MachineLICM.cpp revision 9fb744e16945390d6ff0a631d4ad7637fec5b7b1
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
42STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
43
44namespace {
45  class MachineLICM : public MachineFunctionPass {
46    const TargetMachine   *TM;
47    const TargetInstrInfo *TII;
48    const TargetRegisterInfo *TRI;
49    BitVector AllocatableSet;
50
51    // Various analyses that we use...
52    AliasAnalysis        *AA;      // Alias analysis info.
53    MachineLoopInfo      *LI;      // Current MachineLoopInfo
54    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
55    MachineRegisterInfo  *RegInfo; // Machine register information
56
57    // State that is updated as we process loops
58    bool         Changed;          // True if a loop is changed.
59    bool         FirstInLoop;      // True if it's the first LICM in the loop.
60    MachineLoop *CurLoop;          // The current loop we are working on.
61    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
62
63    // For each opcode, keep a list of potentail CSE instructions.
64    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
65  public:
66    static char ID; // Pass identification, replacement for typeid
67    MachineLICM() : MachineFunctionPass(&ID) {}
68
69    virtual bool runOnMachineFunction(MachineFunction &MF);
70
71    const char *getPassName() const { return "Machine Instruction LICM"; }
72
73    // FIXME: Loop preheaders?
74    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
75      AU.setPreservesCFG();
76      AU.addRequired<MachineLoopInfo>();
77      AU.addRequired<MachineDominatorTree>();
78      AU.addRequired<AliasAnalysis>();
79      AU.addPreserved<MachineLoopInfo>();
80      AU.addPreserved<MachineDominatorTree>();
81      MachineFunctionPass::getAnalysisUsage(AU);
82    }
83
84    virtual void releaseMemory() {
85      CSEMap.clear();
86    }
87
88  private:
89    /// IsLoopInvariantInst - Returns true if the instruction is loop
90    /// invariant. I.e., all virtual register operands are defined outside of
91    /// the loop, physical registers aren't accessed (explicitly or implicitly),
92    /// and the instruction is hoistable.
93    ///
94    bool IsLoopInvariantInst(MachineInstr &I);
95
96    /// IsProfitableToHoist - Return true if it is potentially profitable to
97    /// hoist the given loop invariant.
98    bool IsProfitableToHoist(MachineInstr &MI);
99
100    /// HoistRegion - Walk the specified region of the CFG (defined by all
101    /// blocks dominated by the specified block, and that are in the current
102    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
103    /// visit definitions before uses, allowing us to hoist a loop body in one
104    /// pass without iteration.
105    ///
106    void HoistRegion(MachineDomTreeNode *N);
107
108    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
109    /// the load itself could be hoisted. Return the unfolded and hoistable
110    /// load, or null if the load couldn't be unfolded or if it wouldn't
111    /// be hoistable.
112    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
113
114    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
115    /// the preheader that compute the same value. If it's found, do a RAU on
116    /// with the definition of the existing instruction rather than hoisting
117    /// the instruction to the preheader.
118    bool EliminateCSE(MachineInstr *MI,
119           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
120
121    /// Hoist - When an instruction is found to only use loop invariant operands
122    /// that is safe to hoist, this instruction is called to do the dirty work.
123    ///
124    void Hoist(MachineInstr *MI);
125
126    /// InitCSEMap - Initialize the CSE map with instructions that are in the
127    /// current loop preheader that may become duplicates of instructions that
128    /// are hoisted out of the loop.
129    void InitCSEMap(MachineBasicBlock *BB);
130  };
131} // end anonymous namespace
132
133char MachineLICM::ID = 0;
134static RegisterPass<MachineLICM>
135X("machinelicm", "Machine Loop Invariant Code Motion");
136
137FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }
138
139/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
140/// loop that has a preheader.
141static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
142  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
143    if (L->getLoopPreheader())
144      return false;
145  return true;
146}
147
148/// Hoist expressions out of the specified loop. Note, alias info for inner loop
149/// is not preserved so it is not a good idea to run LICM multiple times on one
150/// loop.
151///
152bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
153  DEBUG(errs() << "******** Machine LICM ********\n");
154
155  Changed = FirstInLoop = false;
156  TM = &MF.getTarget();
157  TII = TM->getInstrInfo();
158  TRI = TM->getRegisterInfo();
159  RegInfo = &MF.getRegInfo();
160  AllocatableSet = TRI->getAllocatableSet(MF);
161
162  // Get our Loop information...
163  LI = &getAnalysis<MachineLoopInfo>();
164  DT = &getAnalysis<MachineDominatorTree>();
165  AA = &getAnalysis<AliasAnalysis>();
166
167  for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
168    CurLoop = *I;
169
170    // Only visit outer-most preheader-sporting loops.
171    if (!LoopIsOuterMostWithPreheader(CurLoop))
172      continue;
173
174    // Determine the block to which to hoist instructions. If we can't find a
175    // suitable loop preheader, we can't do any hoisting.
176    //
177    // FIXME: We are only hoisting if the basic block coming into this loop
178    // has only one successor. This isn't the case in general because we haven't
179    // broken critical edges or added preheaders.
180    CurPreheader = CurLoop->getLoopPreheader();
181    if (!CurPreheader)
182      continue;
183
184    // CSEMap is initialized for loop header when the first instruction is
185    // being hoisted.
186    FirstInLoop = true;
187    HoistRegion(DT->getNode(CurLoop->getHeader()));
188    CSEMap.clear();
189  }
190
191  return Changed;
192}
193
194/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
195/// dominated by the specified block, and that are in the current loop) in depth
196/// first order w.r.t the DominatorTree. This allows us to visit definitions
197/// before uses, allowing us to hoist a loop body in one pass without iteration.
198///
199void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
200  assert(N != 0 && "Null dominator tree node?");
201  MachineBasicBlock *BB = N->getBlock();
202
203  // If this subregion is not in the top level loop at all, exit.
204  if (!CurLoop->contains(BB)) return;
205
206  for (MachineBasicBlock::iterator
207         MII = BB->begin(), E = BB->end(); MII != E; ) {
208    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
209    Hoist(&*MII);
210    MII = NextMII;
211  }
212
213  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
214
215  for (unsigned I = 0, E = Children.size(); I != E; ++I)
216    HoistRegion(Children[I]);
217}
218
219/// IsLoopInvariantInst - Returns true if the instruction is loop
220/// invariant. I.e., all virtual register operands are defined outside of the
221/// loop, physical registers aren't accessed explicitly, and there are no side
222/// effects that aren't captured by the operands or other flags.
223///
224bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
225  const TargetInstrDesc &TID = I.getDesc();
226
227  // Ignore stuff that we obviously can't hoist.
228  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
229      TID.hasUnmodeledSideEffects())
230    return false;
231
232  if (TID.mayLoad()) {
233    // Okay, this instruction does a load. As a refinement, we allow the target
234    // to decide whether the loaded value is actually a constant. If so, we can
235    // actually use it as a load.
236    if (!I.isInvariantLoad(AA))
237      // FIXME: we should be able to sink loads with no other side effects if
238      // there is nothing that can change memory from here until the end of
239      // block. This is a trivial form of alias analysis.
240      return false;
241  }
242
243  DEBUG({
244      errs() << "--- Checking if we can hoist " << I;
245      if (I.getDesc().getImplicitUses()) {
246        errs() << "  * Instruction has implicit uses:\n";
247
248        const TargetRegisterInfo *TRI = TM->getRegisterInfo();
249        for (const unsigned *ImpUses = I.getDesc().getImplicitUses();
250             *ImpUses; ++ImpUses)
251          errs() << "      -> " << TRI->getName(*ImpUses) << "\n";
252      }
253
254      if (I.getDesc().getImplicitDefs()) {
255        errs() << "  * Instruction has implicit defines:\n";
256
257        const TargetRegisterInfo *TRI = TM->getRegisterInfo();
258        for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs();
259             *ImpDefs; ++ImpDefs)
260          errs() << "      -> " << TRI->getName(*ImpDefs) << "\n";
261      }
262    });
263
264  if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) {
265    DEBUG(errs() << "Cannot hoist with implicit defines or uses\n");
266    return false;
267  }
268
269  // The instruction is loop invariant if all of its operands are.
270  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
271    const MachineOperand &MO = I.getOperand(i);
272
273    if (!MO.isReg())
274      continue;
275
276    unsigned Reg = MO.getReg();
277    if (Reg == 0) continue;
278
279    // Don't hoist an instruction that uses or defines a physical register.
280    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
281      if (MO.isUse()) {
282        // If the physreg has no defs anywhere, it's just an ambient register
283        // and we can freely move its uses. Alternatively, if it's allocatable,
284        // it could get allocated to something with a def during allocation.
285        if (!RegInfo->def_empty(Reg))
286          return false;
287        if (AllocatableSet.test(Reg))
288          return false;
289        // Check for a def among the register's aliases too.
290        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
291          unsigned AliasReg = *Alias;
292          if (!RegInfo->def_empty(AliasReg))
293            return false;
294          if (AllocatableSet.test(AliasReg))
295            return false;
296        }
297        // Otherwise it's safe to move.
298        continue;
299      } else if (!MO.isDead()) {
300        // A def that isn't dead. We can't move it.
301        return false;
302      }
303    }
304
305    if (!MO.isUse())
306      continue;
307
308    assert(RegInfo->getVRegDef(Reg) &&
309           "Machine instr not mapped for this vreg?!");
310
311    // If the loop contains the definition of an operand, then the instruction
312    // isn't loop invariant.
313    if (CurLoop->contains(RegInfo->getVRegDef(Reg)->getParent()))
314      return false;
315  }
316
317  // If we got this far, the instruction is loop invariant!
318  return true;
319}
320
321
322/// HasPHIUses - Return true if the specified register has any PHI use.
323static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
324  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
325         UE = RegInfo->use_end(); UI != UE; ++UI) {
326    MachineInstr *UseMI = &*UI;
327    if (UseMI->getOpcode() == TargetInstrInfo::PHI)
328      return true;
329  }
330  return false;
331}
332
333/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
334/// the given loop invariant.
335bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
336  if (MI.getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
337    return false;
338
339  // FIXME: For now, only hoist re-materilizable instructions. LICM will
340  // increase register pressure. We want to make sure it doesn't increase
341  // spilling.
342  if (!TII->isTriviallyReMaterializable(&MI, AA))
343    return false;
344
345  // If result(s) of this instruction is used by PHIs, then don't hoist it.
346  // The presence of joins makes it difficult for current register allocator
347  // implementation to perform remat.
348  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
349    const MachineOperand &MO = MI.getOperand(i);
350    if (!MO.isReg() || !MO.isDef())
351      continue;
352    if (HasPHIUses(MO.getReg(), RegInfo))
353      return false;
354  }
355
356  return true;
357}
358
359MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
360  // If not, we may be able to unfold a load and hoist that.
361  // First test whether the instruction is loading from an amenable
362  // memory location.
363  if (!MI->getDesc().mayLoad()) return 0;
364  if (!MI->hasOneMemOperand()) return 0;
365  MachineMemOperand *MMO = *MI->memoperands_begin();
366  if (MMO->isVolatile()) return 0;
367  MachineFunction &MF = *MI->getParent()->getParent();
368  if (!MMO->getValue()) return 0;
369  if (const PseudoSourceValue *PSV =
370        dyn_cast<PseudoSourceValue>(MMO->getValue())) {
371    if (!PSV->isConstant(MF.getFrameInfo())) return 0;
372  } else {
373    if (!AA->pointsToConstantMemory(MMO->getValue())) return 0;
374  }
375  // Next determine the register class for a temporary register.
376  unsigned LoadRegIndex;
377  unsigned NewOpc =
378    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
379                                    /*UnfoldLoad=*/true,
380                                    /*UnfoldStore=*/false,
381                                    &LoadRegIndex);
382  if (NewOpc == 0) return 0;
383  const TargetInstrDesc &TID = TII->get(NewOpc);
384  if (TID.getNumDefs() != 1) return 0;
385  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
386  // Ok, we're unfolding. Create a temporary register and do the unfold.
387  unsigned Reg = RegInfo->createVirtualRegister(RC);
388  SmallVector<MachineInstr *, 2> NewMIs;
389  bool Success =
390    TII->unfoldMemoryOperand(MF, MI, Reg,
391                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
392                             NewMIs);
393  (void)Success;
394  assert(Success &&
395         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
396         "succeeded!");
397  assert(NewMIs.size() == 2 &&
398         "Unfolded a load into multiple instructions!");
399  MachineBasicBlock *MBB = MI->getParent();
400  MBB->insert(MI, NewMIs[0]);
401  MBB->insert(MI, NewMIs[1]);
402  // If unfolding produced a load that wasn't loop-invariant or profitable to
403  // hoist, discard the new instructions and bail.
404  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
405    NewMIs[0]->eraseFromParent();
406    NewMIs[1]->eraseFromParent();
407    return 0;
408  }
409  // Otherwise we successfully unfolded a load that we can hoist.
410  MI->eraseFromParent();
411  return NewMIs[0];
412}
413
414void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
415  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
416    const MachineInstr *MI = &*I;
417    // FIXME: For now, only hoist re-materilizable instructions. LICM will
418    // increase register pressure. We want to make sure it doesn't increase
419    // spilling.
420    if (TII->isTriviallyReMaterializable(MI, AA)) {
421      unsigned Opcode = MI->getOpcode();
422      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
423        CI = CSEMap.find(Opcode);
424      if (CI != CSEMap.end())
425        CI->second.push_back(MI);
426      else {
427        std::vector<const MachineInstr*> CSEMIs;
428        CSEMIs.push_back(MI);
429        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
430      }
431    }
432  }
433}
434
435static const MachineInstr *LookForDuplicate(const MachineInstr *MI,
436                                      std::vector<const MachineInstr*> &PrevMIs,
437                                      MachineRegisterInfo *RegInfo) {
438  unsigned NumOps = MI->getNumOperands();
439  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
440    const MachineInstr *PrevMI = PrevMIs[i];
441    unsigned NumOps2 = PrevMI->getNumOperands();
442    if (NumOps != NumOps2)
443      continue;
444    bool IsSame = true;
445    for (unsigned j = 0; j != NumOps; ++j) {
446      const MachineOperand &MO = MI->getOperand(j);
447      if (MO.isReg() && MO.isDef()) {
448        if (RegInfo->getRegClass(MO.getReg()) !=
449            RegInfo->getRegClass(PrevMI->getOperand(j).getReg())) {
450          IsSame = false;
451          break;
452        }
453        continue;
454      }
455      if (!MO.isIdenticalTo(PrevMI->getOperand(j))) {
456        IsSame = false;
457        break;
458      }
459    }
460    if (IsSame)
461      return PrevMI;
462  }
463  return 0;
464}
465
466bool MachineLICM::EliminateCSE(MachineInstr *MI,
467          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
468  if (CI != CSEMap.end()) {
469    if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second, RegInfo)) {
470      DEBUG(errs() << "CSEing " << *MI << " with " << *Dup);
471      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
472        const MachineOperand &MO = MI->getOperand(i);
473        if (MO.isReg() && MO.isDef())
474          RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
475      }
476      MI->eraseFromParent();
477      ++NumCSEed;
478      return true;
479    }
480  }
481  return false;
482}
483
484/// Hoist - When an instruction is found to use only loop invariant operands
485/// that are safe to hoist, this instruction is called to do the dirty work.
486///
487void MachineLICM::Hoist(MachineInstr *MI) {
488  // First check whether we should hoist this instruction.
489  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
490    // If not, try unfolding a hoistable load.
491    MI = ExtractHoistableLoad(MI);
492    if (!MI) return;
493  }
494
495  // Now move the instructions to the predecessor, inserting it before any
496  // terminator instructions.
497  DEBUG({
498      errs() << "Hoisting " << *MI;
499      if (CurPreheader->getBasicBlock())
500        errs() << " to MachineBasicBlock "
501               << CurPreheader->getBasicBlock()->getName();
502      if (MI->getParent()->getBasicBlock())
503        errs() << " from MachineBasicBlock "
504               << MI->getParent()->getBasicBlock()->getName();
505      errs() << "\n";
506    });
507
508  // If this is the first instruction being hoisted to the preheader,
509  // initialize the CSE map with potential common expressions.
510  InitCSEMap(CurPreheader);
511
512  // Look for opportunity to CSE the hoisted instruction.
513  unsigned Opcode = MI->getOpcode();
514  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
515    CI = CSEMap.find(Opcode);
516  if (!EliminateCSE(MI, CI)) {
517    // Otherwise, splice the instruction to the preheader.
518    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
519
520    // Add to the CSE map.
521    if (CI != CSEMap.end())
522      CI->second.push_back(MI);
523    else {
524      std::vector<const MachineInstr*> CSEMIs;
525      CSEMIs.push_back(MI);
526      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
527    }
528  }
529
530  ++NumHoisted;
531  Changed = true;
532}
533