM in the loop.
66    MachineLoop *CurLoop;          // The current loop we are working on.
67    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
68
69    BitVector AllocatableSet;
70
71    // For each opcode, keep a list of potentail CSE instructions.
72    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
73
74  public:
75    static char ID; // Pass identification, replacement for typeid
76    MachineLICM() :
77      MachineFunctionPass(&ID), PreRegAlloc(true) {}
78
79    explicit MachineLICM(bool PreRA) :
80      MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
81
82    virtual bool runOnMachineFunction(MachineFunction &MF);
83
84    const char *getPassName() const { return "Machine Instruction LICM"; }
85
86    // FIXME: Loop preheaders?
87    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88      AU.setPreservesCFG();
89      AU.addRequired<MachineLoopInfo>();
90      AU.addRequired<MachineDominatorTree>();
91      AU.addRequired<AliasAnalysis>();
92      AU.addPreserved<MachineLoopInfo>();
93      AU.addPreserved<MachineDominatorTree>();
94      MachineFunctionPass::getAnalysisUsage(AU);
95    }
96
97    virtual void releaseMemory() {
98      CSEMap.clear();
99    }
100
101  private:
102    /// CandidateInfo - Keep track of information about hoisting candidates.
103    struct CandidateInfo {
104      MachineInstr *MI;
105      unsigned      Def;
106      int           FI;
107      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
108        : MI(mi), Def(def), FI(fi) {}
109    };
110
111    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
112    /// invariants out to the preheader.
113    void HoistRegionPostRA();
114
115    /// HoistPostRA - When an instruction is found to only use loop invariant
116    /// operands that is safe to hoist, this instruction is called to do the
117    /// dirty work.
118    void HoistPostRA(MachineInstr *MI, unsigned Def);
119
120    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
121    /// gather register def and frame object update information.
122    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
123                   SmallSet<int, 32> &StoredFIs,
124                   SmallVector<CandidateInfo, 32> &Candidates);
125
126    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
127    /// current loop.
128    void AddToLiveIns(unsigned Reg);
129
130    /// IsLICMCandidate - Returns true if the instruction may be a suitable
131    /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
132    /// not safe to hoist it.
133    bool IsLICMCandidate(MachineInstr &I);
134
135    /// IsLoopInvariantInst - Returns true if the instruction is loop
136    /// invariant. I.e., all virtual register operands are defined outside of
137    /// the loop, physical registers aren't accessed (explicitly or implicitly),
138    /// and the instruction is hoistable.
139    ///
140    bool IsLoopInvariantInst(MachineInstr &I);
141
142    /// IsProfitableToHoist - Return true if it is potentially profitable to
143    /// hoist the given loop invariant.
144    bool IsProfitableToHoist(MachineInstr &MI);
145
146    /// HoistRegion - Walk the specified region of the CFG (defined by all
147    /// blocks dominated by the specified block, and that are in the current
148    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
149    /// visit definitions before uses, allowing us to hoist a loop body in one
150    /// pass without iteration.
151    ///
152    void HoistRegion(MachineDomTreeNode *N);
153
154    /// isLoadFromConstantMemory - Return true if the given instruction is a
155    /// load from constant memory.
156    bool isLoadFromConstantMemory(MachineInstr *MI);
157
158    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
159    /// the load itself could be hoisted. Return the unfolded and hoistable
160    /// load, or null if the load couldn't be unfolded or if it wouldn't
161    /// be hoistable.
162    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
163
164    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
165    /// duplicate of MI. Return this instruction if it's found.
166    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
167                                     std::vector<const MachineInstr*> &PrevMIs);
168
169    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
170    /// the preheader that compute the same value. If it's found, do a RAU on
171    /// with the definition of the existing instruction rather than hoisting
172    /// the instruction to the preheader.
173    bool EliminateCSE(MachineInstr *MI,
174           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
175
176    /// Hoist - When an instruction is found to only use loop invariant operands
177    /// that is safe to hoist, this instruction is called to do the dirty work.
178    ///
179    void Hoist(MachineInstr *MI);
180
181    /// InitCSEMap - Initialize the CSE map with instructions that are in the
182    /// current loop preheader that may become duplicates of instructions that
183    /// are hoisted out of the loop.
184    void InitCSEMap(MachineBasicBlock *BB);
185  };
186} // end anonymous namespace
187
188char MachineLICM::ID = 0;
189static RegisterPass<MachineLICM>
190X("machinelicm", "Machine Loop Invariant Code Motion");
191
192FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
193  return new MachineLICM(PreRegAlloc);
194}
195
196/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
197/// loop that has a preheader.
198static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
199  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
200    if (L->getLoopPreheader())
201      return false;
202  return true;
203}
204
205bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
206  if (PreRegAlloc)
207    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
208  else
209    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
210
211  Changed = FirstInLoop = false;
212  TM = &MF.getTarget();
213  TII = TM->getInstrInfo();
214  TRI = TM->getRegisterInfo();
215  MFI = MF.getFrameInfo();
216  RegInfo = &MF.getRegInfo();
217  AllocatableSet = TRI->getAllocatableSet(MF);
218
219  // Get our Loop information...
220  MLI = &getAnalysis<MachineLoopInfo>();
221  DT  = &getAnalysis<MachineDominatorTree>();
222  AA  = &getAnalysis<AliasAnalysis>();
223
224  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I){
225    CurLoop = *I;
226
227    // If this is done before regalloc, only visit outer-most preheader-sporting
228    // loops.
229    if (PreRegAlloc && !LoopIsOuterMostWithPreheader(CurLoop))
230      continue;
231
232    // Determine the block to which to hoist instructions. If we can't find a
233    // suitable loop preheader, we can't do any hoisting.
234    //
235    // FIXME: We are only hoisting if the basic block coming into this loop
236    // has only one successor. This isn't the case in general because we haven't
237    // broken critical edges or added preheaders.
238    CurPreheader = CurLoop->getLoopPreheader();
239    if (!CurPreheader)
240      continue;
241
242    if (!PreRegAlloc)
243      HoistRegionPostRA();
244    else {
245      // CSEMap is initialized for loop header when the first instruction is
246      // being hoisted.
247      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
248      FirstInLoop = true;
249      HoistRegion(N);
250      CSEMap.clear();
251    }
252  }
253
254  return Changed;
255}
256
257/// InstructionStoresToFI - Return true if instruction stores to the
258/// specified frame.
259static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
260  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
261         oe = MI->memoperands_end(); o != oe; ++o) {
262    if (!(*o)->isStore() || !(*o)->getValue())
263      continue;
264    if (const FixedStackPseudoSourceValue *Value =
265        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
266      if (Value->getFrameIndex() == FI)
267        return true;
268    }
269  }
270  return false;
271}
272
273/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
274/// gather register def and frame object update information.
275void MachineLICM::ProcessMI(MachineInstr *MI,
276                            unsigned *PhysRegDefs,
277                            SmallSet<int, 32> &StoredFIs,
278                            SmallVector<CandidateInfo, 32> &Candidates) {
279  bool RuledOut = false;
280  bool HasNonInvariantUse = false;
281  unsigned Def = 0;
282  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
283    const MachineOperand &MO = MI->getOperand(i);
284    if (MO.isFI()) {
285      // Remember if the instruction stores to the frame index.
286      int FI = MO.getIndex();
287      if (!StoredFIs.count(FI) &&
288          MFI->isSpillSlotObjectIndex(FI) &&
289          InstructionStoresToFI(MI, FI))
290        StoredFIs.insert(FI);
291      HasNonInvariantUse = true;
292      continue;
293    }
294
295    if (!MO.isReg())
296      continue;
297    unsigned Reg = MO.getReg();
298    if (!Reg)
299      continue;
300    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
301           "Not expecting virtual register!");
302
303    if (!MO.isDef()) {
304      if (Reg && PhysRegDefs[Reg])
305        // If it's using a non-loop-invariant register, then it's obviously not
306        // safe to hoist.
307        HasNonInvariantUse = true;
308      continue;
309    }
310
311    if (MO.isImplicit()) {
312      ++PhysRegDefs[Reg];
313      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
314        ++PhysRegDefs[*AS];
315      if (!MO.isDead())
316        // Non-dead implicit def? This cannot be hoisted.
317        RuledOut = true;
318      // No need to check if a dead implicit def is also defined by
319      // another instruction.
320      continue;
321    }
322
323    // FIXME: For now, avoid instructions with multiple defs, unless
324    // it's a dead implicit def.
325    if (Def)
326      RuledOut = true;
327    else
328      Def = Reg;
329
330    // If we have already seen another instruction that defines the same
331    // register, then this is not safe.
332    if (++PhysRegDefs[Reg] > 1)
333      // MI defined register is seen defined by another instruction in
334      // the loop, it cannot be a LICM candidate.
335      RuledOut = true;
336    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
337      if (++PhysRegDefs[*AS] > 1)
338        RuledOut = true;
339  }
340
341  // Only consider reloads for now and remats which do not have register
342  // operands. FIXME: Consider unfold load folding instructions.
343  if (Def && !RuledOut) {
344    int FI = INT_MIN;
345    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
346        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
347      Candidates.push_back(CandidateInfo(MI, Def, FI));
348  }
349}
350
351/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
352/// invariants out to the preheader.
353void MachineLICM::HoistRegionPostRA() {
354  unsigned NumRegs = TRI->getNumRegs();
355  unsigned *PhysRegDefs = new unsigned[NumRegs];
356  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
357
358  SmallVector<CandidateInfo, 32> Candidates;
359  SmallSet<int, 32> StoredFIs;
360
361  // Walk the entire region, count number of defs for each register, and
362  // collect potential LICM candidates.
363  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
364  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
365    MachineBasicBlock *BB = Blocks[i];
366    // Conservatively treat live-in's as an external def.
367    // FIXME: That means a reload that're reused in successor block(s) will not
368    // be LICM'ed.
369    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
370           E = BB->livein_end(); I != E; ++I) {
371      unsigned Reg = *I;
372      ++PhysRegDefs[Reg];
373      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
374        ++PhysRegDefs[*AS];
375    }
376
377    for (MachineBasicBlock::iterator
378           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
379      MachineInstr *MI = &*MII;
380      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
381    }
382  }
383
384  // Now evaluate whether the potential candidates qualify.
385  // 1. Check if the candidate defined register is defined by another
386  //    instruction in the loop.
387  // 2. If the candidate is a load from stack slot (always true for now),
388  //    check if the slot is stored anywhere in the loop.
389  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
390    if (Candidates[i].FI != INT_MIN &&
391        StoredFIs.count(Candidates[i].FI))
392      continue;
393
394    if (PhysRegDefs[Candidates[i].Def] == 1) {
395      bool Safe = true;
396      MachineInstr *MI = Candidates[i].MI;
397      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
398        const MachineOperand &MO = MI->getOperand(j);
399        if (!MO.isReg() || MO.isDef() || !MO.getReg())
400          continue;
401        if (PhysRegDefs[MO.getReg()]) {
402          // If it's using a non-loop-invariant register, then it's obviously
403          // not safe to hoist.
404          Safe = false;
405          break;
406        }
407      }
408      if (Safe)
409        HoistPostRA(MI, Candidates[i].Def);
410    }
411  }
412
413  delete[] PhysRegDefs;
414}
415
416/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
417/// loop, and make sure it is not killed by any instructions in the loop.
418void MachineLICM::AddToLiveIns(unsigned Reg) {
419  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
420  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
421    MachineBasicBlock *BB = Blocks[i];
422    if (!BB->isLiveIn(Reg))
423      BB->addLiveIn(Reg);
424    for (MachineBasicBlock::iterator
425           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
426      MachineInstr *MI = &*MII;
427      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
428        MachineOperand &MO = MI->getOperand(i);
429        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
430        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
431          MO.setIsKill(false);
432      }
433    }
434  }
435}
436
437/// HoistPostRA - When an instruction is found to only use loop invariant
438/// operands that is safe to hoist, this instruction is called to do the
439/// dirty work.
440void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
441  // Now move the instructions to the predecessor, inserting it before any
442  // terminator instructions.
443  DEBUG({
444      dbgs() << "Hoisting " << *MI;
445      if (CurPreheader->getBasicBlock())
446        dbgs() << " to MachineBasicBlock "
447               << CurPreheader->getName();
448      if (MI->getParent()->getBasicBlock())
449        dbgs() << " from MachineBasicBlock "
450               << MI->getParent()->getName();
451      dbgs() << "\n";
452    });
453
454  // Splice the instruction to the preheader.
455  MachineBasicBlock *MBB = MI->getParent();
456  CurPreheader->splice(CurPreheader->getFirstTerminator(), MBB, MI);
457
458  // Add register to livein list to all the BBs in the current loop since a
459  // loop invariant must be kept live throughout the whole loop. This is
460  // important to ensure later passes do not scavenge the def register.
461  AddToLiveIns(Def);
462
463  ++NumPostRAHoisted;
464  Changed = true;
465}
466
467/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
468/// dominated by the specified block, and that are in the current loop) in depth
469/// first order w.r.t the DominatorTree. This allows us to visit definitions
470/// before uses, allowing us to hoist a loop body in one pass without iteration.
471///
472void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
473  assert(N != 0 && "Null dominator tree node?");
474  MachineBasicBlock *BB = N->getBlock();
475
476  // If this subregion is not in the top level loop at all, exit.
477  if (!CurLoop->contains(BB)) return;
478
479  for (MachineBasicBlock::iterator
480         MII = BB->begin(), E = BB->end(); MII != E; ) {
481    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
482    Hoist(&*MII);
483    MII = NextMII;
484  }
485
486  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
487  for (unsigned I = 0, E = Children.size(); I != E; ++I)
488    HoistRegion(Children[I]);
489}
490
491/// IsLICMCandidate - Returns true if the instruction may be a suitable
492/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
493/// not safe to hoist it.
494bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
495  if (I.isImplicitDef())
496    return false;
497
498  const TargetInstrDesc &TID = I.getDesc();
499
500  // Ignore stuff that we obviously can't hoist.
501  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
502      TID.hasUnmodeledSideEffects())
503    return false;
504
505  if (TID.mayLoad()) {
506    // Okay, this instruction does a load. As a refinement, we allow the target
507    // to decide whether the loaded value is actually a constant. If so, we can
508    // actually use it as a load.
509    if (!I.isInvariantLoad(AA))
510      // FIXME: we should be able to hoist loads with no other side effects if
511      // there are no other instructions which can change memory in this loop.
512      // This is a trivial form of alias analysis.
513      return false;
514  }
515  return true;
516}
517
518/// IsLoopInvariantInst - Returns true if the instruction is loop
519/// invariant. I.e., all virtual register operands are defined outside of the
520/// loop, physical registers aren't accessed explicitly, and there are no side
521/// effects that aren't captured by the operands or other flags.
522///
523bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
524  if (!IsLICMCandidate(I))
525    return false;
526
527  // The instruction is loop invariant if all of its operands are.
528  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
529    const MachineOperand &MO = I.getOperand(i);
530
531    if (!MO.isReg())
532      continue;
533
534    unsigned Reg = MO.getReg();
535    if (Reg == 0) continue;
536
537    // Don't hoist an instruction that uses or defines a physical register.
538    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
539      if (MO.isUse()) {
540        // If the physreg has no defs anywhere, it's just an ambient register
541        // and we can freely move its uses. Alternatively, if it's allocatable,
542        // it could get allocated to something with a def during allocation.
543        if (!RegInfo->def_empty(Reg))
544          return false;
545        if (AllocatableSet.test(Reg))
546          return false;
547        // Check for a def among the register's aliases too.
548        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
549          unsigned AliasReg = *Alias;
550          if (!RegInfo->def_empty(AliasReg))
551            return false;
552          if (AllocatableSet.test(AliasReg))
553            return false;
554        }
555        // Otherwise it's safe to move.
556        continue;
557      } else if (!MO.isDead()) {
558        // A def that isn't dead. We can't move it.
559        return false;
560      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
561        // If the reg is live into the loop, we can't hoist an instruction
562        // which would clobber it.
563        return false;
564      }
565    }
566
567    if (!MO.isUse())
568      continue;
569
570    assert(RegInfo->getVRegDef(Reg) &&
571           "Machine instr not mapped for this vreg?!");
572
573    // If the loop contains the definition of an operand, then the instruction
574    // isn't loop invariant.
575    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
576      return false;
577  }
578
579  // If we got this far, the instruction is loop invariant!
580  return true;
581}
582
583
584/// HasPHIUses - Return true if the specified register has any PHI use.
585static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
586  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
587         UE = RegInfo->use_end(); UI != UE; ++UI) {
588    MachineInstr *UseMI = &*UI;
589    if (UseMI->isPHI())
590      return true;
591  }
592  return false;
593}
594
595/// isLoadFromConstantMemory - Return true if the given instruction is a
596/// load from constant memory. Machine LICM will hoist these even if they are
597/// not re-materializable.
598bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
599  if (!MI->getDesc().mayLoad()) return false;
600  if (!MI->hasOneMemOperand()) return false;
601  MachineMemOperand *MMO = *MI->memoperands_begin();
602  if (MMO->isVolatile()) return false;
603  if (!MMO->getValue()) return false;
604  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
605  if (PSV) {
606    MachineFunction &MF = *MI->getParent()->getParent();
607    return PSV->isConstant(MF.getFrameInfo());
608  } else {
609    return AA->pointsToConstantMemory(MMO->getValue());
610  }
611}
612
613/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
614/// the given loop invariant.
615bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
616  // FIXME: For now, only hoist re-materilizable instructions. LICM will
617  // increase register pressure. We want to make sure it doesn't increase
618  // spilling.
619  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
620  // these tend to help performance in low register pressure situation. The
621  // trade off is it may cause spill in high pressure situation. It will end up
622  // adding a store in the loop preheader. But the reload is no more expensive.
623  // The side benefit is these loads are frequently CSE'ed.
624  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
625    if (!isLoadFromConstantMemory(&MI))
626      return false;
627  }
628
629  // If result(s) of this instruction is used by PHIs, then don't hoist it.
630  // The presence of joins makes it difficult for current register allocator
631  // implementation to perform remat.
632  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
633    const MachineOperand &MO = MI.getOperand(i);
634    if (!MO.isReg() || !MO.isDef())
635      continue;
636    if (HasPHIUses(MO.getReg(), RegInfo))
637      return false;
638  }
639
640  return true;
641}
642
643MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
644  // If not, we may be able to unfold a load and hoist that.
645  // First test whether the instruction is loading from an amenable
646  // memory location.
647  if (!isLoadFromConstantMemory(MI))
648    return 0;
649
650  // Next determine the register class for a temporary register.
651  unsigned LoadRegIndex;
652  unsigned NewOpc =
653    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
654                                    /*UnfoldLoad=*/true,
655                                    /*UnfoldStore=*/false,
656                                    &LoadRegIndex);
657  if (NewOpc == 0) return 0;
658  const TargetInstrDesc &TID = TII->get(NewOpc);
659  if (TID.getNumDefs() != 1) return 0;
660  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
661  // Ok, we're unfolding. Create a temporary register and do the unfold.
662  unsigned Reg = RegInfo->createVirtualRegister(RC);
663
664  MachineFunction &MF = *MI->getParent()->getParent();
665  SmallVector<MachineInstr *, 2> NewMIs;
666  bool Success =
667    TII->unfoldMemoryOperand(MF, MI, Reg,
668                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
669                             NewMIs);
670  (void)Success;
671  assert(Success &&
672         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
673         "succeeded!");
674  assert(NewMIs.size() == 2 &&
675         "Unfolded a load into multiple instructions!");
676  MachineBasicBlock *MBB = MI->getParent();
677  MBB->insert(MI, NewMIs[0]);
678  MBB->insert(MI, NewMIs[1]);
679  // If unfolding produced a load that wasn't loop-invariant or profitable to
680  // hoist, discard the new instructions and bail.
681  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
682    NewMIs[0]->eraseFromParent();
683    NewMIs[1]->eraseFromParent();
684    return 0;
685  }
686  // Otherwise we successfully unfolded a load that we can hoist.
687  MI->eraseFromParent();
688  return NewMIs[0];
689}
690
691void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
692  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
693    const MachineInstr *MI = &*I;
694    // FIXME: For now, only hoist re-materilizable instructions. LICM will
695    // increase register pressure. We want to make sure it doesn't increase
696    // spilling.
697    if (TII->isTriviallyReMaterializable(MI, AA)) {
698      unsigned Opcode = MI->getOpcode();
699      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
700        CI = CSEMap.find(Opcode);
701      if (CI != CSEMap.end())
702        CI->second.push_back(MI);
703      else {
704        std::vector<const MachineInstr*> CSEMIs;
705        CSEMIs.push_back(MI);
706        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
707      }
708    }
709  }
710}
711
712const MachineInstr*
713MachineLICM::LookForDuplicate(const MachineInstr *MI,
714                              std::vector<const MachineInstr*> &PrevMIs) {
715  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
716    const MachineInstr *PrevMI = PrevMIs[i];
717    if (TII->produceSameValue(MI, PrevMI))
718      return PrevMI;
719  }
720  return 0;
721}
722
723bool MachineLICM::EliminateCSE(MachineInstr *MI,
724          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
725  if (CI == CSEMap.end())
726    return false;
727
728  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
729    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
730
731    // Replace virtual registers defined by MI by their counterparts defined
732    // by Dup.
733    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
734      const MachineOperand &MO = MI->getOperand(i);
735
736      // Physical registers may not differ here.
737      assert((!MO.isReg() || MO.getReg() == 0 ||
738              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
739              MO.getReg() == Dup->getOperand(i).getReg()) &&
740             "Instructions with different phys regs are not identical!");
741
742      if (MO.isReg() && MO.isDef() &&
743          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
744        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
745        RegInfo->clearKillFlags(Dup->getOperand(i).getReg());
746      }
747    }
748    MI->eraseFromParent();
749    ++NumCSEed;
750    return true;
751  }
752  return false;
753}
754
755/// Hoist - When an instruction is found to use only loop invariant operands
756/// that are safe to hoist, this instruction is called to do the dirty work.
757///
758void MachineLICM::Hoist(MachineInstr *MI) {
759  // First check whether we should hoist this instruction.
760  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
761    // If not, try unfolding a hoistable load.
762    MI = ExtractHoistableLoad(MI);
763    if (!MI) return;
764  }
765
766  // Now move the instructions to the predecessor, inserting it before any
767  // terminator instructions.
768  DEBUG({
769      dbgs() << "Hoisting " << *MI;
770      if (CurPreheader->getBasicBlock())
771        dbgs() << " to MachineBasicBlock "
772               << CurPreheader->getName();
773      if (MI->getParent()->getBasicBlock())
774        dbgs() << " from MachineBasicBlock "
775               << MI->getParent()->getName();
776      dbgs() << "\n";
777    });
778
779  // If this is the first instruction being hoisted to the preheader,
780  // initialize the CSE map with potential common expressions.
781  if (FirstInLoop) {
782    InitCSEMap(CurPreheader);
783    FirstInLoop = false;
784  }
785
786  // Look for opportunity to CSE the hoisted instruction.
787  unsigned Opcode = MI->getOpcode();
788  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
789    CI = CSEMap.find(Opcode);
790  if (!EliminateCSE(MI, CI)) {
791    // Otherwise, splice the instruction to the preheader.
792    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
793
794    // Clear the kill flags of any register this instruction defines,
795    // since they may need to be live throughout the entire loop
796    // rather than just live for part of it.
797    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
798      MachineOperand &MO = MI->getOperand(i);
799      if (MO.isReg() && MO.isDef() && !MO.isDead())
800        RegInfo->clearKillFlags(MO.getReg());
801    }
802
803    // Add to the CSE map.
804    if (CI != CSEMap.end())
805      CI->second.push_back(MI);
806    else {
807      std::vector<const MachineInstr*> CSEMIs;
808      CSEMIs.push_back(MI);
809      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
810    }
811  }
812
813  ++NumHoisted;
814  Changed = true;
815}
816