MachineLICM.cpp revision a2e87912d826b1843bb5b1058670f09b87aea905
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrItineraries.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44STATISTIC(NumHoisted,
45          "Number of machine instructions hoisted out of loops");
46STATISTIC(NumLowRP,
47          "Number of instructions hoisted in low reg pressure situation");
48STATISTIC(NumHighLatency,
49          "Number of high latency instructions hoisted");
50STATISTIC(NumCSEed,
51          "Number of hoisted machine instructions CSEed");
52STATISTIC(NumPostRAHoisted,
53          "Number of machine instructions hoisted out of loops post regalloc");
54
55namespace {
56  class MachineLICM : public MachineFunctionPass {
57    bool PreRegAlloc;
58
59    const TargetMachine   *TM;
60    const TargetInstrInfo *TII;
61    const TargetLowering *TLI;
62    const TargetRegisterInfo *TRI;
63    const MachineFrameInfo *MFI;
64    MachineRegisterInfo *MRI;
65    const InstrItineraryData *InstrItins;
66
67    // Various analyses that we use...
68    AliasAnalysis        *AA;      // Alias analysis info.
69    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
70    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
71
72    // State that is updated as we process loops
73    bool         Changed;          // True if a loop is changed.
74    bool         FirstInLoop;      // True if it's the first LICM in the loop.
75    MachineLoop *CurLoop;          // The current loop we are working on.
76    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
77
78    BitVector AllocatableSet;
79
80    // Track 'estimated' register pressure.
81    SmallSet<unsigned, 32> RegSeen;
82    SmallVector<unsigned, 8> RegPressure;
83
84    // Register pressure "limit" per register class. If the pressure
85    // is higher than the limit, then it's considered high.
86    SmallVector<unsigned, 8> RegLimit;
87
88    // Register pressure on path leading from loop preheader to current BB.
89    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
90
91    // For each opcode, keep a list of potential CSE instructions.
92    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
93
94    enum {
95      SpeculateFalse   = 0,
96      SpeculateTrue    = 1,
97      SpeculateUnknown = 2
98    };
99
100    // If a MBB does not dominate loop exiting blocks then it may not safe
101    // to hoist loads from this block.
102    // Tri-state: 0 - false, 1 - true, 2 - unknown
103    unsigned SpeculationState;
104
105  public:
106    static char ID; // Pass identification, replacement for typeid
107    MachineLICM() :
108      MachineFunctionPass(ID), PreRegAlloc(true) {
109        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
110      }
111
112    explicit MachineLICM(bool PreRA) :
113      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
114        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
115      }
116
117    virtual bool runOnMachineFunction(MachineFunction &MF);
118
119    const char *getPassName() const { return "Machine Instruction LICM"; }
120
121    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
122      AU.addRequired<MachineLoopInfo>();
123      AU.addRequired<MachineDominatorTree>();
124      AU.addRequired<AliasAnalysis>();
125      AU.addPreserved<MachineLoopInfo>();
126      AU.addPreserved<MachineDominatorTree>();
127      MachineFunctionPass::getAnalysisUsage(AU);
128    }
129
130    virtual void releaseMemory() {
131      RegSeen.clear();
132      RegPressure.clear();
133      RegLimit.clear();
134      BackTrace.clear();
135      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
136             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
137        CI->second.clear();
138      CSEMap.clear();
139    }
140
141  private:
142    /// CandidateInfo - Keep track of information about hoisting candidates.
143    struct CandidateInfo {
144      MachineInstr *MI;
145      unsigned      Def;
146      int           FI;
147      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
148        : MI(mi), Def(def), FI(fi) {}
149    };
150
151    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
152    /// invariants out to the preheader.
153    void HoistRegionPostRA();
154
155    /// HoistPostRA - When an instruction is found to only use loop invariant
156    /// operands that is safe to hoist, this instruction is called to do the
157    /// dirty work.
158    void HoistPostRA(MachineInstr *MI, unsigned Def);
159
160    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
161    /// gather register def and frame object update information.
162    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
163                   SmallSet<int, 32> &StoredFIs,
164                   SmallVector<CandidateInfo, 32> &Candidates);
165
166    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
167    /// current loop.
168    void AddToLiveIns(unsigned Reg);
169
170    /// IsLICMCandidate - Returns true if the instruction may be a suitable
171    /// candidate for LICM. e.g. If the instruction is a call, then it's
172    /// obviously not safe to hoist it.
173    bool IsLICMCandidate(MachineInstr &I);
174
175    /// IsLoopInvariantInst - Returns true if the instruction is loop
176    /// invariant. I.e., all virtual register operands are defined outside of
177    /// the loop, physical registers aren't accessed (explicitly or implicitly),
178    /// and the instruction is hoistable.
179    ///
180    bool IsLoopInvariantInst(MachineInstr &I);
181
182    /// HasAnyPHIUse - Return true if the specified register is used by any
183    /// phi node.
184    bool HasAnyPHIUse(unsigned Reg) const;
185
186    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
187    /// and an use in the current loop, return true if the target considered
188    /// it 'high'.
189    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
190                               unsigned Reg) const;
191
192    bool IsCheapInstruction(MachineInstr &MI) const;
193
194    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
195    /// check if hoisting an instruction of the given cost matrix can cause high
196    /// register pressure.
197    bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
198
199    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
200    /// the current block and update their register pressures to reflect the
201    /// effect of hoisting MI from the current block to the preheader.
202    void UpdateBackTraceRegPressure(const MachineInstr *MI);
203
204    /// IsProfitableToHoist - Return true if it is potentially profitable to
205    /// hoist the given loop invariant.
206    bool IsProfitableToHoist(MachineInstr &MI);
207
208    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
209    /// If not then a load from this mbb may not be safe to hoist.
210    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
211
212    /// HoistRegion - Walk the specified region of the CFG (defined by all
213    /// blocks dominated by the specified block, and that are in the current
214    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
215    /// visit definitions before uses, allowing us to hoist a loop body in one
216    /// pass without iteration.
217    ///
218    void HoistRegion(MachineDomTreeNode *N, bool IsHeader = false);
219
220    /// getRegisterClassIDAndCost - For a given MI, register, and the operand
221    /// index, return the ID and cost of its representative register class by
222    /// reference.
223    void getRegisterClassIDAndCost(const MachineInstr *MI,
224                                   unsigned Reg, unsigned OpIdx,
225                                   unsigned &RCId, unsigned &RCCost) const;
226
227    /// InitRegPressure - Find all virtual register references that are liveout
228    /// of the preheader to initialize the starting "register pressure". Note
229    /// this does not count live through (livein but not used) registers.
230    void InitRegPressure(MachineBasicBlock *BB);
231
232    /// UpdateRegPressure - Update estimate of register pressure after the
233    /// specified instruction.
234    void UpdateRegPressure(const MachineInstr *MI);
235
236    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
237    /// the load itself could be hoisted. Return the unfolded and hoistable
238    /// load, or null if the load couldn't be unfolded or if it wouldn't
239    /// be hoistable.
240    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
241
242    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
243    /// duplicate of MI. Return this instruction if it's found.
244    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
245                                     std::vector<const MachineInstr*> &PrevMIs);
246
247    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
248    /// the preheader that compute the same value. If it's found, do a RAU on
249    /// with the definition of the existing instruction rather than hoisting
250    /// the instruction to the preheader.
251    bool EliminateCSE(MachineInstr *MI,
252           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
253
254    /// MayCSE - Return true if the given instruction will be CSE'd if it's
255    /// hoisted out of the loop.
256    bool MayCSE(MachineInstr *MI);
257
258    /// Hoist - When an instruction is found to only use loop invariant operands
259    /// that is safe to hoist, this instruction is called to do the dirty work.
260    /// It returns true if the instruction is hoisted.
261    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
262
263    /// InitCSEMap - Initialize the CSE map with instructions that are in the
264    /// current loop preheader that may become duplicates of instructions that
265    /// are hoisted out of the loop.
266    void InitCSEMap(MachineBasicBlock *BB);
267
268    /// getCurPreheader - Get the preheader for the current loop, splitting
269    /// a critical edge if needed.
270    MachineBasicBlock *getCurPreheader();
271  };
272} // end anonymous namespace
273
274char MachineLICM::ID = 0;
275INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
276                "Machine Loop Invariant Code Motion", false, false)
277INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
278INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
279INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
280INITIALIZE_PASS_END(MachineLICM, "machinelicm",
281                "Machine Loop Invariant Code Motion", false, false)
282
283FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
284  return new MachineLICM(PreRegAlloc);
285}
286
287/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
288/// loop that has a unique predecessor.
289static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
290  // Check whether this loop even has a unique predecessor.
291  if (!CurLoop->getLoopPredecessor())
292    return false;
293  // Ok, now check to see if any of its outer loops do.
294  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
295    if (L->getLoopPredecessor())
296      return false;
297  // None of them did, so this is the outermost with a unique predecessor.
298  return true;
299}
300
301bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
302  if (PreRegAlloc)
303    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
304  else
305    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
306  DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
307
308  Changed = FirstInLoop = false;
309  TM = &MF.getTarget();
310  TII = TM->getInstrInfo();
311  TLI = TM->getTargetLowering();
312  TRI = TM->getRegisterInfo();
313  MFI = MF.getFrameInfo();
314  MRI = &MF.getRegInfo();
315  InstrItins = TM->getInstrItineraryData();
316  AllocatableSet = TRI->getAllocatableSet(MF);
317
318  if (PreRegAlloc) {
319    // Estimate register pressure during pre-regalloc pass.
320    unsigned NumRC = TRI->getNumRegClasses();
321    RegPressure.resize(NumRC);
322    std::fill(RegPressure.begin(), RegPressure.end(), 0);
323    RegLimit.resize(NumRC);
324    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
325           E = TRI->regclass_end(); I != E; ++I)
326      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
327  }
328
329  // Get our Loop information...
330  MLI = &getAnalysis<MachineLoopInfo>();
331  DT  = &getAnalysis<MachineDominatorTree>();
332  AA  = &getAnalysis<AliasAnalysis>();
333
334  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
335  while (!Worklist.empty()) {
336    CurLoop = Worklist.pop_back_val();
337    CurPreheader = 0;
338
339    // If this is done before regalloc, only visit outer-most preheader-sporting
340    // loops.
341    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
342      Worklist.append(CurLoop->begin(), CurLoop->end());
343      continue;
344    }
345
346    if (!PreRegAlloc)
347      HoistRegionPostRA();
348    else {
349      // CSEMap is initialized for loop header when the first instruction is
350      // being hoisted.
351      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
352      FirstInLoop = true;
353      HoistRegion(N, true);
354      CSEMap.clear();
355    }
356  }
357
358  return Changed;
359}
360
361/// InstructionStoresToFI - Return true if instruction stores to the
362/// specified frame.
363static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
364  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
365         oe = MI->memoperands_end(); o != oe; ++o) {
366    if (!(*o)->isStore() || !(*o)->getValue())
367      continue;
368    if (const FixedStackPseudoSourceValue *Value =
369        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
370      if (Value->getFrameIndex() == FI)
371        return true;
372    }
373  }
374  return false;
375}
376
377/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
378/// gather register def and frame object update information.
379void MachineLICM::ProcessMI(MachineInstr *MI,
380                            unsigned *PhysRegDefs,
381                            SmallSet<int, 32> &StoredFIs,
382                            SmallVector<CandidateInfo, 32> &Candidates) {
383  bool RuledOut = false;
384  bool HasNonInvariantUse = false;
385  unsigned Def = 0;
386  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
387    const MachineOperand &MO = MI->getOperand(i);
388    if (MO.isFI()) {
389      // Remember if the instruction stores to the frame index.
390      int FI = MO.getIndex();
391      if (!StoredFIs.count(FI) &&
392          MFI->isSpillSlotObjectIndex(FI) &&
393          InstructionStoresToFI(MI, FI))
394        StoredFIs.insert(FI);
395      HasNonInvariantUse = true;
396      continue;
397    }
398
399    if (!MO.isReg())
400      continue;
401    unsigned Reg = MO.getReg();
402    if (!Reg)
403      continue;
404    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
405           "Not expecting virtual register!");
406
407    if (!MO.isDef()) {
408      if (Reg && PhysRegDefs[Reg])
409        // If it's using a non-loop-invariant register, then it's obviously not
410        // safe to hoist.
411        HasNonInvariantUse = true;
412      continue;
413    }
414
415    if (MO.isImplicit()) {
416      ++PhysRegDefs[Reg];
417      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
418        ++PhysRegDefs[*AS];
419      if (!MO.isDead())
420        // Non-dead implicit def? This cannot be hoisted.
421        RuledOut = true;
422      // No need to check if a dead implicit def is also defined by
423      // another instruction.
424      continue;
425    }
426
427    // FIXME: For now, avoid instructions with multiple defs, unless
428    // it's a dead implicit def.
429    if (Def)
430      RuledOut = true;
431    else
432      Def = Reg;
433
434    // If we have already seen another instruction that defines the same
435    // register, then this is not safe.
436    if (++PhysRegDefs[Reg] > 1)
437      // MI defined register is seen defined by another instruction in
438      // the loop, it cannot be a LICM candidate.
439      RuledOut = true;
440    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
441      if (++PhysRegDefs[*AS] > 1)
442        RuledOut = true;
443  }
444
445  // Only consider reloads for now and remats which do not have register
446  // operands. FIXME: Consider unfold load folding instructions.
447  if (Def && !RuledOut) {
448    int FI = INT_MIN;
449    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
450        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
451      Candidates.push_back(CandidateInfo(MI, Def, FI));
452  }
453}
454
455/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
456/// invariants out to the preheader.
457void MachineLICM::HoistRegionPostRA() {
458  unsigned NumRegs = TRI->getNumRegs();
459  unsigned *PhysRegDefs = new unsigned[NumRegs];
460  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
461
462  SmallVector<CandidateInfo, 32> Candidates;
463  SmallSet<int, 32> StoredFIs;
464
465  // Walk the entire region, count number of defs for each register, and
466  // collect potential LICM candidates.
467  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
468  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
469    MachineBasicBlock *BB = Blocks[i];
470
471    // If the header of the loop containing this basic block is a landing pad,
472    // then don't try to hoist instructions out of this loop.
473    const MachineLoop *ML = MLI->getLoopFor(BB);
474    if (ML && ML->getHeader()->isLandingPad()) continue;
475
476    // Conservatively treat live-in's as an external def.
477    // FIXME: That means a reload that're reused in successor block(s) will not
478    // be LICM'ed.
479    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
480           E = BB->livein_end(); I != E; ++I) {
481      unsigned Reg = *I;
482      ++PhysRegDefs[Reg];
483      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
484        ++PhysRegDefs[*AS];
485    }
486
487    SpeculationState = SpeculateUnknown;
488    for (MachineBasicBlock::iterator
489           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
490      MachineInstr *MI = &*MII;
491      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
492    }
493  }
494
495  // Now evaluate whether the potential candidates qualify.
496  // 1. Check if the candidate defined register is defined by another
497  //    instruction in the loop.
498  // 2. If the candidate is a load from stack slot (always true for now),
499  //    check if the slot is stored anywhere in the loop.
500  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
501    if (Candidates[i].FI != INT_MIN &&
502        StoredFIs.count(Candidates[i].FI))
503      continue;
504
505    if (PhysRegDefs[Candidates[i].Def] == 1) {
506      bool Safe = true;
507      MachineInstr *MI = Candidates[i].MI;
508      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
509        const MachineOperand &MO = MI->getOperand(j);
510        if (!MO.isReg() || MO.isDef() || !MO.getReg())
511          continue;
512        if (PhysRegDefs[MO.getReg()]) {
513          // If it's using a non-loop-invariant register, then it's obviously
514          // not safe to hoist.
515          Safe = false;
516          break;
517        }
518      }
519      if (Safe)
520        HoistPostRA(MI, Candidates[i].Def);
521    }
522  }
523
524  delete[] PhysRegDefs;
525}
526
527/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
528/// loop, and make sure it is not killed by any instructions in the loop.
529void MachineLICM::AddToLiveIns(unsigned Reg) {
530  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
531  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
532    MachineBasicBlock *BB = Blocks[i];
533    if (!BB->isLiveIn(Reg))
534      BB->addLiveIn(Reg);
535    for (MachineBasicBlock::iterator
536           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
537      MachineInstr *MI = &*MII;
538      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
539        MachineOperand &MO = MI->getOperand(i);
540        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
541        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
542          MO.setIsKill(false);
543      }
544    }
545  }
546}
547
548/// HoistPostRA - When an instruction is found to only use loop invariant
549/// operands that is safe to hoist, this instruction is called to do the
550/// dirty work.
551void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
552  MachineBasicBlock *Preheader = getCurPreheader();
553  if (!Preheader) return;
554
555  // Now move the instructions to the predecessor, inserting it before any
556  // terminator instructions.
557  DEBUG({
558      dbgs() << "Hoisting " << *MI;
559      if (Preheader->getBasicBlock())
560        dbgs() << " to MachineBasicBlock "
561               << Preheader->getName();
562      if (MI->getParent()->getBasicBlock())
563        dbgs() << " from MachineBasicBlock "
564               << MI->getParent()->getName();
565      dbgs() << "\n";
566    });
567
568  // Splice the instruction to the preheader.
569  MachineBasicBlock *MBB = MI->getParent();
570  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
571
572  // Add register to livein list to all the BBs in the current loop since a
573  // loop invariant must be kept live throughout the whole loop. This is
574  // important to ensure later passes do not scavenge the def register.
575  AddToLiveIns(Def);
576
577  ++NumPostRAHoisted;
578  Changed = true;
579}
580
581// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
582// If not then a load from this mbb may not be safe to hoist.
583bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
584  if (SpeculationState != SpeculateUnknown)
585    return SpeculationState == SpeculateFalse;
586
587  if (BB != CurLoop->getHeader()) {
588    // Check loop exiting blocks.
589    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
590    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
591    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
592      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
593	SpeculationState = SpeculateTrue;
594	return false;
595      }
596  }
597
598  SpeculationState = SpeculateFalse;
599  return true;
600}
601
602/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
603/// dominated by the specified block, and that are in the current loop) in depth
604/// first order w.r.t the DominatorTree. This allows us to visit definitions
605/// before uses, allowing us to hoist a loop body in one pass without iteration.
606///
607void MachineLICM::HoistRegion(MachineDomTreeNode *N, bool IsHeader) {
608  assert(N != 0 && "Null dominator tree node?");
609  MachineBasicBlock *BB = N->getBlock();
610
611  // If the header of the loop containing this basic block is a landing pad,
612  // then don't try to hoist instructions out of this loop.
613  const MachineLoop *ML = MLI->getLoopFor(BB);
614  if (ML && ML->getHeader()->isLandingPad()) return;
615
616  // If this subregion is not in the top level loop at all, exit.
617  if (!CurLoop->contains(BB)) return;
618
619  MachineBasicBlock *Preheader = getCurPreheader();
620  if (!Preheader)
621    return;
622
623  if (IsHeader) {
624    // Compute registers which are livein into the loop headers.
625    RegSeen.clear();
626    BackTrace.clear();
627    InitRegPressure(Preheader);
628  }
629
630  // Remember livein register pressure.
631  BackTrace.push_back(RegPressure);
632
633  SpeculationState = SpeculateUnknown;
634  for (MachineBasicBlock::iterator
635         MII = BB->begin(), E = BB->end(); MII != E; ) {
636    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
637    MachineInstr *MI = &*MII;
638    if (!Hoist(MI, Preheader))
639      UpdateRegPressure(MI);
640    MII = NextMII;
641  }
642
643  // Don't hoist things out of a large switch statement.  This often causes
644  // code to be hoisted that wasn't going to be executed, and increases
645  // register pressure in a situation where it's likely to matter.
646  if (BB->succ_size() < 25) {
647    const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
648    for (unsigned I = 0, E = Children.size(); I != E; ++I)
649      HoistRegion(Children[I]);
650  }
651
652  BackTrace.pop_back();
653}
654
655static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
656  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
657}
658
659/// getRegisterClassIDAndCost - For a given MI, register, and the operand
660/// index, return the ID and cost of its representative register class.
661void
662MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
663                                       unsigned Reg, unsigned OpIdx,
664                                       unsigned &RCId, unsigned &RCCost) const {
665  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
666  EVT VT = *RC->vt_begin();
667  if (VT == MVT::untyped) {
668    RCId = RC->getID();
669    RCCost = 1;
670  } else {
671    RCId = TLI->getRepRegClassFor(VT)->getID();
672    RCCost = TLI->getRepRegClassCostFor(VT);
673  }
674}
675
676/// InitRegPressure - Find all virtual register references that are liveout of
677/// the preheader to initialize the starting "register pressure". Note this
678/// does not count live through (livein but not used) registers.
679void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
680  std::fill(RegPressure.begin(), RegPressure.end(), 0);
681
682  // If the preheader has only a single predecessor and it ends with a
683  // fallthrough or an unconditional branch, then scan its predecessor for live
684  // defs as well. This happens whenever the preheader is created by splitting
685  // the critical edge from the loop predecessor to the loop header.
686  if (BB->pred_size() == 1) {
687    MachineBasicBlock *TBB = 0, *FBB = 0;
688    SmallVector<MachineOperand, 4> Cond;
689    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
690      InitRegPressure(*BB->pred_begin());
691  }
692
693  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
694       MII != E; ++MII) {
695    MachineInstr *MI = &*MII;
696    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
697      const MachineOperand &MO = MI->getOperand(i);
698      if (!MO.isReg() || MO.isImplicit())
699        continue;
700      unsigned Reg = MO.getReg();
701      if (!TargetRegisterInfo::isVirtualRegister(Reg))
702        continue;
703
704      bool isNew = RegSeen.insert(Reg);
705      unsigned RCId, RCCost;
706      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
707      if (MO.isDef())
708        RegPressure[RCId] += RCCost;
709      else {
710        bool isKill = isOperandKill(MO, MRI);
711        if (isNew && !isKill)
712          // Haven't seen this, it must be a livein.
713          RegPressure[RCId] += RCCost;
714        else if (!isNew && isKill)
715          RegPressure[RCId] -= RCCost;
716      }
717    }
718  }
719}
720
721/// UpdateRegPressure - Update estimate of register pressure after the
722/// specified instruction.
723void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
724  if (MI->isImplicitDef())
725    return;
726
727  SmallVector<unsigned, 4> Defs;
728  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
729    const MachineOperand &MO = MI->getOperand(i);
730    if (!MO.isReg() || MO.isImplicit())
731      continue;
732    unsigned Reg = MO.getReg();
733    if (!TargetRegisterInfo::isVirtualRegister(Reg))
734      continue;
735
736    bool isNew = RegSeen.insert(Reg);
737    if (MO.isDef())
738      Defs.push_back(Reg);
739    else if (!isNew && isOperandKill(MO, MRI)) {
740      unsigned RCId, RCCost;
741      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
742      if (RCCost > RegPressure[RCId])
743        RegPressure[RCId] = 0;
744      else
745        RegPressure[RCId] -= RCCost;
746    }
747  }
748
749  unsigned Idx = 0;
750  while (!Defs.empty()) {
751    unsigned Reg = Defs.pop_back_val();
752    unsigned RCId, RCCost;
753    getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
754    RegPressure[RCId] += RCCost;
755    ++Idx;
756  }
757}
758
759/// IsLICMCandidate - Returns true if the instruction may be a suitable
760/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
761/// not safe to hoist it.
762bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
763  // Check if it's safe to move the instruction.
764  bool DontMoveAcrossStore = true;
765  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
766    return false;
767
768  // If it is load then check if it is guaranteed to execute by making sure that
769  // it dominates all exiting blocks. If it doesn't, then there is a path out of
770  // the loop which does not execute this load, so we can't hoist it.
771  // Stores and side effects are already checked by isSafeToMove.
772  if (I.getDesc().mayLoad() && !IsGuaranteedToExecute(I.getParent()))
773    return false;
774
775  return true;
776}
777
778/// IsLoopInvariantInst - Returns true if the instruction is loop
779/// invariant. I.e., all virtual register operands are defined outside of the
780/// loop, physical registers aren't accessed explicitly, and there are no side
781/// effects that aren't captured by the operands or other flags.
782///
783bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
784  if (!IsLICMCandidate(I))
785    return false;
786
787  // The instruction is loop invariant if all of its operands are.
788  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
789    const MachineOperand &MO = I.getOperand(i);
790
791    if (!MO.isReg())
792      continue;
793
794    unsigned Reg = MO.getReg();
795    if (Reg == 0) continue;
796
797    // Don't hoist an instruction that uses or defines a physical register.
798    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
799      if (MO.isUse()) {
800        // If the physreg has no defs anywhere, it's just an ambient register
801        // and we can freely move its uses. Alternatively, if it's allocatable,
802        // it could get allocated to something with a def during allocation.
803        if (!MRI->def_empty(Reg))
804          return false;
805        if (AllocatableSet.test(Reg))
806          return false;
807        // Check for a def among the register's aliases too.
808        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
809          unsigned AliasReg = *Alias;
810          if (!MRI->def_empty(AliasReg))
811            return false;
812          if (AllocatableSet.test(AliasReg))
813            return false;
814        }
815        // Otherwise it's safe to move.
816        continue;
817      } else if (!MO.isDead()) {
818        // A def that isn't dead. We can't move it.
819        return false;
820      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
821        // If the reg is live into the loop, we can't hoist an instruction
822        // which would clobber it.
823        return false;
824      }
825    }
826
827    if (!MO.isUse())
828      continue;
829
830    assert(MRI->getVRegDef(Reg) &&
831           "Machine instr not mapped for this vreg?!");
832
833    // If the loop contains the definition of an operand, then the instruction
834    // isn't loop invariant.
835    if (CurLoop->contains(MRI->getVRegDef(Reg)))
836      return false;
837  }
838
839  // If we got this far, the instruction is loop invariant!
840  return true;
841}
842
843
844/// HasAnyPHIUse - Return true if the specified register is used by any
845/// phi node.
846bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
847  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
848         UE = MRI->use_end(); UI != UE; ++UI) {
849    MachineInstr *UseMI = &*UI;
850    if (UseMI->isPHI())
851      return true;
852    // Look pass copies as well.
853    if (UseMI->isCopy()) {
854      unsigned Def = UseMI->getOperand(0).getReg();
855      if (TargetRegisterInfo::isVirtualRegister(Def) &&
856          HasAnyPHIUse(Def))
857        return true;
858    }
859  }
860  return false;
861}
862
863/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
864/// and an use in the current loop, return true if the target considered
865/// it 'high'.
866bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
867                                        unsigned DefIdx, unsigned Reg) const {
868  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
869    return false;
870
871  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
872         E = MRI->use_nodbg_end(); I != E; ++I) {
873    MachineInstr *UseMI = &*I;
874    if (UseMI->isCopyLike())
875      continue;
876    if (!CurLoop->contains(UseMI->getParent()))
877      continue;
878    for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
879      const MachineOperand &MO = UseMI->getOperand(i);
880      if (!MO.isReg() || !MO.isUse())
881        continue;
882      unsigned MOReg = MO.getReg();
883      if (MOReg != Reg)
884        continue;
885
886      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
887        return true;
888    }
889
890    // Only look at the first in loop use.
891    break;
892  }
893
894  return false;
895}
896
897/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
898/// the operand latency between its def and a use is one or less.
899bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
900  if (MI.getDesc().isAsCheapAsAMove() || MI.isCopyLike())
901    return true;
902  if (!InstrItins || InstrItins->isEmpty())
903    return false;
904
905  bool isCheap = false;
906  unsigned NumDefs = MI.getDesc().getNumDefs();
907  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
908    MachineOperand &DefMO = MI.getOperand(i);
909    if (!DefMO.isReg() || !DefMO.isDef())
910      continue;
911    --NumDefs;
912    unsigned Reg = DefMO.getReg();
913    if (TargetRegisterInfo::isPhysicalRegister(Reg))
914      continue;
915
916    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
917      return false;
918    isCheap = true;
919  }
920
921  return isCheap;
922}
923
924/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
925/// if hoisting an instruction of the given cost matrix can cause high
926/// register pressure.
927bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
928  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
929       CI != CE; ++CI) {
930    if (CI->second <= 0)
931      continue;
932
933    unsigned RCId = CI->first;
934    for (unsigned i = BackTrace.size(); i != 0; --i) {
935      SmallVector<unsigned, 8> &RP = BackTrace[i-1];
936      if (RP[RCId] + CI->second >= RegLimit[RCId])
937        return true;
938    }
939  }
940
941  return false;
942}
943
944/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
945/// current block and update their register pressures to reflect the effect
946/// of hoisting MI from the current block to the preheader.
947void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
948  if (MI->isImplicitDef())
949    return;
950
951  // First compute the 'cost' of the instruction, i.e. its contribution
952  // to register pressure.
953  DenseMap<unsigned, int> Cost;
954  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
955    const MachineOperand &MO = MI->getOperand(i);
956    if (!MO.isReg() || MO.isImplicit())
957      continue;
958    unsigned Reg = MO.getReg();
959    if (!TargetRegisterInfo::isVirtualRegister(Reg))
960      continue;
961
962    unsigned RCId, RCCost;
963    getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
964    if (MO.isDef()) {
965      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
966      if (CI != Cost.end())
967        CI->second += RCCost;
968      else
969        Cost.insert(std::make_pair(RCId, RCCost));
970    } else if (isOperandKill(MO, MRI)) {
971      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
972      if (CI != Cost.end())
973        CI->second -= RCCost;
974      else
975        Cost.insert(std::make_pair(RCId, -RCCost));
976    }
977  }
978
979  // Update register pressure of blocks from loop header to current block.
980  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
981    SmallVector<unsigned, 8> &RP = BackTrace[i];
982    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
983         CI != CE; ++CI) {
984      unsigned RCId = CI->first;
985      RP[RCId] += CI->second;
986    }
987  }
988}
989
990/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
991/// the given loop invariant.
992bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
993  if (MI.isImplicitDef())
994    return true;
995
996  // If the instruction is cheap, only hoist if it is re-materilizable. LICM
997  // will increase register pressure. It's probably not worth it if the
998  // instruction is cheap.
999  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
1000  // these tend to help performance in low register pressure situation. The
1001  // trade off is it may cause spill in high pressure situation. It will end up
1002  // adding a store in the loop preheader. But the reload is no more expensive.
1003  // The side benefit is these loads are frequently CSE'ed.
1004  if (IsCheapInstruction(MI)) {
1005    if (!TII->isTriviallyReMaterializable(&MI, AA))
1006      return false;
1007  } else {
1008    // Estimate register pressure to determine whether to LICM the instruction.
1009    // In low register pressure situation, we can be more aggressive about
1010    // hoisting. Also, favors hoisting long latency instructions even in
1011    // moderately high pressure situation.
1012    // FIXME: If there are long latency loop-invariant instructions inside the
1013    // loop at this point, why didn't the optimizer's LICM hoist them?
1014    DenseMap<unsigned, int> Cost;
1015    for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1016      const MachineOperand &MO = MI.getOperand(i);
1017      if (!MO.isReg() || MO.isImplicit())
1018        continue;
1019      unsigned Reg = MO.getReg();
1020      if (!TargetRegisterInfo::isVirtualRegister(Reg))
1021        continue;
1022
1023      unsigned RCId, RCCost;
1024      getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1025      if (MO.isDef()) {
1026        if (HasHighOperandLatency(MI, i, Reg)) {
1027          ++NumHighLatency;
1028          return true;
1029        }
1030
1031        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1032        if (CI != Cost.end())
1033          CI->second += RCCost;
1034        else
1035          Cost.insert(std::make_pair(RCId, RCCost));
1036      } else if (isOperandKill(MO, MRI)) {
1037        // Is a virtual register use is a kill, hoisting it out of the loop
1038        // may actually reduce register pressure or be register pressure
1039        // neutral.
1040        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1041        if (CI != Cost.end())
1042          CI->second -= RCCost;
1043        else
1044          Cost.insert(std::make_pair(RCId, -RCCost));
1045      }
1046    }
1047
1048    // Visit BBs from header to current BB, if hoisting this doesn't cause
1049    // high register pressure, then it's safe to proceed.
1050    if (!CanCauseHighRegPressure(Cost)) {
1051      ++NumLowRP;
1052      return true;
1053    }
1054
1055    // High register pressure situation, only hoist if the instruction is going to
1056    // be remat'ed.
1057    // Also, do not "speculate" in high register pressure situation. If an
1058    // instruction is not guaranteed to be executed in the loop, it's best to be
1059    // conservative.
1060    if ((!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)) ||
1061        (!TII->isTriviallyReMaterializable(&MI, AA) &&
1062         !MI.isInvariantLoad(AA)))
1063      return false;
1064  }
1065
1066  // If result(s) of this instruction is used by PHIs outside of the loop, then
1067  // don't hoist it if the instruction because it will introduce an extra copy.
1068  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1069    const MachineOperand &MO = MI.getOperand(i);
1070    if (!MO.isReg() || !MO.isDef())
1071      continue;
1072    if (HasAnyPHIUse(MO.getReg()))
1073      return false;
1074  }
1075
1076  return true;
1077}
1078
1079MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1080  // Don't unfold simple loads.
1081  if (MI->getDesc().canFoldAsLoad())
1082    return 0;
1083
1084  // If not, we may be able to unfold a load and hoist that.
1085  // First test whether the instruction is loading from an amenable
1086  // memory location.
1087  if (!MI->isInvariantLoad(AA))
1088    return 0;
1089
1090  // Next determine the register class for a temporary register.
1091  unsigned LoadRegIndex;
1092  unsigned NewOpc =
1093    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1094                                    /*UnfoldLoad=*/true,
1095                                    /*UnfoldStore=*/false,
1096                                    &LoadRegIndex);
1097  if (NewOpc == 0) return 0;
1098  const MCInstrDesc &MID = TII->get(NewOpc);
1099  if (MID.getNumDefs() != 1) return 0;
1100  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
1101  // Ok, we're unfolding. Create a temporary register and do the unfold.
1102  unsigned Reg = MRI->createVirtualRegister(RC);
1103
1104  MachineFunction &MF = *MI->getParent()->getParent();
1105  SmallVector<MachineInstr *, 2> NewMIs;
1106  bool Success =
1107    TII->unfoldMemoryOperand(MF, MI, Reg,
1108                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1109                             NewMIs);
1110  (void)Success;
1111  assert(Success &&
1112         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1113         "succeeded!");
1114  assert(NewMIs.size() == 2 &&
1115         "Unfolded a load into multiple instructions!");
1116  MachineBasicBlock *MBB = MI->getParent();
1117  MBB->insert(MI, NewMIs[0]);
1118  MBB->insert(MI, NewMIs[1]);
1119  // If unfolding produced a load that wasn't loop-invariant or profitable to
1120  // hoist, discard the new instructions and bail.
1121  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1122    NewMIs[0]->eraseFromParent();
1123    NewMIs[1]->eraseFromParent();
1124    return 0;
1125  }
1126
1127  // Update register pressure for the unfolded instruction.
1128  UpdateRegPressure(NewMIs[1]);
1129
1130  // Otherwise we successfully unfolded a load that we can hoist.
1131  MI->eraseFromParent();
1132  return NewMIs[0];
1133}
1134
1135void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1136  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1137    const MachineInstr *MI = &*I;
1138    unsigned Opcode = MI->getOpcode();
1139    DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1140      CI = CSEMap.find(Opcode);
1141    if (CI != CSEMap.end())
1142      CI->second.push_back(MI);
1143    else {
1144      std::vector<const MachineInstr*> CSEMIs;
1145      CSEMIs.push_back(MI);
1146      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1147    }
1148  }
1149}
1150
1151const MachineInstr*
1152MachineLICM::LookForDuplicate(const MachineInstr *MI,
1153                              std::vector<const MachineInstr*> &PrevMIs) {
1154  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1155    const MachineInstr *PrevMI = PrevMIs[i];
1156    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1157      return PrevMI;
1158  }
1159  return 0;
1160}
1161
1162bool MachineLICM::EliminateCSE(MachineInstr *MI,
1163          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1164  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1165  // the undef property onto uses.
1166  if (CI == CSEMap.end() || MI->isImplicitDef())
1167    return false;
1168
1169  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1170    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1171
1172    // Replace virtual registers defined by MI by their counterparts defined
1173    // by Dup.
1174    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1175      const MachineOperand &MO = MI->getOperand(i);
1176
1177      // Physical registers may not differ here.
1178      assert((!MO.isReg() || MO.getReg() == 0 ||
1179              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1180              MO.getReg() == Dup->getOperand(i).getReg()) &&
1181             "Instructions with different phys regs are not identical!");
1182
1183      if (MO.isReg() && MO.isDef() &&
1184          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1185        MRI->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
1186        MRI->clearKillFlags(Dup->getOperand(i).getReg());
1187      }
1188    }
1189    MI->eraseFromParent();
1190    ++NumCSEed;
1191    return true;
1192  }
1193  return false;
1194}
1195
1196/// MayCSE - Return true if the given instruction will be CSE'd if it's
1197/// hoisted out of the loop.
1198bool MachineLICM::MayCSE(MachineInstr *MI) {
1199  unsigned Opcode = MI->getOpcode();
1200  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1201    CI = CSEMap.find(Opcode);
1202  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1203  // the undef property onto uses.
1204  if (CI == CSEMap.end() || MI->isImplicitDef())
1205    return false;
1206
1207  return LookForDuplicate(MI, CI->second) != 0;
1208}
1209
1210/// Hoist - When an instruction is found to use only loop invariant operands
1211/// that are safe to hoist, this instruction is called to do the dirty work.
1212///
1213bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1214  // First check whether we should hoist this instruction.
1215  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1216    // If not, try unfolding a hoistable load.
1217    MI = ExtractHoistableLoad(MI);
1218    if (!MI) return false;
1219  }
1220
1221  // Now move the instructions to the predecessor, inserting it before any
1222  // terminator instructions.
1223  DEBUG({
1224      dbgs() << "Hoisting " << *MI;
1225      if (Preheader->getBasicBlock())
1226        dbgs() << " to MachineBasicBlock "
1227               << Preheader->getName();
1228      if (MI->getParent()->getBasicBlock())
1229        dbgs() << " from MachineBasicBlock "
1230               << MI->getParent()->getName();
1231      dbgs() << "\n";
1232    });
1233
1234  // If this is the first instruction being hoisted to the preheader,
1235  // initialize the CSE map with potential common expressions.
1236  if (FirstInLoop) {
1237    InitCSEMap(Preheader);
1238    FirstInLoop = false;
1239  }
1240
1241  // Look for opportunity to CSE the hoisted instruction.
1242  unsigned Opcode = MI->getOpcode();
1243  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1244    CI = CSEMap.find(Opcode);
1245  if (!EliminateCSE(MI, CI)) {
1246    // Otherwise, splice the instruction to the preheader.
1247    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1248
1249    // Update register pressure for BBs from header to this block.
1250    UpdateBackTraceRegPressure(MI);
1251
1252    // Clear the kill flags of any register this instruction defines,
1253    // since they may need to be live throughout the entire loop
1254    // rather than just live for part of it.
1255    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1256      MachineOperand &MO = MI->getOperand(i);
1257      if (MO.isReg() && MO.isDef() && !MO.isDead())
1258        MRI->clearKillFlags(MO.getReg());
1259    }
1260
1261    // Add to the CSE map.
1262    if (CI != CSEMap.end())
1263      CI->second.push_back(MI);
1264    else {
1265      std::vector<const MachineInstr*> CSEMIs;
1266      CSEMIs.push_back(MI);
1267      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1268    }
1269  }
1270
1271  ++NumHoisted;
1272  Changed = true;
1273
1274  return true;
1275}
1276
1277MachineBasicBlock *MachineLICM::getCurPreheader() {
1278  // Determine the block to which to hoist instructions. If we can't find a
1279  // suitable loop predecessor, we can't do any hoisting.
1280
1281  // If we've tried to get a preheader and failed, don't try again.
1282  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1283    return 0;
1284
1285  if (!CurPreheader) {
1286    CurPreheader = CurLoop->getLoopPreheader();
1287    if (!CurPreheader) {
1288      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1289      if (!Pred) {
1290        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1291        return 0;
1292      }
1293
1294      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1295      if (!CurPreheader) {
1296        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1297        return 0;
1298      }
1299    }
1300  }
1301  return CurPreheader;
1302}
1303