MachineLICM.cpp revision 9571e5b43b0cd3370fe480bb6ffd766bcfde46ae
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
44STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
45STATISTIC(NumPostRAHoisted,
46          "Number of machine instructions hoisted out of loops post regalloc");
47
48namespace {
49  class MachineLICM : public MachineFunctionPass {
50    bool PreRegAlloc;
51
52    const TargetMachine   *TM;
53    const TargetInstrInfo *TII;
54    const TargetRegisterInfo *TRI;
55    const MachineFrameInfo *MFI;
56    MachineRegisterInfo *RegInfo;
57
58    // Various analyses that we use...
59    AliasAnalysis        *AA;      // Alias analysis info.
60    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
61    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
62
63    // State that is updated as we process loops
64    bool         Changed;          // True if a loop is changed.
65    bool         FirstInLoop;      // True if it's the first LICM in the loop.
66    MachineLoop *CurLoop;          // The current loop we are working on.
67    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
68
69    BitVector AllocatableSet;
70
71    // For each opcode, keep a list of potentail CSE instructions.
72    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
73
74  public:
75    static char ID; // Pass identification, replacement for typeid
76    MachineLICM() :
77      MachineFunctionPass(&ID), PreRegAlloc(true) {}
78
79    explicit MachineLICM(bool PreRA) :
80      MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
81
82    virtual bool runOnMachineFunction(MachineFunction &MF);
83
84    const char *getPassName() const { return "Machine Instruction LICM"; }
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88      AU.addRequired<MachineLoopInfo>();
89      AU.addRequired<MachineDominatorTree>();
90      AU.addRequired<AliasAnalysis>();
91      AU.addPreserved<MachineLoopInfo>();
92      AU.addPreserved<MachineDominatorTree>();
93      MachineFunctionPass::getAnalysisUsage(AU);
94    }
95
96    virtual void releaseMemory() {
97      CSEMap.clear();
98    }
99
100  private:
101    /// CandidateInfo - Keep track of information about hoisting candidates.
102    struct CandidateInfo {
103      MachineInstr *MI;
104      unsigned      Def;
105      int           FI;
106      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
107        : MI(mi), Def(def), FI(fi) {}
108    };
109
110    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
111    /// invariants out to the preheader.
112    void HoistRegionPostRA();
113
114    /// HoistPostRA - When an instruction is found to only use loop invariant
115    /// operands that is safe to hoist, this instruction is called to do the
116    /// dirty work.
117    void HoistPostRA(MachineInstr *MI, unsigned Def);
118
119    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
120    /// gather register def and frame object update information.
121    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
122                   SmallSet<int, 32> &StoredFIs,
123                   SmallVector<CandidateInfo, 32> &Candidates);
124
125    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
126    /// current loop.
127    void AddToLiveIns(unsigned Reg);
128
129    /// IsLICMCandidate - Returns true if the instruction may be a suitable
130    /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
131    /// not safe to hoist it.
132    bool IsLICMCandidate(MachineInstr &I);
133
134    /// IsLoopInvariantInst - Returns true if the instruction is loop
135    /// invariant. I.e., all virtual register operands are defined outside of
136    /// the loop, physical registers aren't accessed (explicitly or implicitly),
137    /// and the instruction is hoistable.
138    ///
139    bool IsLoopInvariantInst(MachineInstr &I);
140
141    /// IsProfitableToHoist - Return true if it is potentially profitable to
142    /// hoist the given loop invariant.
143    bool IsProfitableToHoist(MachineInstr &MI);
144
145    /// HoistRegion - Walk the specified region of the CFG (defined by all
146    /// blocks dominated by the specified block, and that are in the current
147    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
148    /// visit definitions before uses, allowing us to hoist a loop body in one
149    /// pass without iteration.
150    ///
151    void HoistRegion(MachineDomTreeNode *N);
152
153    /// isLoadFromConstantMemory - Return true if the given instruction is a
154    /// load from constant memory.
155    bool isLoadFromConstantMemory(MachineInstr *MI);
156
157    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
158    /// the load itself could be hoisted. Return the unfolded and hoistable
159    /// load, or null if the load couldn't be unfolded or if it wouldn't
160    /// be hoistable.
161    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
162
163    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
164    /// duplicate of MI. Return this instruction if it's found.
165    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
166                                     std::vector<const MachineInstr*> &PrevMIs);
167
168    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
169    /// the preheader that compute the same value. If it's found, do a RAU on
170    /// with the definition of the existing instruction rather than hoisting
171    /// the instruction to the preheader.
172    bool EliminateCSE(MachineInstr *MI,
173           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
174
175    /// Hoist - When an instruction is found to only use loop invariant operands
176    /// that is safe to hoist, this instruction is called to do the dirty work.
177    ///
178    void Hoist(MachineInstr *MI);
179
180    /// InitCSEMap - Initialize the CSE map with instructions that are in the
181    /// current loop preheader that may become duplicates of instructions that
182    /// are hoisted out of the loop.
183    void InitCSEMap(MachineBasicBlock *BB);
184
185    /// getCurPreheader - Get the preheader for the current loop, splitting
186    /// a critical edge if needed.
187    MachineBasicBlock *getCurPreheader();
188  };
189} // end anonymous namespace
190
191char MachineLICM::ID = 0;
192static RegisterPass<MachineLICM>
193X("machinelicm", "Machine Loop Invariant Code Motion");
194
195FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
196  return new MachineLICM(PreRegAlloc);
197}
198
199/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
200/// loop that has a unique predecessor.
201static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
202  // Check whether this loop even has a unique predecessor.
203  if (!CurLoop->getLoopPredecessor())
204    return false;
205  // Ok, now check to see if any of its outer loops do.
206  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
207    if (L->getLoopPredecessor())
208      return false;
209  // None of them did, so this is the outermost with a unique predecessor.
210  return true;
211}
212
213bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
214  if (PreRegAlloc)
215    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
216  else
217    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
218
219  Changed = FirstInLoop = false;
220  TM = &MF.getTarget();
221  TII = TM->getInstrInfo();
222  TRI = TM->getRegisterInfo();
223  MFI = MF.getFrameInfo();
224  RegInfo = &MF.getRegInfo();
225  AllocatableSet = TRI->getAllocatableSet(MF);
226
227  // Get our Loop information...
228  MLI = &getAnalysis<MachineLoopInfo>();
229  DT  = &getAnalysis<MachineDominatorTree>();
230  AA  = &getAnalysis<AliasAnalysis>();
231
232  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
233  while (!Worklist.empty()) {
234    CurLoop = Worklist.pop_back_val();
235    CurPreheader = 0;
236
237    // If this is done before regalloc, only visit outer-most preheader-sporting
238    // loops.
239    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
240      Worklist.append(CurLoop->begin(), CurLoop->end());
241      continue;
242    }
243
244    if (!PreRegAlloc)
245      HoistRegionPostRA();
246    else {
247      // CSEMap is initialized for loop header when the first instruction is
248      // being hoisted.
249      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
250      FirstInLoop = true;
251      HoistRegion(N);
252      CSEMap.clear();
253    }
254  }
255
256  return Changed;
257}
258
259/// InstructionStoresToFI - Return true if instruction stores to the
260/// specified frame.
261static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
262  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
263         oe = MI->memoperands_end(); o != oe; ++o) {
264    if (!(*o)->isStore() || !(*o)->getValue())
265      continue;
266    if (const FixedStackPseudoSourceValue *Value =
267        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
268      if (Value->getFrameIndex() == FI)
269        return true;
270    }
271  }
272  return false;
273}
274
275/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
276/// gather register def and frame object update information.
277void MachineLICM::ProcessMI(MachineInstr *MI,
278                            unsigned *PhysRegDefs,
279                            SmallSet<int, 32> &StoredFIs,
280                            SmallVector<CandidateInfo, 32> &Candidates) {
281  bool RuledOut = false;
282  bool HasNonInvariantUse = false;
283  unsigned Def = 0;
284  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
285    const MachineOperand &MO = MI->getOperand(i);
286    if (MO.isFI()) {
287      // Remember if the instruction stores to the frame index.
288      int FI = MO.getIndex();
289      if (!StoredFIs.count(FI) &&
290          MFI->isSpillSlotObjectIndex(FI) &&
291          InstructionStoresToFI(MI, FI))
292        StoredFIs.insert(FI);
293      HasNonInvariantUse = true;
294      continue;
295    }
296
297    if (!MO.isReg())
298      continue;
299    unsigned Reg = MO.getReg();
300    if (!Reg)
301      continue;
302    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
303           "Not expecting virtual register!");
304
305    if (!MO.isDef()) {
306      if (Reg && PhysRegDefs[Reg])
307        // If it's using a non-loop-invariant register, then it's obviously not
308        // safe to hoist.
309        HasNonInvariantUse = true;
310      continue;
311    }
312
313    if (MO.isImplicit()) {
314      ++PhysRegDefs[Reg];
315      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
316        ++PhysRegDefs[*AS];
317      if (!MO.isDead())
318        // Non-dead implicit def? This cannot be hoisted.
319        RuledOut = true;
320      // No need to check if a dead implicit def is also defined by
321      // another instruction.
322      continue;
323    }
324
325    // FIXME: For now, avoid instructions with multiple defs, unless
326    // it's a dead implicit def.
327    if (Def)
328      RuledOut = true;
329    else
330      Def = Reg;
331
332    // If we have already seen another instruction that defines the same
333    // register, then this is not safe.
334    if (++PhysRegDefs[Reg] > 1)
335      // MI defined register is seen defined by another instruction in
336      // the loop, it cannot be a LICM candidate.
337      RuledOut = true;
338    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
339      if (++PhysRegDefs[*AS] > 1)
340        RuledOut = true;
341  }
342
343  // Only consider reloads for now and remats which do not have register
344  // operands. FIXME: Consider unfold load folding instructions.
345  if (Def && !RuledOut) {
346    int FI = INT_MIN;
347    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
348        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
349      Candidates.push_back(CandidateInfo(MI, Def, FI));
350  }
351}
352
353/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
354/// invariants out to the preheader.
355void MachineLICM::HoistRegionPostRA() {
356  unsigned NumRegs = TRI->getNumRegs();
357  unsigned *PhysRegDefs = new unsigned[NumRegs];
358  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
359
360  SmallVector<CandidateInfo, 32> Candidates;
361  SmallSet<int, 32> StoredFIs;
362
363  // Walk the entire region, count number of defs for each register, and
364  // collect potential LICM candidates.
365  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
366  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
367    MachineBasicBlock *BB = Blocks[i];
368    // Conservatively treat live-in's as an external def.
369    // FIXME: That means a reload that're reused in successor block(s) will not
370    // be LICM'ed.
371    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
372           E = BB->livein_end(); I != E; ++I) {
373      unsigned Reg = *I;
374      ++PhysRegDefs[Reg];
375      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
376        ++PhysRegDefs[*AS];
377    }
378
379    for (MachineBasicBlock::iterator
380           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
381      MachineInstr *MI = &*MII;
382      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
383    }
384  }
385
386  // Now evaluate whether the potential candidates qualify.
387  // 1. Check if the candidate defined register is defined by another
388  //    instruction in the loop.
389  // 2. If the candidate is a load from stack slot (always true for now),
390  //    check if the slot is stored anywhere in the loop.
391  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
392    if (Candidates[i].FI != INT_MIN &&
393        StoredFIs.count(Candidates[i].FI))
394      continue;
395
396    if (PhysRegDefs[Candidates[i].Def] == 1) {
397      bool Safe = true;
398      MachineInstr *MI = Candidates[i].MI;
399      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
400        const MachineOperand &MO = MI->getOperand(j);
401        if (!MO.isReg() || MO.isDef() || !MO.getReg())
402          continue;
403        if (PhysRegDefs[MO.getReg()]) {
404          // If it's using a non-loop-invariant register, then it's obviously
405          // not safe to hoist.
406          Safe = false;
407          break;
408        }
409      }
410      if (Safe)
411        HoistPostRA(MI, Candidates[i].Def);
412    }
413  }
414
415  delete[] PhysRegDefs;
416}
417
418/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
419/// loop, and make sure it is not killed by any instructions in the loop.
420void MachineLICM::AddToLiveIns(unsigned Reg) {
421  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
422  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
423    MachineBasicBlock *BB = Blocks[i];
424    if (!BB->isLiveIn(Reg))
425      BB->addLiveIn(Reg);
426    for (MachineBasicBlock::iterator
427           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
428      MachineInstr *MI = &*MII;
429      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
430        MachineOperand &MO = MI->getOperand(i);
431        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
432        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
433          MO.setIsKill(false);
434      }
435    }
436  }
437}
438
439/// HoistPostRA - When an instruction is found to only use loop invariant
440/// operands that is safe to hoist, this instruction is called to do the
441/// dirty work.
442void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
443  MachineBasicBlock *Preheader = getCurPreheader();
444  if (!Preheader) return;
445
446  // Now move the instructions to the predecessor, inserting it before any
447  // terminator instructions.
448  DEBUG({
449      dbgs() << "Hoisting " << *MI;
450      if (Preheader->getBasicBlock())
451        dbgs() << " to MachineBasicBlock "
452               << Preheader->getName();
453      if (MI->getParent()->getBasicBlock())
454        dbgs() << " from MachineBasicBlock "
455               << MI->getParent()->getName();
456      dbgs() << "\n";
457    });
458
459  // Splice the instruction to the preheader.
460  MachineBasicBlock *MBB = MI->getParent();
461  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
462
463  // Add register to livein list to all the BBs in the current loop since a
464  // loop invariant must be kept live throughout the whole loop. This is
465  // important to ensure later passes do not scavenge the def register.
466  AddToLiveIns(Def);
467
468  ++NumPostRAHoisted;
469  Changed = true;
470}
471
472/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
473/// dominated by the specified block, and that are in the current loop) in depth
474/// first order w.r.t the DominatorTree. This allows us to visit definitions
475/// before uses, allowing us to hoist a loop body in one pass without iteration.
476///
477void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
478  assert(N != 0 && "Null dominator tree node?");
479  MachineBasicBlock *BB = N->getBlock();
480
481  // If this subregion is not in the top level loop at all, exit.
482  if (!CurLoop->contains(BB)) return;
483
484  for (MachineBasicBlock::iterator
485         MII = BB->begin(), E = BB->end(); MII != E; ) {
486    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
487    Hoist(&*MII);
488    MII = NextMII;
489  }
490
491  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
492  for (unsigned I = 0, E = Children.size(); I != E; ++I)
493    HoistRegion(Children[I]);
494}
495
496/// IsLICMCandidate - Returns true if the instruction may be a suitable
497/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
498/// not safe to hoist it.
499bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
500  if (I.isImplicitDef())
501    return false;
502
503  const TargetInstrDesc &TID = I.getDesc();
504
505  // Ignore stuff that we obviously can't hoist.
506  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
507      TID.hasUnmodeledSideEffects())
508    return false;
509
510  if (TID.mayLoad()) {
511    // Okay, this instruction does a load. As a refinement, we allow the target
512    // to decide whether the loaded value is actually a constant. If so, we can
513    // actually use it as a load.
514    if (!I.isInvariantLoad(AA))
515      // FIXME: we should be able to hoist loads with no other side effects if
516      // there are no other instructions which can change memory in this loop.
517      // This is a trivial form of alias analysis.
518      return false;
519  }
520  return true;
521}
522
523/// IsLoopInvariantInst - Returns true if the instruction is loop
524/// invariant. I.e., all virtual register operands are defined outside of the
525/// loop, physical registers aren't accessed explicitly, and there are no side
526/// effects that aren't captured by the operands or other flags.
527///
528bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
529  if (!IsLICMCandidate(I))
530    return false;
531
532  // The instruction is loop invariant if all of its operands are.
533  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
534    const MachineOperand &MO = I.getOperand(i);
535
536    if (!MO.isReg())
537      continue;
538
539    unsigned Reg = MO.getReg();
540    if (Reg == 0) continue;
541
542    // Don't hoist an instruction that uses or defines a physical register.
543    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
544      if (MO.isUse()) {
545        // If the physreg has no defs anywhere, it's just an ambient register
546        // and we can freely move its uses. Alternatively, if it's allocatable,
547        // it could get allocated to something with a def during allocation.
548        if (!RegInfo->def_empty(Reg))
549          return false;
550        if (AllocatableSet.test(Reg))
551          return false;
552        // Check for a def among the register's aliases too.
553        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
554          unsigned AliasReg = *Alias;
555          if (!RegInfo->def_empty(AliasReg))
556            return false;
557          if (AllocatableSet.test(AliasReg))
558            return false;
559        }
560        // Otherwise it's safe to move.
561        continue;
562      } else if (!MO.isDead()) {
563        // A def that isn't dead. We can't move it.
564        return false;
565      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
566        // If the reg is live into the loop, we can't hoist an instruction
567        // which would clobber it.
568        return false;
569      }
570    }
571
572    if (!MO.isUse())
573      continue;
574
575    assert(RegInfo->getVRegDef(Reg) &&
576           "Machine instr not mapped for this vreg?!");
577
578    // If the loop contains the definition of an operand, then the instruction
579    // isn't loop invariant.
580    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
581      return false;
582  }
583
584  // If we got this far, the instruction is loop invariant!
585  return true;
586}
587
588
589/// HasPHIUses - Return true if the specified register has any PHI use.
590static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
591  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
592         UE = RegInfo->use_end(); UI != UE; ++UI) {
593    MachineInstr *UseMI = &*UI;
594    if (UseMI->isPHI())
595      return true;
596  }
597  return false;
598}
599
600/// isLoadFromConstantMemory - Return true if the given instruction is a
601/// load from constant memory. Machine LICM will hoist these even if they are
602/// not re-materializable.
603bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
604  if (!MI->getDesc().mayLoad()) return false;
605  if (!MI->hasOneMemOperand()) return false;
606  MachineMemOperand *MMO = *MI->memoperands_begin();
607  if (MMO->isVolatile()) return false;
608  if (!MMO->getValue()) return false;
609  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
610  if (PSV) {
611    MachineFunction &MF = *MI->getParent()->getParent();
612    return PSV->isConstant(MF.getFrameInfo());
613  } else {
614    return AA->pointsToConstantMemory(MMO->getValue());
615  }
616}
617
618/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
619/// the given loop invariant.
620bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
621  // FIXME: For now, only hoist re-materilizable instructions. LICM will
622  // increase register pressure. We want to make sure it doesn't increase
623  // spilling.
624  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
625  // these tend to help performance in low register pressure situation. The
626  // trade off is it may cause spill in high pressure situation. It will end up
627  // adding a store in the loop preheader. But the reload is no more expensive.
628  // The side benefit is these loads are frequently CSE'ed.
629  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
630    if (!isLoadFromConstantMemory(&MI))
631      return false;
632  }
633
634  // If result(s) of this instruction is used by PHIs, then don't hoist it.
635  // The presence of joins makes it difficult for current register allocator
636  // implementation to perform remat.
637  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
638    const MachineOperand &MO = MI.getOperand(i);
639    if (!MO.isReg() || !MO.isDef())
640      continue;
641    if (HasPHIUses(MO.getReg(), RegInfo))
642      return false;
643  }
644
645  return true;
646}
647
648MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
649  // If not, we may be able to unfold a load and hoist that.
650  // First test whether the instruction is loading from an amenable
651  // memory location.
652  if (!isLoadFromConstantMemory(MI))
653    return 0;
654
655  // Next determine the register class for a temporary register.
656  unsigned LoadRegIndex;
657  unsigned NewOpc =
658    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
659                                    /*UnfoldLoad=*/true,
660                                    /*UnfoldStore=*/false,
661                                    &LoadRegIndex);
662  if (NewOpc == 0) return 0;
663  const TargetInstrDesc &TID = TII->get(NewOpc);
664  if (TID.getNumDefs() != 1) return 0;
665  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
666  // Ok, we're unfolding. Create a temporary register and do the unfold.
667  unsigned Reg = RegInfo->createVirtualRegister(RC);
668
669  MachineFunction &MF = *MI->getParent()->getParent();
670  SmallVector<MachineInstr *, 2> NewMIs;
671  bool Success =
672    TII->unfoldMemoryOperand(MF, MI, Reg,
673                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
674                             NewMIs);
675  (void)Success;
676  assert(Success &&
677         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
678         "succeeded!");
679  assert(NewMIs.size() == 2 &&
680         "Unfolded a load into multiple instructions!");
681  MachineBasicBlock *MBB = MI->getParent();
682  MBB->insert(MI, NewMIs[0]);
683  MBB->insert(MI, NewMIs[1]);
684  // If unfolding produced a load that wasn't loop-invariant or profitable to
685  // hoist, discard the new instructions and bail.
686  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
687    NewMIs[0]->eraseFromParent();
688    NewMIs[1]->eraseFromParent();
689    return 0;
690  }
691  // Otherwise we successfully unfolded a load that we can hoist.
692  MI->eraseFromParent();
693  return NewMIs[0];
694}
695
696void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
697  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
698    const MachineInstr *MI = &*I;
699    // FIXME: For now, only hoist re-materilizable instructions. LICM will
700    // increase register pressure. We want to make sure it doesn't increase
701    // spilling.
702    if (TII->isTriviallyReMaterializable(MI, AA)) {
703      unsigned Opcode = MI->getOpcode();
704      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
705        CI = CSEMap.find(Opcode);
706      if (CI != CSEMap.end())
707        CI->second.push_back(MI);
708      else {
709        std::vector<const MachineInstr*> CSEMIs;
710        CSEMIs.push_back(MI);
711        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
712      }
713    }
714  }
715}
716
717const MachineInstr*
718MachineLICM::LookForDuplicate(const MachineInstr *MI,
719                              std::vector<const MachineInstr*> &PrevMIs) {
720  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
721    const MachineInstr *PrevMI = PrevMIs[i];
722    if (TII->produceSameValue(MI, PrevMI))
723      return PrevMI;
724  }
725  return 0;
726}
727
728bool MachineLICM::EliminateCSE(MachineInstr *MI,
729          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
730  if (CI == CSEMap.end())
731    return false;
732
733  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
734    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
735
736    // Replace virtual registers defined by MI by their counterparts defined
737    // by Dup.
738    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
739      const MachineOperand &MO = MI->getOperand(i);
740
741      // Physical registers may not differ here.
742      assert((!MO.isReg() || MO.getReg() == 0 ||
743              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
744              MO.getReg() == Dup->getOperand(i).getReg()) &&
745             "Instructions with different phys regs are not identical!");
746
747      if (MO.isReg() && MO.isDef() &&
748          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
749        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
750        RegInfo->clearKillFlags(Dup->getOperand(i).getReg());
751      }
752    }
753    MI->eraseFromParent();
754    ++NumCSEed;
755    return true;
756  }
757  return false;
758}
759
760/// Hoist - When an instruction is found to use only loop invariant operands
761/// that are safe to hoist, this instruction is called to do the dirty work.
762///
763void MachineLICM::Hoist(MachineInstr *MI) {
764  MachineBasicBlock *Preheader = getCurPreheader();
765  if (!Preheader) return;
766
767  // First check whether we should hoist this instruction.
768  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
769    // If not, try unfolding a hoistable load.
770    MI = ExtractHoistableLoad(MI);
771    if (!MI) return;
772  }
773
774  // Now move the instructions to the predecessor, inserting it before any
775  // terminator instructions.
776  DEBUG({
777      dbgs() << "Hoisting " << *MI;
778      if (Preheader->getBasicBlock())
779        dbgs() << " to MachineBasicBlock "
780               << Preheader->getName();
781      if (MI->getParent()->getBasicBlock())
782        dbgs() << " from MachineBasicBlock "
783               << MI->getParent()->getName();
784      dbgs() << "\n";
785    });
786
787  // If this is the first instruction being hoisted to the preheader,
788  // initialize the CSE map with potential common expressions.
789  if (FirstInLoop) {
790    InitCSEMap(Preheader);
791    FirstInLoop = false;
792  }
793
794  // Look for opportunity to CSE the hoisted instruction.
795  unsigned Opcode = MI->getOpcode();
796  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
797    CI = CSEMap.find(Opcode);
798  if (!EliminateCSE(MI, CI)) {
799    // Otherwise, splice the instruction to the preheader.
800    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
801
802    // Clear the kill flags of any register this instruction defines,
803    // since they may need to be live throughout the entire loop
804    // rather than just live for part of it.
805    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
806      MachineOperand &MO = MI->getOperand(i);
807      if (MO.isReg() && MO.isDef() && !MO.isDead())
808        RegInfo->clearKillFlags(MO.getReg());
809    }
810
811    // Add to the CSE map.
812    if (CI != CSEMap.end())
813      CI->second.push_back(MI);
814    else {
815      std::vector<const MachineInstr*> CSEMIs;
816      CSEMIs.push_back(MI);
817      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
818    }
819  }
820
821  ++NumHoisted;
822  Changed = true;
823}
824
825MachineBasicBlock *MachineLICM::getCurPreheader() {
826  // Determine the block to which to hoist instructions. If we can't find a
827  // suitable loop predecessor, we can't do any hoisting.
828
829  // If we've tried to get a preheader and failed, don't try again.
830  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
831    return 0;
832
833  if (!CurPreheader) {
834    CurPreheader = CurLoop->getLoopPreheader();
835    if (!CurPreheader) {
836      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
837      if (!Pred) {
838        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
839        return 0;
840      }
841
842      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
843      if (!CurPreheader) {
844        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
845        return 0;
846      }
847    }
848  }
849  return CurPreheader;
850}
851