MachineLICM.cpp revision 9a615773ca6289058893e18267c9ce4095cb3656
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
42STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
43
44namespace {
45  class MachineLICM : public MachineFunctionPass {
46    const TargetMachine   *TM;
47    const TargetInstrInfo *TII;
48    const TargetRegisterInfo *TRI;
49    BitVector AllocatableSet;
50
51    // Various analyses that we use...
52    AliasAnalysis        *AA;      // Alias analysis info.
53    MachineLoopInfo      *LI;      // Current MachineLoopInfo
54    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
55    MachineRegisterInfo  *RegInfo; // Machine register information
56
57    // State that is updated as we process loops
58    bool         Changed;          // True if a loop is changed.
59    bool         FirstInLoop;      // True if it's the first LICM in the loop.
60    MachineLoop *CurLoop;          // The current loop we are working on.
61    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
62
63    // For each opcode, keep a list of potentail CSE instructions.
64    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
65  public:
66    static char ID; // Pass identification, replacement for typeid
67    MachineLICM() : MachineFunctionPass(&ID) {}
68
69    virtual bool runOnMachineFunction(MachineFunction &MF);
70
71    const char *getPassName() const { return "Machine Instruction LICM"; }
72
73    // FIXME: Loop preheaders?
74    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
75      AU.setPreservesCFG();
76      AU.addRequired<MachineLoopInfo>();
77      AU.addRequired<MachineDominatorTree>();
78      AU.addRequired<AliasAnalysis>();
79      AU.addPreserved<MachineLoopInfo>();
80      AU.addPreserved<MachineDominatorTree>();
81      MachineFunctionPass::getAnalysisUsage(AU);
82    }
83
84    virtual void releaseMemory() {
85      CSEMap.clear();
86    }
87
88  private:
89    /// IsLoopInvariantInst - Returns true if the instruction is loop
90    /// invariant. I.e., all virtual register operands are defined outside of
91    /// the loop, physical registers aren't accessed (explicitly or implicitly),
92    /// and the instruction is hoistable.
93    ///
94    bool IsLoopInvariantInst(MachineInstr &I);
95
96    /// IsProfitableToHoist - Return true if it is potentially profitable to
97    /// hoist the given loop invariant.
98    bool IsProfitableToHoist(MachineInstr &MI);
99
100    /// HoistRegion - Walk the specified region of the CFG (defined by all
101    /// blocks dominated by the specified block, and that are in the current
102    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
103    /// visit definitions before uses, allowing us to hoist a loop body in one
104    /// pass without iteration.
105    ///
106    void HoistRegion(MachineDomTreeNode *N);
107
108    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
109    /// the load itself could be hoisted. Return the unfolded and hoistable
110    /// load, or null if the load couldn't be unfolded or if it wouldn't
111    /// be hoistable.
112    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
113
114    /// Hoist - When an instruction is found to only use loop invariant operands
115    /// that is safe to hoist, this instruction is called to do the dirty work.
116    ///
117    void Hoist(MachineInstr *MI);
118
119    /// InitCSEMap - Initialize the CSE map with instructions that are in the
120    /// current loop preheader that may become duplicates of instructions that
121    /// are hoisted out of the loop.
122    void InitCSEMap(MachineBasicBlock *BB);
123  };
124} // end anonymous namespace
125
126char MachineLICM::ID = 0;
127static RegisterPass<MachineLICM>
128X("machinelicm", "Machine Loop Invariant Code Motion");
129
130FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }
131
132/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
133/// loop that has a preheader.
134static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
135  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
136    if (L->getLoopPreheader())
137      return false;
138  return true;
139}
140
141/// Hoist expressions out of the specified loop. Note, alias info for inner loop
142/// is not preserved so it is not a good idea to run LICM multiple times on one
143/// loop.
144///
145bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
146  DEBUG(errs() << "******** Machine LICM ********\n");
147
148  Changed = FirstInLoop = false;
149  TM = &MF.getTarget();
150  TII = TM->getInstrInfo();
151  TRI = TM->getRegisterInfo();
152  RegInfo = &MF.getRegInfo();
153  AllocatableSet = TRI->getAllocatableSet(MF);
154
155  // Get our Loop information...
156  LI = &getAnalysis<MachineLoopInfo>();
157  DT = &getAnalysis<MachineDominatorTree>();
158  AA = &getAnalysis<AliasAnalysis>();
159
160  for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
161    CurLoop = *I;
162
163    // Only visit outer-most preheader-sporting loops.
164    if (!LoopIsOuterMostWithPreheader(CurLoop))
165      continue;
166
167    // Determine the block to which to hoist instructions. If we can't find a
168    // suitable loop preheader, we can't do any hoisting.
169    //
170    // FIXME: We are only hoisting if the basic block coming into this loop
171    // has only one successor. This isn't the case in general because we haven't
172    // broken critical edges or added preheaders.
173    CurPreheader = CurLoop->getLoopPreheader();
174    if (!CurPreheader)
175      continue;
176
177    // CSEMap is initialized for loop header when the first instruction is
178    // being hoisted.
179    FirstInLoop = true;
180    HoistRegion(DT->getNode(CurLoop->getHeader()));
181    CSEMap.clear();
182  }
183
184  return Changed;
185}
186
187/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
188/// dominated by the specified block, and that are in the current loop) in depth
189/// first order w.r.t the DominatorTree. This allows us to visit definitions
190/// before uses, allowing us to hoist a loop body in one pass without iteration.
191///
192void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
193  assert(N != 0 && "Null dominator tree node?");
194  MachineBasicBlock *BB = N->getBlock();
195
196  // If this subregion is not in the top level loop at all, exit.
197  if (!CurLoop->contains(BB)) return;
198
199  for (MachineBasicBlock::iterator
200         MII = BB->begin(), E = BB->end(); MII != E; ) {
201    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
202    Hoist(&*MII);
203    MII = NextMII;
204  }
205
206  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
207
208  for (unsigned I = 0, E = Children.size(); I != E; ++I)
209    HoistRegion(Children[I]);
210}
211
212/// IsLoopInvariantInst - Returns true if the instruction is loop
213/// invariant. I.e., all virtual register operands are defined outside of the
214/// loop, physical registers aren't accessed explicitly, and there are no side
215/// effects that aren't captured by the operands or other flags.
216///
217bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
218  const TargetInstrDesc &TID = I.getDesc();
219
220  // Ignore stuff that we obviously can't hoist.
221  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
222      TID.hasUnmodeledSideEffects())
223    return false;
224
225  if (TID.mayLoad()) {
226    // Okay, this instruction does a load. As a refinement, we allow the target
227    // to decide whether the loaded value is actually a constant. If so, we can
228    // actually use it as a load.
229    if (!I.isInvariantLoad(AA))
230      // FIXME: we should be able to sink loads with no other side effects if
231      // there is nothing that can change memory from here until the end of
232      // block. This is a trivial form of alias analysis.
233      return false;
234  }
235
236  DEBUG({
237      errs() << "--- Checking if we can hoist " << I;
238      if (I.getDesc().getImplicitUses()) {
239        errs() << "  * Instruction has implicit uses:\n";
240
241        const TargetRegisterInfo *TRI = TM->getRegisterInfo();
242        for (const unsigned *ImpUses = I.getDesc().getImplicitUses();
243             *ImpUses; ++ImpUses)
244          errs() << "      -> " << TRI->getName(*ImpUses) << "\n";
245      }
246
247      if (I.getDesc().getImplicitDefs()) {
248        errs() << "  * Instruction has implicit defines:\n";
249
250        const TargetRegisterInfo *TRI = TM->getRegisterInfo();
251        for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs();
252             *ImpDefs; ++ImpDefs)
253          errs() << "      -> " << TRI->getName(*ImpDefs) << "\n";
254      }
255    });
256
257  if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) {
258    DEBUG(errs() << "Cannot hoist with implicit defines or uses\n");
259    return false;
260  }
261
262  // The instruction is loop invariant if all of its operands are.
263  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
264    const MachineOperand &MO = I.getOperand(i);
265
266    if (!MO.isReg())
267      continue;
268
269    unsigned Reg = MO.getReg();
270    if (Reg == 0) continue;
271
272    // Don't hoist an instruction that uses or defines a physical register.
273    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
274      if (MO.isUse()) {
275        // If the physreg has no defs anywhere, it's just an ambient register
276        // and we can freely move its uses. Alternatively, if it's allocatable,
277        // it could get allocated to something with a def during allocation.
278        if (!RegInfo->def_empty(Reg))
279          return false;
280        if (AllocatableSet.test(Reg))
281          return false;
282        // Check for a def among the register's aliases too.
283        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
284          unsigned AliasReg = *Alias;
285          if (!RegInfo->def_empty(AliasReg))
286            return false;
287          if (AllocatableSet.test(AliasReg))
288            return false;
289        }
290        // Otherwise it's safe to move.
291        continue;
292      } else if (!MO.isDead()) {
293        // A def that isn't dead. We can't move it.
294        return false;
295      }
296    }
297
298    if (!MO.isUse())
299      continue;
300
301    assert(RegInfo->getVRegDef(Reg) &&
302           "Machine instr not mapped for this vreg?!");
303
304    // If the loop contains the definition of an operand, then the instruction
305    // isn't loop invariant.
306    if (CurLoop->contains(RegInfo->getVRegDef(Reg)->getParent()))
307      return false;
308  }
309
310  // If we got this far, the instruction is loop invariant!
311  return true;
312}
313
314
315/// HasPHIUses - Return true if the specified register has any PHI use.
316static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
317  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
318         UE = RegInfo->use_end(); UI != UE; ++UI) {
319    MachineInstr *UseMI = &*UI;
320    if (UseMI->getOpcode() == TargetInstrInfo::PHI)
321      return true;
322  }
323  return false;
324}
325
326/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
327/// the given loop invariant.
328bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
329  if (MI.getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
330    return false;
331
332  // FIXME: For now, only hoist re-materilizable instructions. LICM will
333  // increase register pressure. We want to make sure it doesn't increase
334  // spilling.
335  if (!TII->isTriviallyReMaterializable(&MI, AA))
336    return false;
337
338  // If result(s) of this instruction is used by PHIs, then don't hoist it.
339  // The presence of joins makes it difficult for current register allocator
340  // implementation to perform remat.
341  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
342    const MachineOperand &MO = MI.getOperand(i);
343    if (!MO.isReg() || !MO.isDef())
344      continue;
345    if (HasPHIUses(MO.getReg(), RegInfo))
346      return false;
347  }
348
349  return true;
350}
351
352static const MachineInstr *LookForDuplicate(const MachineInstr *MI,
353                                      std::vector<const MachineInstr*> &PrevMIs,
354                                      MachineRegisterInfo *RegInfo) {
355  unsigned NumOps = MI->getNumOperands();
356  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
357    const MachineInstr *PrevMI = PrevMIs[i];
358    unsigned NumOps2 = PrevMI->getNumOperands();
359    if (NumOps != NumOps2)
360      continue;
361    bool IsSame = true;
362    for (unsigned j = 0; j != NumOps; ++j) {
363      const MachineOperand &MO = MI->getOperand(j);
364      if (MO.isReg() && MO.isDef()) {
365        if (RegInfo->getRegClass(MO.getReg()) !=
366            RegInfo->getRegClass(PrevMI->getOperand(j).getReg())) {
367          IsSame = false;
368          break;
369        }
370        continue;
371      }
372      if (!MO.isIdenticalTo(PrevMI->getOperand(j))) {
373        IsSame = false;
374        break;
375      }
376    }
377    if (IsSame)
378      return PrevMI;
379  }
380  return 0;
381}
382
383MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
384  // If not, we may be able to unfold a load and hoist that.
385  // First test whether the instruction is loading from an amenable
386  // memory location.
387  if (!MI->getDesc().mayLoad()) return 0;
388  if (!MI->hasOneMemOperand()) return 0;
389  MachineMemOperand *MMO = *MI->memoperands_begin();
390  if (MMO->isVolatile()) return 0;
391  MachineFunction &MF = *MI->getParent()->getParent();
392  if (!MMO->getValue()) return 0;
393  if (const PseudoSourceValue *PSV =
394        dyn_cast<PseudoSourceValue>(MMO->getValue())) {
395    if (!PSV->isConstant(MF.getFrameInfo())) return 0;
396  } else {
397    if (!AA->pointsToConstantMemory(MMO->getValue())) return 0;
398  }
399  // Next determine the register class for a temporary register.
400  unsigned LoadRegIndex;
401  unsigned NewOpc =
402    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
403                                    /*UnfoldLoad=*/true,
404                                    /*UnfoldStore=*/false,
405                                    &LoadRegIndex);
406  if (NewOpc == 0) return 0;
407  const TargetInstrDesc &TID = TII->get(NewOpc);
408  if (TID.getNumDefs() != 1) return 0;
409  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
410  // Ok, we're unfolding. Create a temporary register and do the unfold.
411  unsigned Reg = RegInfo->createVirtualRegister(RC);
412  SmallVector<MachineInstr *, 2> NewMIs;
413  bool Success =
414    TII->unfoldMemoryOperand(MF, MI, Reg,
415                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
416                             NewMIs);
417  (void)Success;
418  assert(Success &&
419         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
420         "succeeded!");
421  assert(NewMIs.size() == 2 &&
422         "Unfolded a load into multiple instructions!");
423  MachineBasicBlock *MBB = MI->getParent();
424  MBB->insert(MI, NewMIs[0]);
425  MBB->insert(MI, NewMIs[1]);
426  // If unfolding produced a load that wasn't loop-invariant or profitable to
427  // hoist, discard the new instructions and bail.
428  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
429    NewMIs[0]->eraseFromParent();
430    NewMIs[1]->eraseFromParent();
431    return 0;
432  }
433  // Otherwise we successfully unfolded a load that we can hoist.
434  MI->eraseFromParent();
435  return NewMIs[0];
436}
437
438void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
439  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
440    const MachineInstr *MI = &*I;
441    // FIXME: For now, only hoist re-materilizable instructions. LICM will
442    // increase register pressure. We want to make sure it doesn't increase
443    // spilling.
444    if (TII->isTriviallyReMaterializable(MI, AA)) {
445      unsigned Opcode = MI->getOpcode();
446      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
447        CI = CSEMap.find(Opcode);
448      if (CI != CSEMap.end())
449        CI->second.push_back(MI);
450      else {
451        std::vector<const MachineInstr*> CSEMIs;
452        CSEMIs.push_back(MI);
453        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
454      }
455    }
456  }
457}
458
459/// Hoist - When an instruction is found to use only loop invariant operands
460/// that are safe to hoist, this instruction is called to do the dirty work.
461///
462void MachineLICM::Hoist(MachineInstr *MI) {
463  // First check whether we should hoist this instruction.
464  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
465    // If not, try unfolding a hoistable load.
466    MI = ExtractHoistableLoad(MI);
467    if (!MI) return;
468  }
469
470  // Now move the instructions to the predecessor, inserting it before any
471  // terminator instructions.
472  DEBUG({
473      errs() << "Hoisting " << *MI;
474      if (CurPreheader->getBasicBlock())
475        errs() << " to MachineBasicBlock "
476               << CurPreheader->getBasicBlock()->getName();
477      if (MI->getParent()->getBasicBlock())
478        errs() << " from MachineBasicBlock "
479               << MI->getParent()->getBasicBlock()->getName();
480      errs() << "\n";
481    });
482
483  // If this is the first instruction being hoisted to the preheader,
484  // initialize the CSE map with potential common expressions.
485  InitCSEMap(CurPreheader);
486
487  // Look for opportunity to CSE the hoisted instruction.
488  unsigned Opcode = MI->getOpcode();
489  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
490    CI = CSEMap.find(Opcode);
491  bool DoneCSE = false;
492  if (CI != CSEMap.end()) {
493    const MachineInstr *Dup = LookForDuplicate(MI, CI->second, RegInfo);
494    if (Dup) {
495      DEBUG(errs() << "CSEing " << *MI << " with " << *Dup);
496      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
497        const MachineOperand &MO = MI->getOperand(i);
498        if (MO.isReg() && MO.isDef())
499          RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
500      }
501      MI->eraseFromParent();
502      DoneCSE = true;
503      ++NumCSEed;
504    }
505  }
506
507  // Otherwise, splice the instruction to the preheader.
508  if (!DoneCSE) {
509    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
510
511    // Add to the CSE map.
512    if (CI != CSEMap.end())
513      CI->second.push_back(MI);
514    else {
515      std::vector<const MachineInstr*> CSEMIs;
516      CSEMIs.push_back(MI);
517      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
518    }
519  }
520
521  ++NumHoisted;
522  Changed = true;
523}
524