MachineLICM.cpp revision c15d9135a82525d1b1e52fe79c70e782c15e251e
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
44STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
45STATISTIC(NumPostRAHoisted,
46          "Number of machine instructions hoisted out of loops post regalloc");
47
48namespace {
49  class MachineLICM : public MachineFunctionPass {
50    bool PreRegAlloc;
51
52    const TargetMachine   *TM;
53    const TargetInstrInfo *TII;
54    const TargetRegisterInfo *TRI;
55    const MachineFrameInfo *MFI;
56    MachineRegisterInfo *RegInfo;
57
58    // Various analyses that we use...
59    AliasAnalysis        *AA;      // Alias analysis info.
60    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
61    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
62
63    // State that is updated as we process loops
64    bool         Changed;          // True if a loop is changed.
65    MachineLoop *CurLoop;          // The current loop we are working on.
66    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
67
68    BitVector AllocatableSet;
69
70    // For each opcode, keep a list of potentail CSE instructions.
71    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
72
73  public:
74    static char ID; // Pass identification, replacement for typeid
75    MachineLICM() :
76      MachineFunctionPass(&ID), PreRegAlloc(true) {}
77
78    explicit MachineLICM(bool PreRA) :
79      MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
80
81    virtual bool runOnMachineFunction(MachineFunction &MF);
82
83    const char *getPassName() const { return "Machine Instruction LICM"; }
84
85    // FIXME: Loop preheaders?
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88      AU.addRequired<MachineLoopInfo>();
89      AU.addRequired<MachineDominatorTree>();
90      AU.addRequired<AliasAnalysis>();
91      AU.addPreserved<MachineLoopInfo>();
92      AU.addPreserved<MachineDominatorTree>();
93      MachineFunctionPass::getAnalysisUsage(AU);
94    }
95
96    virtual void releaseMemory() {
97      CSEMap.clear();
98    }
99
100  private:
101    /// CandidateInfo - Keep track of information about hoisting candidates.
102    struct CandidateInfo {
103      MachineInstr *MI;
104      unsigned      Def;
105      int           FI;
106      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
107        : MI(mi), Def(def), FI(fi) {}
108    };
109
110    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
111    /// invariants out to the preheader.
112    void HoistRegionPostRA(MachineDomTreeNode *N);
113
114    /// HoistPostRA - When an instruction is found to only use loop invariant
115    /// operands that is safe to hoist, this instruction is called to do the
116    /// dirty work.
117    void HoistPostRA(MachineInstr *MI, unsigned Def);
118
119    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
120    /// gather register def and frame object update information.
121    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
122                   SmallSet<int, 32> &StoredFIs,
123                   SmallVector<CandidateInfo, 32> &Candidates);
124
125    /// AddToLiveIns - Add 'Reg' to the livein sets of BBs in the backedge path
126    /// from MBB to LoopHeader (inclusive).
127    void AddToLiveIns(unsigned Reg,
128                      MachineBasicBlock *MBB, MachineBasicBlock *LoopHeader);
129
130    /// IsLICMCandidate - Returns true if the instruction may be a suitable
131    /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
132    /// not safe to hoist it.
133    bool IsLICMCandidate(MachineInstr &I);
134
135    /// IsLoopInvariantInst - Returns true if the instruction is loop
136    /// invariant. I.e., all virtual register operands are defined outside of
137    /// the loop, physical registers aren't accessed (explicitly or implicitly),
138    /// and the instruction is hoistable.
139    ///
140    bool IsLoopInvariantInst(MachineInstr &I);
141
142    /// IsProfitableToHoist - Return true if it is potentially profitable to
143    /// hoist the given loop invariant.
144    bool IsProfitableToHoist(MachineInstr &MI);
145
146    /// HoistRegion - Walk the specified region of the CFG (defined by all
147    /// blocks dominated by the specified block, and that are in the current
148    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
149    /// visit definitions before uses, allowing us to hoist a loop body in one
150    /// pass without iteration.
151    ///
152    void HoistRegion(MachineDomTreeNode *N);
153
154    /// isLoadFromConstantMemory - Return true if the given instruction is a
155    /// load from constant memory.
156    bool isLoadFromConstantMemory(MachineInstr *MI);
157
158    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
159    /// the load itself could be hoisted. Return the unfolded and hoistable
160    /// load, or null if the load couldn't be unfolded or if it wouldn't
161    /// be hoistable.
162    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
163
164    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
165    /// duplicate of MI. Return this instruction if it's found.
166    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
167                                     std::vector<const MachineInstr*> &PrevMIs);
168
169    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
170    /// the preheader that compute the same value. If it's found, do a RAU on
171    /// with the definition of the existing instruction rather than hoisting
172    /// the instruction to the preheader.
173    bool EliminateCSE(MachineInstr *MI,
174           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
175
176    /// Hoist - When an instruction is found to only use loop invariant operands
177    /// that is safe to hoist, this instruction is called to do the dirty work.
178    ///
179    void Hoist(MachineInstr *MI);
180
181    /// InitCSEMap - Initialize the CSE map with instructions that are in the
182    /// current loop preheader that may become duplicates of instructions that
183    /// are hoisted out of the loop.
184    void InitCSEMap(MachineBasicBlock *BB);
185  };
186} // end anonymous namespace
187
188char MachineLICM::ID = 0;
189static RegisterPass<MachineLICM>
190X("machinelicm", "Machine Loop Invariant Code Motion");
191
192FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
193  return new MachineLICM(PreRegAlloc);
194}
195
196/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
197/// loop that has a preheader.
198static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
199  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
200    if (L->getLoopPreheader())
201      return false;
202  return true;
203}
204
205bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
206  if (PreRegAlloc)
207    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
208  else
209    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
210
211  Changed = false;
212  TM = &MF.getTarget();
213  TII = TM->getInstrInfo();
214  TRI = TM->getRegisterInfo();
215  MFI = MF.getFrameInfo();
216  RegInfo = &MF.getRegInfo();
217  AllocatableSet = TRI->getAllocatableSet(MF);
218
219  // Get our Loop information...
220  MLI = &getAnalysis<MachineLoopInfo>();
221  DT  = &getAnalysis<MachineDominatorTree>();
222  AA  = &getAnalysis<AliasAnalysis>();
223
224  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I){
225    CurLoop = *I;
226
227    // If this is done before regalloc, only visit outer-most preheader-sporting
228    // loops.
229    if (PreRegAlloc && !LoopIsOuterMostWithPreheader(CurLoop))
230      continue;
231
232    // Determine the block to which to hoist instructions. If we can't find a
233    // suitable loop preheader, we can't do any hoisting.
234    //
235    // FIXME: We are only hoisting if the basic block coming into this loop
236    // has only one successor. This isn't the case in general because we haven't
237    // broken critical edges or added preheaders.
238    CurPreheader = CurLoop->getLoopPreheader();
239    if (!CurPreheader)
240      continue;
241
242    // CSEMap is initialized for loop header when the first instruction is
243    // being hoisted.
244    MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
245    if (!PreRegAlloc)
246      HoistRegionPostRA(N);
247    else {
248      HoistRegion(N);
249      CSEMap.clear();
250    }
251  }
252
253  return Changed;
254}
255
256/// InstructionStoresToFI - Return true if instruction stores to the
257/// specified frame.
258static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
259  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
260         oe = MI->memoperands_end(); o != oe; ++o) {
261    if (!(*o)->isStore() || !(*o)->getValue())
262      continue;
263    if (const FixedStackPseudoSourceValue *Value =
264        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
265      if (Value->getFrameIndex() == FI)
266        return true;
267    }
268  }
269  return false;
270}
271
272/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
273/// gather register def and frame object update information.
274void MachineLICM::ProcessMI(MachineInstr *MI,
275                            unsigned *PhysRegDefs,
276                            SmallSet<int, 32> &StoredFIs,
277                            SmallVector<CandidateInfo, 32> &Candidates) {
278  bool RuledOut = false;
279  bool HasNonInvariantUse = false;
280  unsigned Def = 0;
281  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
282    const MachineOperand &MO = MI->getOperand(i);
283    if (MO.isFI()) {
284      // Remember if the instruction stores to the frame index.
285      int FI = MO.getIndex();
286      if (!StoredFIs.count(FI) &&
287          MFI->isSpillSlotObjectIndex(FI) &&
288          InstructionStoresToFI(MI, FI))
289        StoredFIs.insert(FI);
290      HasNonInvariantUse = true;
291      continue;
292    }
293
294    if (!MO.isReg())
295      continue;
296    unsigned Reg = MO.getReg();
297    if (!Reg)
298      continue;
299    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
300           "Not expecting virtual register!");
301
302    if (!MO.isDef()) {
303      if (PhysRegDefs[Reg])
304        // If it's using a non-loop-invariant register, then it's obviously not
305        // safe to hoist.
306        HasNonInvariantUse = true;
307      continue;
308    }
309
310    if (MO.isImplicit()) {
311      ++PhysRegDefs[Reg];
312      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
313        ++PhysRegDefs[*AS];
314      if (!MO.isDead())
315        // Non-dead implicit def? This cannot be hoisted.
316        RuledOut = true;
317      // No need to check if a dead implicit def is also defined by
318      // another instruction.
319      continue;
320    }
321
322    // FIXME: For now, avoid instructions with multiple defs, unless
323    // it's a dead implicit def.
324    if (Def)
325      RuledOut = true;
326    else
327      Def = Reg;
328
329    // If we have already seen another instruction that defines the same
330    // register, then this is not safe.
331    if (++PhysRegDefs[Reg] > 1)
332      // MI defined register is seen defined by another instruction in
333      // the loop, it cannot be a LICM candidate.
334      RuledOut = true;
335    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
336      if (++PhysRegDefs[*AS] > 1)
337        RuledOut = true;
338  }
339
340  // Only consider reloads for now and remats which do not have register
341  // operands. FIXME: Consider unfold load folding instructions.
342  if (Def && !RuledOut) {
343    int FI = INT_MIN;
344    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
345        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
346      Candidates.push_back(CandidateInfo(MI, Def, FI));
347  }
348}
349
350/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
351/// invariants out to the preheader.
352void MachineLICM::HoistRegionPostRA(MachineDomTreeNode *N) {
353  assert(N != 0 && "Null dominator tree node?");
354
355  unsigned NumRegs = TRI->getNumRegs();
356  unsigned *PhysRegDefs = new unsigned[NumRegs];
357  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
358
359  SmallVector<CandidateInfo, 32> Candidates;
360  SmallSet<int, 32> StoredFIs;
361
362  // Walk the entire region, count number of defs for each register, and
363  // return potential LICM candidates.
364  SmallVector<MachineDomTreeNode*, 8> WorkList;
365  WorkList.push_back(N);
366  do {
367    N = WorkList.pop_back_val();
368    MachineBasicBlock *BB = N->getBlock();
369
370    if (!CurLoop->contains(MLI->getLoopFor(BB)))
371      continue;
372    // Conservatively treat live-in's as an external def.
373    // FIXME: That means a reload that're reused in successor block(s) will not
374    // be LICM'ed.
375    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
376           E = BB->livein_end(); I != E; ++I) {
377      unsigned Reg = *I;
378      ++PhysRegDefs[Reg];
379      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
380        ++PhysRegDefs[*AS];
381    }
382
383    for (MachineBasicBlock::iterator
384           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
385      MachineInstr *MI = &*MII;
386      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
387    }
388
389    const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
390    for (unsigned I = 0, E = Children.size(); I != E; ++I)
391      WorkList.push_back(Children[I]);
392  } while (!WorkList.empty());
393
394  // Now evaluate whether the potential candidates qualify.
395  // 1. Check if the candidate defined register is defined by another
396  //    instruction in the loop.
397  // 2. If the candidate is a load from stack slot (always true for now),
398  //    check if the slot is stored anywhere in the loop.
399  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
400    if (Candidates[i].FI != INT_MIN &&
401        StoredFIs.count(Candidates[i].FI))
402      continue;
403
404    if (PhysRegDefs[Candidates[i].Def] == 1) {
405      bool Safe = true;
406      MachineInstr *MI = Candidates[i].MI;
407      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
408        const MachineOperand &MO = MI->getOperand(j);
409        if (!MO.isReg() || MO.isDef())
410          continue;
411        if (PhysRegDefs[MO.getReg()]) {
412          // If it's using a non-loop-invariant register, then it's obviously
413          // not safe to hoist.
414          Safe = false;
415          break;
416        }
417      }
418      if (Safe)
419        HoistPostRA(MI, Candidates[i].Def);
420    }
421  }
422
423  delete[] PhysRegDefs;
424}
425
426/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
427/// backedge path from MBB to LoopHeader.
428void MachineLICM::AddToLiveIns(unsigned Reg, MachineBasicBlock *MBB,
429                               MachineBasicBlock *LoopHeader) {
430  SmallPtrSet<MachineBasicBlock*, 4> Visited;
431  SmallVector<MachineBasicBlock*, 4> WorkList;
432  WorkList.push_back(MBB);
433  do {
434    MBB = WorkList.pop_back_val();
435    if (!Visited.insert(MBB))
436      continue;
437    MBB->addLiveIn(Reg);
438    if (MBB == LoopHeader)
439      continue;
440    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
441           E = MBB->pred_end(); PI != E; ++PI)
442      WorkList.push_back(*PI);
443  } while (!WorkList.empty());
444}
445
446/// HoistPostRA - When an instruction is found to only use loop invariant
447/// operands that is safe to hoist, this instruction is called to do the
448/// dirty work.
449void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
450  // Now move the instructions to the predecessor, inserting it before any
451  // terminator instructions.
452  DEBUG({
453      dbgs() << "Hoisting " << *MI;
454      if (CurPreheader->getBasicBlock())
455        dbgs() << " to MachineBasicBlock "
456               << CurPreheader->getName();
457      if (MI->getParent()->getBasicBlock())
458        dbgs() << " from MachineBasicBlock "
459               << MI->getParent()->getName();
460      dbgs() << "\n";
461    });
462
463  // Splice the instruction to the preheader.
464  MachineBasicBlock *MBB = MI->getParent();
465  CurPreheader->splice(CurPreheader->getFirstTerminator(), MBB, MI);
466
467  // Add register to livein list to BBs in the path from loop header to original
468  // BB. Note, currently it's not necessary to worry about adding it to all BB's
469  // with uses. Reload that're reused in successor block(s) are not being
470  // hoisted.
471  AddToLiveIns(Def, MBB, CurLoop->getHeader());
472
473  ++NumPostRAHoisted;
474  Changed = true;
475}
476
477/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
478/// dominated by the specified block, and that are in the current loop) in depth
479/// first order w.r.t the DominatorTree. This allows us to visit definitions
480/// before uses, allowing us to hoist a loop body in one pass without iteration.
481///
482void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
483  assert(N != 0 && "Null dominator tree node?");
484  MachineBasicBlock *BB = N->getBlock();
485
486  // If this subregion is not in the top level loop at all, exit.
487  if (!CurLoop->contains(BB)) return;
488
489  for (MachineBasicBlock::iterator
490         MII = BB->begin(), E = BB->end(); MII != E; ) {
491    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
492    Hoist(&*MII);
493    MII = NextMII;
494  }
495
496  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
497  for (unsigned I = 0, E = Children.size(); I != E; ++I)
498    HoistRegion(Children[I]);
499}
500
501/// IsLICMCandidate - Returns true if the instruction may be a suitable
502/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
503/// not safe to hoist it.
504bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
505  const TargetInstrDesc &TID = I.getDesc();
506
507  // Ignore stuff that we obviously can't hoist.
508  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
509      TID.hasUnmodeledSideEffects())
510    return false;
511
512  if (TID.mayLoad()) {
513    // Okay, this instruction does a load. As a refinement, we allow the target
514    // to decide whether the loaded value is actually a constant. If so, we can
515    // actually use it as a load.
516    if (!I.isInvariantLoad(AA))
517      // FIXME: we should be able to hoist loads with no other side effects if
518      // there are no other instructions which can change memory in this loop.
519      // This is a trivial form of alias analysis.
520      return false;
521  }
522  return true;
523}
524
525/// IsLoopInvariantInst - Returns true if the instruction is loop
526/// invariant. I.e., all virtual register operands are defined outside of the
527/// loop, physical registers aren't accessed explicitly, and there are no side
528/// effects that aren't captured by the operands or other flags.
529///
530bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
531  if (!IsLICMCandidate(I))
532    return false;
533
534  // The instruction is loop invariant if all of its operands are.
535  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
536    const MachineOperand &MO = I.getOperand(i);
537
538    if (!MO.isReg())
539      continue;
540
541    unsigned Reg = MO.getReg();
542    if (Reg == 0) continue;
543
544    // Don't hoist an instruction that uses or defines a physical register.
545    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
546      if (MO.isUse()) {
547        // If the physreg has no defs anywhere, it's just an ambient register
548        // and we can freely move its uses. Alternatively, if it's allocatable,
549        // it could get allocated to something with a def during allocation.
550        if (!RegInfo->def_empty(Reg))
551          return false;
552        if (AllocatableSet.test(Reg))
553          return false;
554        // Check for a def among the register's aliases too.
555        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
556          unsigned AliasReg = *Alias;
557          if (!RegInfo->def_empty(AliasReg))
558            return false;
559          if (AllocatableSet.test(AliasReg))
560            return false;
561        }
562        // Otherwise it's safe to move.
563        continue;
564      } else if (!MO.isDead()) {
565        // A def that isn't dead. We can't move it.
566        return false;
567      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
568        // If the reg is live into the loop, we can't hoist an instruction
569        // which would clobber it.
570        return false;
571      }
572    }
573
574    if (!MO.isUse())
575      continue;
576
577    assert(RegInfo->getVRegDef(Reg) &&
578           "Machine instr not mapped for this vreg?!");
579
580    // If the loop contains the definition of an operand, then the instruction
581    // isn't loop invariant.
582    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
583      return false;
584  }
585
586  // If we got this far, the instruction is loop invariant!
587  return true;
588}
589
590
591/// HasPHIUses - Return true if the specified register has any PHI use.
592static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
593  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
594         UE = RegInfo->use_end(); UI != UE; ++UI) {
595    MachineInstr *UseMI = &*UI;
596    if (UseMI->isPHI())
597      return true;
598  }
599  return false;
600}
601
602/// isLoadFromConstantMemory - Return true if the given instruction is a
603/// load from constant memory. Machine LICM will hoist these even if they are
604/// not re-materializable.
605bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
606  if (!MI->getDesc().mayLoad()) return false;
607  if (!MI->hasOneMemOperand()) return false;
608  MachineMemOperand *MMO = *MI->memoperands_begin();
609  if (MMO->isVolatile()) return false;
610  if (!MMO->getValue()) return false;
611  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
612  if (PSV) {
613    MachineFunction &MF = *MI->getParent()->getParent();
614    return PSV->isConstant(MF.getFrameInfo());
615  } else {
616    return AA->pointsToConstantMemory(MMO->getValue());
617  }
618}
619
620/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
621/// the given loop invariant.
622bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
623  if (MI.isImplicitDef())
624    return false;
625
626  // FIXME: For now, only hoist re-materilizable instructions. LICM will
627  // increase register pressure. We want to make sure it doesn't increase
628  // spilling.
629  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
630  // these tend to help performance in low register pressure situation. The
631  // trade off is it may cause spill in high pressure situation. It will end up
632  // adding a store in the loop preheader. But the reload is no more expensive.
633  // The side benefit is these loads are frequently CSE'ed.
634  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
635    if (!isLoadFromConstantMemory(&MI))
636      return false;
637  }
638
639  // If result(s) of this instruction is used by PHIs, then don't hoist it.
640  // The presence of joins makes it difficult for current register allocator
641  // implementation to perform remat.
642  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
643    const MachineOperand &MO = MI.getOperand(i);
644    if (!MO.isReg() || !MO.isDef())
645      continue;
646    if (HasPHIUses(MO.getReg(), RegInfo))
647      return false;
648  }
649
650  return true;
651}
652
653MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
654  // If not, we may be able to unfold a load and hoist that.
655  // First test whether the instruction is loading from an amenable
656  // memory location.
657  if (!isLoadFromConstantMemory(MI))
658    return 0;
659
660  // Next determine the register class for a temporary register.
661  unsigned LoadRegIndex;
662  unsigned NewOpc =
663    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
664                                    /*UnfoldLoad=*/true,
665                                    /*UnfoldStore=*/false,
666                                    &LoadRegIndex);
667  if (NewOpc == 0) return 0;
668  const TargetInstrDesc &TID = TII->get(NewOpc);
669  if (TID.getNumDefs() != 1) return 0;
670  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
671  // Ok, we're unfolding. Create a temporary register and do the unfold.
672  unsigned Reg = RegInfo->createVirtualRegister(RC);
673
674  MachineFunction &MF = *MI->getParent()->getParent();
675  SmallVector<MachineInstr *, 2> NewMIs;
676  bool Success =
677    TII->unfoldMemoryOperand(MF, MI, Reg,
678                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
679                             NewMIs);
680  (void)Success;
681  assert(Success &&
682         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
683         "succeeded!");
684  assert(NewMIs.size() == 2 &&
685         "Unfolded a load into multiple instructions!");
686  MachineBasicBlock *MBB = MI->getParent();
687  MBB->insert(MI, NewMIs[0]);
688  MBB->insert(MI, NewMIs[1]);
689  // If unfolding produced a load that wasn't loop-invariant or profitable to
690  // hoist, discard the new instructions and bail.
691  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
692    NewMIs[0]->eraseFromParent();
693    NewMIs[1]->eraseFromParent();
694    return 0;
695  }
696  // Otherwise we successfully unfolded a load that we can hoist.
697  MI->eraseFromParent();
698  return NewMIs[0];
699}
700
701void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
702  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
703    const MachineInstr *MI = &*I;
704    // FIXME: For now, only hoist re-materilizable instructions. LICM will
705    // increase register pressure. We want to make sure it doesn't increase
706    // spilling.
707    if (TII->isTriviallyReMaterializable(MI, AA)) {
708      unsigned Opcode = MI->getOpcode();
709      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
710        CI = CSEMap.find(Opcode);
711      if (CI != CSEMap.end())
712        CI->second.push_back(MI);
713      else {
714        std::vector<const MachineInstr*> CSEMIs;
715        CSEMIs.push_back(MI);
716        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
717      }
718    }
719  }
720}
721
722const MachineInstr*
723MachineLICM::LookForDuplicate(const MachineInstr *MI,
724                              std::vector<const MachineInstr*> &PrevMIs) {
725  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
726    const MachineInstr *PrevMI = PrevMIs[i];
727    if (TII->produceSameValue(MI, PrevMI))
728      return PrevMI;
729  }
730  return 0;
731}
732
733bool MachineLICM::EliminateCSE(MachineInstr *MI,
734          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
735  if (CI == CSEMap.end())
736    return false;
737
738  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
739    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
740
741    // Replace virtual registers defined by MI by their counterparts defined
742    // by Dup.
743    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
744      const MachineOperand &MO = MI->getOperand(i);
745
746      // Physical registers may not differ here.
747      assert((!MO.isReg() || MO.getReg() == 0 ||
748              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
749              MO.getReg() == Dup->getOperand(i).getReg()) &&
750             "Instructions with different phys regs are not identical!");
751
752      if (MO.isReg() && MO.isDef() &&
753          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
754        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
755    }
756    MI->eraseFromParent();
757    ++NumCSEed;
758    return true;
759  }
760  return false;
761}
762
763/// Hoist - When an instruction is found to use only loop invariant operands
764/// that are safe to hoist, this instruction is called to do the dirty work.
765///
766void MachineLICM::Hoist(MachineInstr *MI) {
767  // First check whether we should hoist this instruction.
768  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
769    // If not, try unfolding a hoistable load.
770    MI = ExtractHoistableLoad(MI);
771    if (!MI) return;
772  }
773
774  // Now move the instructions to the predecessor, inserting it before any
775  // terminator instructions.
776  DEBUG({
777      dbgs() << "Hoisting " << *MI;
778      if (CurPreheader->getBasicBlock())
779        dbgs() << " to MachineBasicBlock "
780               << CurPreheader->getName();
781      if (MI->getParent()->getBasicBlock())
782        dbgs() << " from MachineBasicBlock "
783               << MI->getParent()->getName();
784      dbgs() << "\n";
785    });
786
787  // If this is the first instruction being hoisted to the preheader,
788  // initialize the CSE map with potential common expressions.
789  InitCSEMap(CurPreheader);
790
791  // Look for opportunity to CSE the hoisted instruction.
792  unsigned Opcode = MI->getOpcode();
793  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
794    CI = CSEMap.find(Opcode);
795  if (!EliminateCSE(MI, CI)) {
796    // Otherwise, splice the instruction to the preheader.
797    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
798
799    // Add to the CSE map.
800    if (CI != CSEMap.end())
801      CI->second.push_back(MI);
802    else {
803      std::vector<const MachineInstr*> CSEMIs;
804      CSEMIs.push_back(MI);
805      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
806    }
807  }
808
809  ++NumHoisted;
810  Changed = true;
811}
812