MachineLICM.cpp revision ca4762cf48c713cfeda2ca8262853590c25e2a1d
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetLowering.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetInstrItineraries.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43
44using namespace llvm;
45
46STATISTIC(NumHoisted,
47          "Number of machine instructions hoisted out of loops");
48STATISTIC(NumLowRP,
49          "Number of instructions hoisted in low reg pressure situation");
50STATISTIC(NumHighLatency,
51          "Number of high latency instructions hoisted");
52STATISTIC(NumCSEed,
53          "Number of hoisted machine instructions CSEed");
54STATISTIC(NumPostRAHoisted,
55          "Number of machine instructions hoisted out of loops post regalloc");
56
57namespace {
58  class MachineLICM : public MachineFunctionPass {
59    bool PreRegAlloc;
60
61    const TargetMachine   *TM;
62    const TargetInstrInfo *TII;
63    const TargetLowering *TLI;
64    const TargetRegisterInfo *TRI;
65    const MachineFrameInfo *MFI;
66    MachineRegisterInfo *MRI;
67    const InstrItineraryData *InstrItins;
68
69    // Various analyses that we use...
70    AliasAnalysis        *AA;      // Alias analysis info.
71    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
72    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
73
74    // State that is updated as we process loops
75    bool         Changed;          // True if a loop is changed.
76    bool         FirstInLoop;      // True if it's the first LICM in the loop.
77    MachineLoop *CurLoop;          // The current loop we are working on.
78    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
79
80    BitVector AllocatableSet;
81
82    // Track 'estimated' register pressure.
83    SmallSet<unsigned, 32> RegSeen;
84    SmallVector<unsigned, 8> RegPressure;
85
86    // Register pressure "limit" per register class. If the pressure
87    // is higher than the limit, then it's considered high.
88    SmallVector<unsigned, 8> RegLimit;
89
90    // Register pressure on path leading from loop preheader to current BB.
91    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
92
93    // For each opcode, keep a list of potential CSE instructions.
94    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
95
96  public:
97    static char ID; // Pass identification, replacement for typeid
98    MachineLICM() :
99      MachineFunctionPass(ID), PreRegAlloc(true) {}
100
101    explicit MachineLICM(bool PreRA) :
102      MachineFunctionPass(ID), PreRegAlloc(PreRA) {}
103
104    virtual bool runOnMachineFunction(MachineFunction &MF);
105
106    const char *getPassName() const { return "Machine Instruction LICM"; }
107
108    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109      AU.setPreservesCFG();
110      AU.addRequired<MachineLoopInfo>();
111      AU.addRequired<MachineDominatorTree>();
112      AU.addRequired<AliasAnalysis>();
113      AU.addPreserved<MachineLoopInfo>();
114      AU.addPreserved<MachineDominatorTree>();
115      MachineFunctionPass::getAnalysisUsage(AU);
116    }
117
118    virtual void releaseMemory() {
119      RegSeen.clear();
120      RegPressure.clear();
121      RegLimit.clear();
122      BackTrace.clear();
123      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
124             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
125        CI->second.clear();
126      CSEMap.clear();
127    }
128
129  private:
130    /// CandidateInfo - Keep track of information about hoisting candidates.
131    struct CandidateInfo {
132      MachineInstr *MI;
133      unsigned      Def;
134      int           FI;
135      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
136        : MI(mi), Def(def), FI(fi) {}
137    };
138
139    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
140    /// invariants out to the preheader.
141    void HoistRegionPostRA();
142
143    /// HoistPostRA - When an instruction is found to only use loop invariant
144    /// operands that is safe to hoist, this instruction is called to do the
145    /// dirty work.
146    void HoistPostRA(MachineInstr *MI, unsigned Def);
147
148    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
149    /// gather register def and frame object update information.
150    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
151                   SmallSet<int, 32> &StoredFIs,
152                   SmallVector<CandidateInfo, 32> &Candidates);
153
154    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
155    /// current loop.
156    void AddToLiveIns(unsigned Reg);
157
158    /// IsLICMCandidate - Returns true if the instruction may be a suitable
159    /// candidate for LICM. e.g. If the instruction is a call, then it's
160    /// obviously not safe to hoist it.
161    bool IsLICMCandidate(MachineInstr &I);
162
163    /// IsLoopInvariantInst - Returns true if the instruction is loop
164    /// invariant. I.e., all virtual register operands are defined outside of
165    /// the loop, physical registers aren't accessed (explicitly or implicitly),
166    /// and the instruction is hoistable.
167    ///
168    bool IsLoopInvariantInst(MachineInstr &I);
169
170    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
171    /// and an use in the current loop, return true if the target considered
172    /// it 'high'.
173    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, unsigned Reg);
174
175    /// IncreaseHighRegPressure - Visit BBs from preheader to current BB, check
176    /// if hoisting an instruction of the given cost matrix can cause high
177    /// register pressure.
178    bool IncreaseHighRegPressure(DenseMap<unsigned, int> &Cost);
179
180    /// IsProfitableToHoist - Return true if it is potentially profitable to
181    /// hoist the given loop invariant.
182    bool IsProfitableToHoist(MachineInstr &MI);
183
184    /// HoistRegion - Walk the specified region of the CFG (defined by all
185    /// blocks dominated by the specified block, and that are in the current
186    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
187    /// visit definitions before uses, allowing us to hoist a loop body in one
188    /// pass without iteration.
189    ///
190    void HoistRegion(MachineDomTreeNode *N, bool IsHeader = false);
191
192    /// InitRegPressure - Find all virtual register references that are liveout
193    /// of the preheader to initialize the starting "register pressure". Note
194    /// this does not count live through (livein but not used) registers.
195    void InitRegPressure(MachineBasicBlock *BB);
196
197    /// UpdateRegPressureBefore / UpdateRegPressureAfter - Update estimate of
198    /// register pressure before and after executing a specifi instruction.
199    void UpdateRegPressureBefore(const MachineInstr *MI);
200    void UpdateRegPressureAfter(const MachineInstr *MI);
201
202    /// isLoadFromConstantMemory - Return true if the given instruction is a
203    /// load from constant memory.
204    bool isLoadFromConstantMemory(MachineInstr *MI);
205
206    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
207    /// the load itself could be hoisted. Return the unfolded and hoistable
208    /// load, or null if the load couldn't be unfolded or if it wouldn't
209    /// be hoistable.
210    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
211
212    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
213    /// duplicate of MI. Return this instruction if it's found.
214    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
215                                     std::vector<const MachineInstr*> &PrevMIs);
216
217    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
218    /// the preheader that compute the same value. If it's found, do a RAU on
219    /// with the definition of the existing instruction rather than hoisting
220    /// the instruction to the preheader.
221    bool EliminateCSE(MachineInstr *MI,
222           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
223
224    /// Hoist - When an instruction is found to only use loop invariant operands
225    /// that is safe to hoist, this instruction is called to do the dirty work.
226    ///
227    void Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
228
229    /// InitCSEMap - Initialize the CSE map with instructions that are in the
230    /// current loop preheader that may become duplicates of instructions that
231    /// are hoisted out of the loop.
232    void InitCSEMap(MachineBasicBlock *BB);
233
234    /// getCurPreheader - Get the preheader for the current loop, splitting
235    /// a critical edge if needed.
236    MachineBasicBlock *getCurPreheader();
237  };
238} // end anonymous namespace
239
240char MachineLICM::ID = 0;
241INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
242                "Machine Loop Invariant Code Motion", false, false)
243INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
244INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
245INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
246INITIALIZE_PASS_END(MachineLICM, "machinelicm",
247                "Machine Loop Invariant Code Motion", false, false)
248
249FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
250  return new MachineLICM(PreRegAlloc);
251}
252
253/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
254/// loop that has a unique predecessor.
255static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
256  // Check whether this loop even has a unique predecessor.
257  if (!CurLoop->getLoopPredecessor())
258    return false;
259  // Ok, now check to see if any of its outer loops do.
260  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
261    if (L->getLoopPredecessor())
262      return false;
263  // None of them did, so this is the outermost with a unique predecessor.
264  return true;
265}
266
267bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
268  if (PreRegAlloc)
269    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
270  else
271    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
272  DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
273
274  Changed = FirstInLoop = false;
275  TM = &MF.getTarget();
276  TII = TM->getInstrInfo();
277  TLI = TM->getTargetLowering();
278  TRI = TM->getRegisterInfo();
279  MFI = MF.getFrameInfo();
280  MRI = &MF.getRegInfo();
281  InstrItins = TM->getInstrItineraryData();
282  AllocatableSet = TRI->getAllocatableSet(MF);
283
284  if (PreRegAlloc) {
285    // Estimate register pressure during pre-regalloc pass.
286    unsigned NumRC = TRI->getNumRegClasses();
287    RegPressure.resize(NumRC);
288    std::fill(RegPressure.begin(), RegPressure.end(), 0);
289    RegLimit.resize(NumRC);
290    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
291           E = TRI->regclass_end(); I != E; ++I)
292      RegLimit[(*I)->getID()] = TLI->getRegPressureLimit(*I, MF);
293  }
294
295  // Get our Loop information...
296  MLI = &getAnalysis<MachineLoopInfo>();
297  DT  = &getAnalysis<MachineDominatorTree>();
298  AA  = &getAnalysis<AliasAnalysis>();
299
300  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
301  while (!Worklist.empty()) {
302    CurLoop = Worklist.pop_back_val();
303    CurPreheader = 0;
304
305    // If this is done before regalloc, only visit outer-most preheader-sporting
306    // loops.
307    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
308      Worklist.append(CurLoop->begin(), CurLoop->end());
309      continue;
310    }
311
312    if (!PreRegAlloc)
313      HoistRegionPostRA();
314    else {
315      // CSEMap is initialized for loop header when the first instruction is
316      // being hoisted.
317      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
318      FirstInLoop = true;
319      HoistRegion(N, true);
320      CSEMap.clear();
321    }
322  }
323
324  return Changed;
325}
326
327/// InstructionStoresToFI - Return true if instruction stores to the
328/// specified frame.
329static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
330  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
331         oe = MI->memoperands_end(); o != oe; ++o) {
332    if (!(*o)->isStore() || !(*o)->getValue())
333      continue;
334    if (const FixedStackPseudoSourceValue *Value =
335        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
336      if (Value->getFrameIndex() == FI)
337        return true;
338    }
339  }
340  return false;
341}
342
343/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
344/// gather register def and frame object update information.
345void MachineLICM::ProcessMI(MachineInstr *MI,
346                            unsigned *PhysRegDefs,
347                            SmallSet<int, 32> &StoredFIs,
348                            SmallVector<CandidateInfo, 32> &Candidates) {
349  bool RuledOut = false;
350  bool HasNonInvariantUse = false;
351  unsigned Def = 0;
352  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
353    const MachineOperand &MO = MI->getOperand(i);
354    if (MO.isFI()) {
355      // Remember if the instruction stores to the frame index.
356      int FI = MO.getIndex();
357      if (!StoredFIs.count(FI) &&
358          MFI->isSpillSlotObjectIndex(FI) &&
359          InstructionStoresToFI(MI, FI))
360        StoredFIs.insert(FI);
361      HasNonInvariantUse = true;
362      continue;
363    }
364
365    if (!MO.isReg())
366      continue;
367    unsigned Reg = MO.getReg();
368    if (!Reg)
369      continue;
370    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
371           "Not expecting virtual register!");
372
373    if (!MO.isDef()) {
374      if (Reg && PhysRegDefs[Reg])
375        // If it's using a non-loop-invariant register, then it's obviously not
376        // safe to hoist.
377        HasNonInvariantUse = true;
378      continue;
379    }
380
381    if (MO.isImplicit()) {
382      ++PhysRegDefs[Reg];
383      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
384        ++PhysRegDefs[*AS];
385      if (!MO.isDead())
386        // Non-dead implicit def? This cannot be hoisted.
387        RuledOut = true;
388      // No need to check if a dead implicit def is also defined by
389      // another instruction.
390      continue;
391    }
392
393    // FIXME: For now, avoid instructions with multiple defs, unless
394    // it's a dead implicit def.
395    if (Def)
396      RuledOut = true;
397    else
398      Def = Reg;
399
400    // If we have already seen another instruction that defines the same
401    // register, then this is not safe.
402    if (++PhysRegDefs[Reg] > 1)
403      // MI defined register is seen defined by another instruction in
404      // the loop, it cannot be a LICM candidate.
405      RuledOut = true;
406    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
407      if (++PhysRegDefs[*AS] > 1)
408        RuledOut = true;
409  }
410
411  // Only consider reloads for now and remats which do not have register
412  // operands. FIXME: Consider unfold load folding instructions.
413  if (Def && !RuledOut) {
414    int FI = INT_MIN;
415    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
416        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
417      Candidates.push_back(CandidateInfo(MI, Def, FI));
418  }
419}
420
421/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
422/// invariants out to the preheader.
423void MachineLICM::HoistRegionPostRA() {
424  unsigned NumRegs = TRI->getNumRegs();
425  unsigned *PhysRegDefs = new unsigned[NumRegs];
426  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
427
428  SmallVector<CandidateInfo, 32> Candidates;
429  SmallSet<int, 32> StoredFIs;
430
431  // Walk the entire region, count number of defs for each register, and
432  // collect potential LICM candidates.
433  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
434  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
435    MachineBasicBlock *BB = Blocks[i];
436    // Conservatively treat live-in's as an external def.
437    // FIXME: That means a reload that're reused in successor block(s) will not
438    // be LICM'ed.
439    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
440           E = BB->livein_end(); I != E; ++I) {
441      unsigned Reg = *I;
442      ++PhysRegDefs[Reg];
443      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
444        ++PhysRegDefs[*AS];
445    }
446
447    for (MachineBasicBlock::iterator
448           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
449      MachineInstr *MI = &*MII;
450      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
451    }
452  }
453
454  // Now evaluate whether the potential candidates qualify.
455  // 1. Check if the candidate defined register is defined by another
456  //    instruction in the loop.
457  // 2. If the candidate is a load from stack slot (always true for now),
458  //    check if the slot is stored anywhere in the loop.
459  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
460    if (Candidates[i].FI != INT_MIN &&
461        StoredFIs.count(Candidates[i].FI))
462      continue;
463
464    if (PhysRegDefs[Candidates[i].Def] == 1) {
465      bool Safe = true;
466      MachineInstr *MI = Candidates[i].MI;
467      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
468        const MachineOperand &MO = MI->getOperand(j);
469        if (!MO.isReg() || MO.isDef() || !MO.getReg())
470          continue;
471        if (PhysRegDefs[MO.getReg()]) {
472          // If it's using a non-loop-invariant register, then it's obviously
473          // not safe to hoist.
474          Safe = false;
475          break;
476        }
477      }
478      if (Safe)
479        HoistPostRA(MI, Candidates[i].Def);
480    }
481  }
482
483  delete[] PhysRegDefs;
484}
485
486/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
487/// loop, and make sure it is not killed by any instructions in the loop.
488void MachineLICM::AddToLiveIns(unsigned Reg) {
489  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
490  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
491    MachineBasicBlock *BB = Blocks[i];
492    if (!BB->isLiveIn(Reg))
493      BB->addLiveIn(Reg);
494    for (MachineBasicBlock::iterator
495           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
496      MachineInstr *MI = &*MII;
497      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
498        MachineOperand &MO = MI->getOperand(i);
499        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
500        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
501          MO.setIsKill(false);
502      }
503    }
504  }
505}
506
507/// HoistPostRA - When an instruction is found to only use loop invariant
508/// operands that is safe to hoist, this instruction is called to do the
509/// dirty work.
510void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
511  MachineBasicBlock *Preheader = getCurPreheader();
512  if (!Preheader) return;
513
514  // Now move the instructions to the predecessor, inserting it before any
515  // terminator instructions.
516  DEBUG({
517      dbgs() << "Hoisting " << *MI;
518      if (Preheader->getBasicBlock())
519        dbgs() << " to MachineBasicBlock "
520               << Preheader->getName();
521      if (MI->getParent()->getBasicBlock())
522        dbgs() << " from MachineBasicBlock "
523               << MI->getParent()->getName();
524      dbgs() << "\n";
525    });
526
527  // Splice the instruction to the preheader.
528  MachineBasicBlock *MBB = MI->getParent();
529  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
530
531  // Add register to livein list to all the BBs in the current loop since a
532  // loop invariant must be kept live throughout the whole loop. This is
533  // important to ensure later passes do not scavenge the def register.
534  AddToLiveIns(Def);
535
536  ++NumPostRAHoisted;
537  Changed = true;
538}
539
540/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
541/// dominated by the specified block, and that are in the current loop) in depth
542/// first order w.r.t the DominatorTree. This allows us to visit definitions
543/// before uses, allowing us to hoist a loop body in one pass without iteration.
544///
545void MachineLICM::HoistRegion(MachineDomTreeNode *N, bool IsHeader) {
546  assert(N != 0 && "Null dominator tree node?");
547  MachineBasicBlock *BB = N->getBlock();
548
549  // If this subregion is not in the top level loop at all, exit.
550  if (!CurLoop->contains(BB)) return;
551
552  MachineBasicBlock *Preheader = getCurPreheader();
553  if (!Preheader)
554    return;
555
556  if (IsHeader) {
557    // Compute registers which are liveout of preheader.
558    RegSeen.clear();
559    BackTrace.clear();
560    InitRegPressure(Preheader);
561  }
562
563  // Remember livein register pressure.
564  BackTrace.push_back(RegPressure);
565
566  for (MachineBasicBlock::iterator
567         MII = BB->begin(), E = BB->end(); MII != E; ) {
568    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
569    MachineInstr *MI = &*MII;
570
571    UpdateRegPressureBefore(MI);
572    Hoist(MI, Preheader);
573    UpdateRegPressureAfter(MI);
574
575    MII = NextMII;
576  }
577
578  // Don't hoist things out of a large switch statement.  This often causes
579  // code to be hoisted that wasn't going to be executed, and increases
580  // register pressure in a situation where it's likely to matter.
581  if (BB->succ_size() < 25) {
582    const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
583    for (unsigned I = 0, E = Children.size(); I != E; ++I)
584      HoistRegion(Children[I]);
585  }
586
587  BackTrace.pop_back();
588}
589
590/// InitRegPressure - Find all virtual register references that are liveout of
591/// the preheader to initialize the starting "register pressure". Note this
592/// does not count live through (livein but not used) registers.
593void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
594  std::fill(RegPressure.begin(), RegPressure.end(), 0);
595
596  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
597       MII != E; ++MII) {
598    MachineInstr *MI = &*MII;
599    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
600      const MachineOperand &MO = MI->getOperand(i);
601      if (!MO.isReg() || MO.isImplicit())
602        continue;
603      unsigned Reg = MO.getReg();
604      if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
605        continue;
606
607      bool isNew = !RegSeen.insert(Reg);
608      const TargetRegisterClass *RC = MRI->getRegClass(Reg);
609      EVT VT = *RC->vt_begin();
610      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
611      if (MO.isDef())
612        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
613      else {
614        if (isNew && !MO.isKill())
615          // Haven't seen this, it must be a livein.
616          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
617        else if (!isNew && MO.isKill())
618          RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
619      }
620    }
621  }
622}
623
624/// UpdateRegPressureBefore / UpdateRegPressureAfter - Update estimate of
625/// register pressure before and after executing a specifi instruction.
626void MachineLICM::UpdateRegPressureBefore(const MachineInstr *MI) {
627  bool NoImpact = MI->isImplicitDef() || MI->isPHI();
628
629  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
630    const MachineOperand &MO = MI->getOperand(i);
631    if (!MO.isReg() || MO.isImplicit() || !MO.isUse())
632      continue;
633    unsigned Reg = MO.getReg();
634    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
635      continue;
636
637    bool isNew = !RegSeen.insert(Reg);
638    if (NoImpact)
639      continue;
640
641    if (!isNew && MO.isKill()) {
642      const TargetRegisterClass *RC = MRI->getRegClass(Reg);
643      EVT VT = *RC->vt_begin();
644      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
645      unsigned RCCost = TLI->getRepRegClassCostFor(VT);
646
647      assert(RCCost <= RegPressure[RCId]);
648      RegPressure[RCId] -= RCCost;
649    }
650  }
651}
652
653void MachineLICM::UpdateRegPressureAfter(const MachineInstr *MI) {
654  bool NoImpact = MI->isImplicitDef() || MI->isPHI();
655
656  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
657    const MachineOperand &MO = MI->getOperand(i);
658    if (!MO.isReg() || MO.isImplicit() || !MO.isDef())
659      continue;
660    unsigned Reg = MO.getReg();
661    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
662      continue;
663
664    RegSeen.insert(Reg);
665    if (NoImpact)
666      continue;
667
668    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
669    EVT VT = *RC->vt_begin();
670    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
671    unsigned RCCost = TLI->getRepRegClassCostFor(VT);
672    RegPressure[RCId] += RCCost;
673  }
674}
675
676/// IsLICMCandidate - Returns true if the instruction may be a suitable
677/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
678/// not safe to hoist it.
679bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
680  // Check if it's safe to move the instruction.
681  bool DontMoveAcrossStore = true;
682  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
683    return false;
684
685  return true;
686}
687
688/// IsLoopInvariantInst - Returns true if the instruction is loop
689/// invariant. I.e., all virtual register operands are defined outside of the
690/// loop, physical registers aren't accessed explicitly, and there are no side
691/// effects that aren't captured by the operands or other flags.
692///
693bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
694  if (!IsLICMCandidate(I))
695    return false;
696
697  // The instruction is loop invariant if all of its operands are.
698  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
699    const MachineOperand &MO = I.getOperand(i);
700
701    if (!MO.isReg())
702      continue;
703
704    unsigned Reg = MO.getReg();
705    if (Reg == 0) continue;
706
707    // Don't hoist an instruction that uses or defines a physical register.
708    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
709      if (MO.isUse()) {
710        // If the physreg has no defs anywhere, it's just an ambient register
711        // and we can freely move its uses. Alternatively, if it's allocatable,
712        // it could get allocated to something with a def during allocation.
713        if (!MRI->def_empty(Reg))
714          return false;
715        if (AllocatableSet.test(Reg))
716          return false;
717        // Check for a def among the register's aliases too.
718        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
719          unsigned AliasReg = *Alias;
720          if (!MRI->def_empty(AliasReg))
721            return false;
722          if (AllocatableSet.test(AliasReg))
723            return false;
724        }
725        // Otherwise it's safe to move.
726        continue;
727      } else if (!MO.isDead()) {
728        // A def that isn't dead. We can't move it.
729        return false;
730      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
731        // If the reg is live into the loop, we can't hoist an instruction
732        // which would clobber it.
733        return false;
734      }
735    }
736
737    if (!MO.isUse())
738      continue;
739
740    assert(MRI->getVRegDef(Reg) &&
741           "Machine instr not mapped for this vreg?!");
742
743    // If the loop contains the definition of an operand, then the instruction
744    // isn't loop invariant.
745    if (CurLoop->contains(MRI->getVRegDef(Reg)))
746      return false;
747  }
748
749  // If we got this far, the instruction is loop invariant!
750  return true;
751}
752
753
754/// HasPHIUses - Return true if the specified register has any PHI use.
755static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *MRI) {
756  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
757         UE = MRI->use_end(); UI != UE; ++UI) {
758    MachineInstr *UseMI = &*UI;
759    if (UseMI->isPHI())
760      return true;
761  }
762  return false;
763}
764
765/// isLoadFromConstantMemory - Return true if the given instruction is a
766/// load from constant memory. Machine LICM will hoist these even if they are
767/// not re-materializable.
768bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
769  if (!MI->getDesc().mayLoad()) return false;
770  if (!MI->hasOneMemOperand()) return false;
771  MachineMemOperand *MMO = *MI->memoperands_begin();
772  if (MMO->isVolatile()) return false;
773  if (!MMO->getValue()) return false;
774  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
775  if (PSV) {
776    MachineFunction &MF = *MI->getParent()->getParent();
777    return PSV->isConstant(MF.getFrameInfo());
778  } else {
779    return AA->pointsToConstantMemory(MMO->getValue());
780  }
781}
782
783/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
784/// and an use in the current loop, return true if the target considered
785/// it 'high'.
786bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
787                                        unsigned DefIdx, unsigned Reg) {
788  if (MRI->use_nodbg_empty(Reg))
789    return false;
790
791  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
792         E = MRI->use_nodbg_end(); I != E; ++I) {
793    MachineInstr *UseMI = &*I;
794    if (!CurLoop->contains(UseMI->getParent()))
795      continue;
796    for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
797      const MachineOperand &MO = UseMI->getOperand(i);
798      if (!MO.isReg() || !MO.isUse())
799        continue;
800      unsigned MOReg = MO.getReg();
801      if (MOReg != Reg)
802        continue;
803
804      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
805        return true;
806    }
807
808    // Only look at the first in loop use.
809    break;
810  }
811
812  return false;
813}
814
815/// IncreaseHighRegPressure - Visit BBs from preheader to current BB, check
816/// if hoisting an instruction of the given cost matrix can cause high
817/// register pressure.
818bool MachineLICM::IncreaseHighRegPressure(DenseMap<unsigned, int> &Cost) {
819  for (unsigned i = BackTrace.size(); i != 0; --i) {
820    bool AnyIncrease = false;
821    SmallVector<unsigned, 8> &RP = BackTrace[i-1];
822    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
823         CI != CE; ++CI) {
824      if (CI->second <= 0)
825        continue;
826      AnyIncrease = true;
827      unsigned RCId = CI->first;
828      if (RP[RCId] + CI->second >= RegLimit[RCId])
829        return true;
830    }
831
832    if (!AnyIncrease)
833      // Hoisting the instruction doesn't increase register pressure.
834      return false;
835  }
836
837  return false;
838}
839
840/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
841/// the given loop invariant.
842bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
843  if (MI.isImplicitDef())
844    return true;
845
846  // If the instruction is cheap, only hoist if it is re-materilizable. LICM
847  // will increase register pressure. It's probably not worth it if the
848  // instruction is cheap.
849  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
850  // these tend to help performance in low register pressure situation. The
851  // trade off is it may cause spill in high pressure situation. It will end up
852  // adding a store in the loop preheader. But the reload is no more expensive.
853  // The side benefit is these loads are frequently CSE'ed.
854  if (MI.getDesc().isAsCheapAsAMove()) {
855    if (!TII->isTriviallyReMaterializable(&MI, AA))
856      return false;
857  } else {
858    // Estimate register pressure to determine whether to LICM the instruction.
859    // In low register pressure situation, we can be more aggressive about
860    // hoisting. Also, favors hoisting long latency instructions even in
861    // moderately high pressure situation.
862    DenseMap<unsigned, int> Cost;
863    for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
864      const MachineOperand &MO = MI.getOperand(i);
865      if (!MO.isReg() || MO.isImplicit())
866        continue;
867      unsigned Reg = MO.getReg();
868      if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
869        continue;
870      if (MO.isDef()) {
871        if (HasHighOperandLatency(MI, i, Reg)) {
872          ++NumHighLatency;
873          return true;
874        }
875
876        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
877        EVT VT = *RC->vt_begin();
878        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
879        unsigned RCCost = TLI->getRepRegClassCostFor(VT);
880        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
881        // If the instruction is not register pressure neutrail (or better),
882        // check if hoisting it will cause high register pressure in BB's
883        // leading up to this point.
884        if (CI != Cost.end())
885          CI->second += RCCost;
886        else
887          Cost.insert(std::make_pair(RCId, RCCost));
888      } else if (MO.isKill()) {
889        // Is a virtual register use is a kill, hoisting it out of the loop
890        // may actually reduce register pressure or be register pressure
891        // neutral
892        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
893        EVT VT = *RC->vt_begin();
894        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
895        unsigned RCCost = TLI->getRepRegClassCostFor(VT);
896        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
897        if (CI != Cost.end())
898          CI->second -= RCCost;
899        else
900          Cost.insert(std::make_pair(RCId, -RCCost));
901      }
902    }
903
904    // Visit BBs from preheader to current BB, if hoisting this doesn't cause
905    // high register pressure, then it's safe to proceed.
906    if (!IncreaseHighRegPressure(Cost)) {
907      ++NumLowRP;
908      return true;
909    }
910
911    // High register pressure situation, only hoist if the instruction is going to
912    // be remat'ed.
913    if (!TII->isTriviallyReMaterializable(&MI, AA) &&
914        !isLoadFromConstantMemory(&MI))
915      return false;
916  }
917
918  // If result(s) of this instruction is used by PHIs, then don't hoist it.
919  // The presence of joins makes it difficult for current register allocator
920  // implementation to perform remat.
921  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
922    const MachineOperand &MO = MI.getOperand(i);
923    if (!MO.isReg() || !MO.isDef())
924      continue;
925    if (HasPHIUses(MO.getReg(), MRI))
926      return false;
927  }
928
929  return true;
930}
931
932MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
933  // Don't unfold simple loads.
934  if (MI->getDesc().canFoldAsLoad())
935    return 0;
936
937  // If not, we may be able to unfold a load and hoist that.
938  // First test whether the instruction is loading from an amenable
939  // memory location.
940  if (!isLoadFromConstantMemory(MI))
941    return 0;
942
943  // Next determine the register class for a temporary register.
944  unsigned LoadRegIndex;
945  unsigned NewOpc =
946    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
947                                    /*UnfoldLoad=*/true,
948                                    /*UnfoldStore=*/false,
949                                    &LoadRegIndex);
950  if (NewOpc == 0) return 0;
951  const TargetInstrDesc &TID = TII->get(NewOpc);
952  if (TID.getNumDefs() != 1) return 0;
953  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
954  // Ok, we're unfolding. Create a temporary register and do the unfold.
955  unsigned Reg = MRI->createVirtualRegister(RC);
956
957  MachineFunction &MF = *MI->getParent()->getParent();
958  SmallVector<MachineInstr *, 2> NewMIs;
959  bool Success =
960    TII->unfoldMemoryOperand(MF, MI, Reg,
961                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
962                             NewMIs);
963  (void)Success;
964  assert(Success &&
965         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
966         "succeeded!");
967  assert(NewMIs.size() == 2 &&
968         "Unfolded a load into multiple instructions!");
969  MachineBasicBlock *MBB = MI->getParent();
970  MBB->insert(MI, NewMIs[0]);
971  MBB->insert(MI, NewMIs[1]);
972  // If unfolding produced a load that wasn't loop-invariant or profitable to
973  // hoist, discard the new instructions and bail.
974  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
975    NewMIs[0]->eraseFromParent();
976    NewMIs[1]->eraseFromParent();
977    return 0;
978  }
979  // Otherwise we successfully unfolded a load that we can hoist.
980  MI->eraseFromParent();
981  return NewMIs[0];
982}
983
984void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
985  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
986    const MachineInstr *MI = &*I;
987    // FIXME: For now, only hoist re-materilizable instructions. LICM will
988    // increase register pressure. We want to make sure it doesn't increase
989    // spilling.
990    if (TII->isTriviallyReMaterializable(MI, AA)) {
991      unsigned Opcode = MI->getOpcode();
992      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
993        CI = CSEMap.find(Opcode);
994      if (CI != CSEMap.end())
995        CI->second.push_back(MI);
996      else {
997        std::vector<const MachineInstr*> CSEMIs;
998        CSEMIs.push_back(MI);
999        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1000      }
1001    }
1002  }
1003}
1004
1005const MachineInstr*
1006MachineLICM::LookForDuplicate(const MachineInstr *MI,
1007                              std::vector<const MachineInstr*> &PrevMIs) {
1008  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1009    const MachineInstr *PrevMI = PrevMIs[i];
1010    if (TII->produceSameValue(MI, PrevMI))
1011      return PrevMI;
1012  }
1013  return 0;
1014}
1015
1016bool MachineLICM::EliminateCSE(MachineInstr *MI,
1017          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1018  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1019  // the undef property onto uses.
1020  if (CI == CSEMap.end() || MI->isImplicitDef())
1021    return false;
1022
1023  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1024    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1025
1026    // Replace virtual registers defined by MI by their counterparts defined
1027    // by Dup.
1028    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1029      const MachineOperand &MO = MI->getOperand(i);
1030
1031      // Physical registers may not differ here.
1032      assert((!MO.isReg() || MO.getReg() == 0 ||
1033              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1034              MO.getReg() == Dup->getOperand(i).getReg()) &&
1035             "Instructions with different phys regs are not identical!");
1036
1037      if (MO.isReg() && MO.isDef() &&
1038          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1039        MRI->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
1040        MRI->clearKillFlags(Dup->getOperand(i).getReg());
1041      }
1042    }
1043    MI->eraseFromParent();
1044    ++NumCSEed;
1045    return true;
1046  }
1047  return false;
1048}
1049
1050/// Hoist - When an instruction is found to use only loop invariant operands
1051/// that are safe to hoist, this instruction is called to do the dirty work.
1052///
1053void MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1054  // First check whether we should hoist this instruction.
1055  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1056    // If not, try unfolding a hoistable load.
1057    MI = ExtractHoistableLoad(MI);
1058    if (!MI) return;
1059  }
1060
1061  // Now move the instructions to the predecessor, inserting it before any
1062  // terminator instructions.
1063  DEBUG({
1064      dbgs() << "Hoisting " << *MI;
1065      if (Preheader->getBasicBlock())
1066        dbgs() << " to MachineBasicBlock "
1067               << Preheader->getName();
1068      if (MI->getParent()->getBasicBlock())
1069        dbgs() << " from MachineBasicBlock "
1070               << MI->getParent()->getName();
1071      dbgs() << "\n";
1072    });
1073
1074  // If this is the first instruction being hoisted to the preheader,
1075  // initialize the CSE map with potential common expressions.
1076  if (FirstInLoop) {
1077    InitCSEMap(Preheader);
1078    FirstInLoop = false;
1079  }
1080
1081  // Look for opportunity to CSE the hoisted instruction.
1082  unsigned Opcode = MI->getOpcode();
1083  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1084    CI = CSEMap.find(Opcode);
1085  if (!EliminateCSE(MI, CI)) {
1086    // Otherwise, splice the instruction to the preheader.
1087    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1088
1089    // Clear the kill flags of any register this instruction defines,
1090    // since they may need to be live throughout the entire loop
1091    // rather than just live for part of it.
1092    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1093      MachineOperand &MO = MI->getOperand(i);
1094      if (MO.isReg() && MO.isDef() && !MO.isDead())
1095        MRI->clearKillFlags(MO.getReg());
1096    }
1097
1098    // Add to the CSE map.
1099    if (CI != CSEMap.end())
1100      CI->second.push_back(MI);
1101    else {
1102      std::vector<const MachineInstr*> CSEMIs;
1103      CSEMIs.push_back(MI);
1104      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1105    }
1106  }
1107
1108  ++NumHoisted;
1109  Changed = true;
1110}
1111
1112MachineBasicBlock *MachineLICM::getCurPreheader() {
1113  // Determine the block to which to hoist instructions. If we can't find a
1114  // suitable loop predecessor, we can't do any hoisting.
1115
1116  // If we've tried to get a preheader and failed, don't try again.
1117  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1118    return 0;
1119
1120  if (!CurPreheader) {
1121    CurPreheader = CurLoop->getLoopPreheader();
1122    if (!CurPreheader) {
1123      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1124      if (!Pred) {
1125        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1126        return 0;
1127      }
1128
1129      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1130      if (!CurPreheader) {
1131        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1132        return 0;
1133      }
1134    }
1135  }
1136  return CurPreheader;
1137}
1138