MachineLICM.cpp revision fd3d4cf0ef5237bd517559703bea2310f1841a5d
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/MC/MCInstrItineraries.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43using namespace llvm;
44
45static cl::opt<bool>
46AvoidSpeculation("avoid-speculation",
47                 cl::desc("MachineLICM should avoid speculation"),
48                 cl::init(true), cl::Hidden);
49
50STATISTIC(NumHoisted,
51          "Number of machine instructions hoisted out of loops");
52STATISTIC(NumLowRP,
53          "Number of instructions hoisted in low reg pressure situation");
54STATISTIC(NumHighLatency,
55          "Number of high latency instructions hoisted");
56STATISTIC(NumCSEed,
57          "Number of hoisted machine instructions CSEed");
58STATISTIC(NumPostRAHoisted,
59          "Number of machine instructions hoisted out of loops post regalloc");
60
61namespace {
62  class MachineLICM : public MachineFunctionPass {
63    const TargetMachine   *TM;
64    const TargetInstrInfo *TII;
65    const TargetLowering *TLI;
66    const TargetRegisterInfo *TRI;
67    const MachineFrameInfo *MFI;
68    MachineRegisterInfo *MRI;
69    const InstrItineraryData *InstrItins;
70    bool PreRegAlloc;
71
72    // Various analyses that we use...
73    AliasAnalysis        *AA;      // Alias analysis info.
74    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
75    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
76
77    // State that is updated as we process loops
78    bool         Changed;          // True if a loop is changed.
79    bool         FirstInLoop;      // True if it's the first LICM in the loop.
80    MachineLoop *CurLoop;          // The current loop we are working on.
81    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
82
83    // Track 'estimated' register pressure.
84    SmallSet<unsigned, 32> RegSeen;
85    SmallVector<unsigned, 8> RegPressure;
86
87    // Register pressure "limit" per register class. If the pressure
88    // is higher than the limit, then it's considered high.
89    SmallVector<unsigned, 8> RegLimit;
90
91    // Register pressure on path leading from loop preheader to current BB.
92    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
93
94    // For each opcode, keep a list of potential CSE instructions.
95    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
96
97    enum {
98      SpeculateFalse   = 0,
99      SpeculateTrue    = 1,
100      SpeculateUnknown = 2
101    };
102
103    // If a MBB does not dominate loop exiting blocks then it may not safe
104    // to hoist loads from this block.
105    // Tri-state: 0 - false, 1 - true, 2 - unknown
106    unsigned SpeculationState;
107
108  public:
109    static char ID; // Pass identification, replacement for typeid
110    MachineLICM() :
111      MachineFunctionPass(ID), PreRegAlloc(true) {
112        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
113      }
114
115    explicit MachineLICM(bool PreRA) :
116      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
117        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
118      }
119
120    virtual bool runOnMachineFunction(MachineFunction &MF);
121
122    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
123      AU.addRequired<MachineLoopInfo>();
124      AU.addRequired<MachineDominatorTree>();
125      AU.addRequired<AliasAnalysis>();
126      AU.addPreserved<MachineLoopInfo>();
127      AU.addPreserved<MachineDominatorTree>();
128      MachineFunctionPass::getAnalysisUsage(AU);
129    }
130
131    virtual void releaseMemory() {
132      RegSeen.clear();
133      RegPressure.clear();
134      RegLimit.clear();
135      BackTrace.clear();
136      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
137             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
138        CI->second.clear();
139      CSEMap.clear();
140    }
141
142  private:
143    /// CandidateInfo - Keep track of information about hoisting candidates.
144    struct CandidateInfo {
145      MachineInstr *MI;
146      unsigned      Def;
147      int           FI;
148      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
149        : MI(mi), Def(def), FI(fi) {}
150    };
151
152    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
153    /// invariants out to the preheader.
154    void HoistRegionPostRA();
155
156    /// HoistPostRA - When an instruction is found to only use loop invariant
157    /// operands that is safe to hoist, this instruction is called to do the
158    /// dirty work.
159    void HoistPostRA(MachineInstr *MI, unsigned Def);
160
161    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
162    /// gather register def and frame object update information.
163    void ProcessMI(MachineInstr *MI,
164                   BitVector &PhysRegDefs,
165                   BitVector &PhysRegClobbers,
166                   SmallSet<int, 32> &StoredFIs,
167                   SmallVector<CandidateInfo, 32> &Candidates);
168
169    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
170    /// current loop.
171    void AddToLiveIns(unsigned Reg);
172
173    /// IsLICMCandidate - Returns true if the instruction may be a suitable
174    /// candidate for LICM. e.g. If the instruction is a call, then it's
175    /// obviously not safe to hoist it.
176    bool IsLICMCandidate(MachineInstr &I);
177
178    /// IsLoopInvariantInst - Returns true if the instruction is loop
179    /// invariant. I.e., all virtual register operands are defined outside of
180    /// the loop, physical registers aren't accessed (explicitly or implicitly),
181    /// and the instruction is hoistable.
182    ///
183    bool IsLoopInvariantInst(MachineInstr &I);
184
185    /// HasAnyPHIUse - Return true if the specified register is used by any
186    /// phi node.
187    bool HasAnyPHIUse(unsigned Reg) const;
188
189    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
190    /// and an use in the current loop, return true if the target considered
191    /// it 'high'.
192    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
193                               unsigned Reg) const;
194
195    bool IsCheapInstruction(MachineInstr &MI) const;
196
197    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
198    /// check if hoisting an instruction of the given cost matrix can cause high
199    /// register pressure.
200    bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
201
202    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
203    /// the current block and update their register pressures to reflect the
204    /// effect of hoisting MI from the current block to the preheader.
205    void UpdateBackTraceRegPressure(const MachineInstr *MI);
206
207    /// IsProfitableToHoist - Return true if it is potentially profitable to
208    /// hoist the given loop invariant.
209    bool IsProfitableToHoist(MachineInstr &MI);
210
211    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
212    /// If not then a load from this mbb may not be safe to hoist.
213    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
214
215    void EnterScope(MachineBasicBlock *MBB);
216
217    void ExitScope(MachineBasicBlock *MBB);
218
219    /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
220    /// dominator tree node if its a leaf or all of its children are done. Walk
221    /// up the dominator tree to destroy ancestors which are now done.
222    void ExitScopeIfDone(MachineDomTreeNode *Node,
223                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
224                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
225
226    /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
227    /// blocks dominated by the specified header block, and that are in the
228    /// current loop) in depth first order w.r.t the DominatorTree. This allows
229    /// us to visit definitions before uses, allowing us to hoist a loop body in
230    /// one pass without iteration.
231    ///
232    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
233    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
234
235    /// getRegisterClassIDAndCost - For a given MI, register, and the operand
236    /// index, return the ID and cost of its representative register class by
237    /// reference.
238    void getRegisterClassIDAndCost(const MachineInstr *MI,
239                                   unsigned Reg, unsigned OpIdx,
240                                   unsigned &RCId, unsigned &RCCost) const;
241
242    /// InitRegPressure - Find all virtual register references that are liveout
243    /// of the preheader to initialize the starting "register pressure". Note
244    /// this does not count live through (livein but not used) registers.
245    void InitRegPressure(MachineBasicBlock *BB);
246
247    /// UpdateRegPressure - Update estimate of register pressure after the
248    /// specified instruction.
249    void UpdateRegPressure(const MachineInstr *MI);
250
251    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
252    /// the load itself could be hoisted. Return the unfolded and hoistable
253    /// load, or null if the load couldn't be unfolded or if it wouldn't
254    /// be hoistable.
255    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
256
257    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
258    /// duplicate of MI. Return this instruction if it's found.
259    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
260                                     std::vector<const MachineInstr*> &PrevMIs);
261
262    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
263    /// the preheader that compute the same value. If it's found, do a RAU on
264    /// with the definition of the existing instruction rather than hoisting
265    /// the instruction to the preheader.
266    bool EliminateCSE(MachineInstr *MI,
267           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
268
269    /// MayCSE - Return true if the given instruction will be CSE'd if it's
270    /// hoisted out of the loop.
271    bool MayCSE(MachineInstr *MI);
272
273    /// Hoist - When an instruction is found to only use loop invariant operands
274    /// that is safe to hoist, this instruction is called to do the dirty work.
275    /// It returns true if the instruction is hoisted.
276    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
277
278    /// InitCSEMap - Initialize the CSE map with instructions that are in the
279    /// current loop preheader that may become duplicates of instructions that
280    /// are hoisted out of the loop.
281    void InitCSEMap(MachineBasicBlock *BB);
282
283    /// getCurPreheader - Get the preheader for the current loop, splitting
284    /// a critical edge if needed.
285    MachineBasicBlock *getCurPreheader();
286  };
287} // end anonymous namespace
288
289char MachineLICM::ID = 0;
290char &llvm::MachineLICMID = MachineLICM::ID;
291INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
292                "Machine Loop Invariant Code Motion", false, false)
293INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
294INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
295INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
296INITIALIZE_PASS_END(MachineLICM, "machinelicm",
297                "Machine Loop Invariant Code Motion", false, false)
298
299/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
300/// loop that has a unique predecessor.
301static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
302  // Check whether this loop even has a unique predecessor.
303  if (!CurLoop->getLoopPredecessor())
304    return false;
305  // Ok, now check to see if any of its outer loops do.
306  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
307    if (L->getLoopPredecessor())
308      return false;
309  // None of them did, so this is the outermost with a unique predecessor.
310  return true;
311}
312
313bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
314  Changed = FirstInLoop = false;
315  TM = &MF.getTarget();
316  TII = TM->getInstrInfo();
317  TLI = TM->getTargetLowering();
318  TRI = TM->getRegisterInfo();
319  MFI = MF.getFrameInfo();
320  MRI = &MF.getRegInfo();
321  InstrItins = TM->getInstrItineraryData();
322
323  PreRegAlloc = MRI->isSSA();
324
325  if (PreRegAlloc)
326    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
327  else
328    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
329  DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
330
331  if (PreRegAlloc) {
332    // Estimate register pressure during pre-regalloc pass.
333    unsigned NumRC = TRI->getNumRegClasses();
334    RegPressure.resize(NumRC);
335    std::fill(RegPressure.begin(), RegPressure.end(), 0);
336    RegLimit.resize(NumRC);
337    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
338           E = TRI->regclass_end(); I != E; ++I)
339      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
340  }
341
342  // Get our Loop information...
343  MLI = &getAnalysis<MachineLoopInfo>();
344  DT  = &getAnalysis<MachineDominatorTree>();
345  AA  = &getAnalysis<AliasAnalysis>();
346
347  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
348  while (!Worklist.empty()) {
349    CurLoop = Worklist.pop_back_val();
350    CurPreheader = 0;
351
352    // If this is done before regalloc, only visit outer-most preheader-sporting
353    // loops.
354    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
355      Worklist.append(CurLoop->begin(), CurLoop->end());
356      continue;
357    }
358
359    if (!PreRegAlloc)
360      HoistRegionPostRA();
361    else {
362      // CSEMap is initialized for loop header when the first instruction is
363      // being hoisted.
364      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
365      FirstInLoop = true;
366      HoistOutOfLoop(N);
367      CSEMap.clear();
368    }
369  }
370
371  return Changed;
372}
373
374/// InstructionStoresToFI - Return true if instruction stores to the
375/// specified frame.
376static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
377  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
378         oe = MI->memoperands_end(); o != oe; ++o) {
379    if (!(*o)->isStore() || !(*o)->getValue())
380      continue;
381    if (const FixedStackPseudoSourceValue *Value =
382        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
383      if (Value->getFrameIndex() == FI)
384        return true;
385    }
386  }
387  return false;
388}
389
390/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
391/// gather register def and frame object update information.
392void MachineLICM::ProcessMI(MachineInstr *MI,
393                            BitVector &PhysRegDefs,
394                            BitVector &PhysRegClobbers,
395                            SmallSet<int, 32> &StoredFIs,
396                            SmallVector<CandidateInfo, 32> &Candidates) {
397  bool RuledOut = false;
398  bool HasNonInvariantUse = false;
399  unsigned Def = 0;
400  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
401    const MachineOperand &MO = MI->getOperand(i);
402    if (MO.isFI()) {
403      // Remember if the instruction stores to the frame index.
404      int FI = MO.getIndex();
405      if (!StoredFIs.count(FI) &&
406          MFI->isSpillSlotObjectIndex(FI) &&
407          InstructionStoresToFI(MI, FI))
408        StoredFIs.insert(FI);
409      HasNonInvariantUse = true;
410      continue;
411    }
412
413    // We can't hoist an instruction defining a physreg that is clobbered in
414    // the loop.
415    if (MO.isRegMask()) {
416      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
417      continue;
418    }
419
420    if (!MO.isReg())
421      continue;
422    unsigned Reg = MO.getReg();
423    if (!Reg)
424      continue;
425    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
426           "Not expecting virtual register!");
427
428    if (!MO.isDef()) {
429      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
430        // If it's using a non-loop-invariant register, then it's obviously not
431        // safe to hoist.
432        HasNonInvariantUse = true;
433      continue;
434    }
435
436    if (MO.isImplicit()) {
437      for (const unsigned *AS = TRI->getOverlaps(Reg); *AS; ++AS)
438        PhysRegClobbers.set(*AS);
439      if (!MO.isDead())
440        // Non-dead implicit def? This cannot be hoisted.
441        RuledOut = true;
442      // No need to check if a dead implicit def is also defined by
443      // another instruction.
444      continue;
445    }
446
447    // FIXME: For now, avoid instructions with multiple defs, unless
448    // it's a dead implicit def.
449    if (Def)
450      RuledOut = true;
451    else
452      Def = Reg;
453
454    // If we have already seen another instruction that defines the same
455    // register, then this is not safe.  Two defs is indicated by setting a
456    // PhysRegClobbers bit.
457    for (const unsigned *AS = TRI->getOverlaps(Reg); *AS; ++AS) {
458      if (PhysRegDefs.test(*AS))
459        PhysRegClobbers.set(*AS);
460      if (PhysRegClobbers.test(*AS))
461        // MI defined register is seen defined by another instruction in
462        // the loop, it cannot be a LICM candidate.
463        RuledOut = true;
464      PhysRegDefs.set(*AS);
465    }
466  }
467
468  // Only consider reloads for now and remats which do not have register
469  // operands. FIXME: Consider unfold load folding instructions.
470  if (Def && !RuledOut) {
471    int FI = INT_MIN;
472    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
473        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
474      Candidates.push_back(CandidateInfo(MI, Def, FI));
475  }
476}
477
478/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
479/// invariants out to the preheader.
480void MachineLICM::HoistRegionPostRA() {
481  unsigned NumRegs = TRI->getNumRegs();
482  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
483  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
484
485  SmallVector<CandidateInfo, 32> Candidates;
486  SmallSet<int, 32> StoredFIs;
487
488  // Walk the entire region, count number of defs for each register, and
489  // collect potential LICM candidates.
490  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
491  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
492    MachineBasicBlock *BB = Blocks[i];
493
494    // If the header of the loop containing this basic block is a landing pad,
495    // then don't try to hoist instructions out of this loop.
496    const MachineLoop *ML = MLI->getLoopFor(BB);
497    if (ML && ML->getHeader()->isLandingPad()) continue;
498
499    // Conservatively treat live-in's as an external def.
500    // FIXME: That means a reload that're reused in successor block(s) will not
501    // be LICM'ed.
502    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
503           E = BB->livein_end(); I != E; ++I) {
504      unsigned Reg = *I;
505      for (const unsigned *AS = TRI->getOverlaps(Reg); *AS; ++AS)
506        PhysRegDefs.set(*AS);
507    }
508
509    SpeculationState = SpeculateUnknown;
510    for (MachineBasicBlock::iterator
511           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
512      MachineInstr *MI = &*MII;
513      ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
514    }
515  }
516
517  // Now evaluate whether the potential candidates qualify.
518  // 1. Check if the candidate defined register is defined by another
519  //    instruction in the loop.
520  // 2. If the candidate is a load from stack slot (always true for now),
521  //    check if the slot is stored anywhere in the loop.
522  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
523    if (Candidates[i].FI != INT_MIN &&
524        StoredFIs.count(Candidates[i].FI))
525      continue;
526
527    if (!PhysRegClobbers.test(Candidates[i].Def)) {
528      bool Safe = true;
529      MachineInstr *MI = Candidates[i].MI;
530      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
531        const MachineOperand &MO = MI->getOperand(j);
532        if (!MO.isReg() || MO.isDef() || !MO.getReg())
533          continue;
534        if (PhysRegDefs.test(MO.getReg()) ||
535            PhysRegClobbers.test(MO.getReg())) {
536          // If it's using a non-loop-invariant register, then it's obviously
537          // not safe to hoist.
538          Safe = false;
539          break;
540        }
541      }
542      if (Safe)
543        HoistPostRA(MI, Candidates[i].Def);
544    }
545  }
546}
547
548/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
549/// loop, and make sure it is not killed by any instructions in the loop.
550void MachineLICM::AddToLiveIns(unsigned Reg) {
551  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
552  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
553    MachineBasicBlock *BB = Blocks[i];
554    if (!BB->isLiveIn(Reg))
555      BB->addLiveIn(Reg);
556    for (MachineBasicBlock::iterator
557           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
558      MachineInstr *MI = &*MII;
559      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
560        MachineOperand &MO = MI->getOperand(i);
561        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
562        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
563          MO.setIsKill(false);
564      }
565    }
566  }
567}
568
569/// HoistPostRA - When an instruction is found to only use loop invariant
570/// operands that is safe to hoist, this instruction is called to do the
571/// dirty work.
572void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
573  MachineBasicBlock *Preheader = getCurPreheader();
574  if (!Preheader) return;
575
576  // Now move the instructions to the predecessor, inserting it before any
577  // terminator instructions.
578  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
579               << MI->getParent()->getNumber() << ": " << *MI);
580
581  // Splice the instruction to the preheader.
582  MachineBasicBlock *MBB = MI->getParent();
583  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
584
585  // Add register to livein list to all the BBs in the current loop since a
586  // loop invariant must be kept live throughout the whole loop. This is
587  // important to ensure later passes do not scavenge the def register.
588  AddToLiveIns(Def);
589
590  ++NumPostRAHoisted;
591  Changed = true;
592}
593
594// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
595// If not then a load from this mbb may not be safe to hoist.
596bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
597  if (SpeculationState != SpeculateUnknown)
598    return SpeculationState == SpeculateFalse;
599
600  if (BB != CurLoop->getHeader()) {
601    // Check loop exiting blocks.
602    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
603    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
604    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
605      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
606        SpeculationState = SpeculateTrue;
607        return false;
608      }
609  }
610
611  SpeculationState = SpeculateFalse;
612  return true;
613}
614
615void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
616  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
617
618  // Remember livein register pressure.
619  BackTrace.push_back(RegPressure);
620}
621
622void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
623  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
624  BackTrace.pop_back();
625}
626
627/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
628/// dominator tree node if its a leaf or all of its children are done. Walk
629/// up the dominator tree to destroy ancestors which are now done.
630void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
631                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
632                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
633  if (OpenChildren[Node])
634    return;
635
636  // Pop scope.
637  ExitScope(Node->getBlock());
638
639  // Now traverse upwards to pop ancestors whose offsprings are all done.
640  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
641    unsigned Left = --OpenChildren[Parent];
642    if (Left != 0)
643      break;
644    ExitScope(Parent->getBlock());
645    Node = Parent;
646  }
647}
648
649/// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
650/// blocks dominated by the specified header block, and that are in the
651/// current loop) in depth first order w.r.t the DominatorTree. This allows
652/// us to visit definitions before uses, allowing us to hoist a loop body in
653/// one pass without iteration.
654///
655void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
656  SmallVector<MachineDomTreeNode*, 32> Scopes;
657  SmallVector<MachineDomTreeNode*, 8> WorkList;
658  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
659  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
660
661  // Perform a DFS walk to determine the order of visit.
662  WorkList.push_back(HeaderN);
663  do {
664    MachineDomTreeNode *Node = WorkList.pop_back_val();
665    assert(Node != 0 && "Null dominator tree node?");
666    MachineBasicBlock *BB = Node->getBlock();
667
668    // If the header of the loop containing this basic block is a landing pad,
669    // then don't try to hoist instructions out of this loop.
670    const MachineLoop *ML = MLI->getLoopFor(BB);
671    if (ML && ML->getHeader()->isLandingPad())
672      continue;
673
674    // If this subregion is not in the top level loop at all, exit.
675    if (!CurLoop->contains(BB))
676      continue;
677
678    Scopes.push_back(Node);
679    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
680    unsigned NumChildren = Children.size();
681
682    // Don't hoist things out of a large switch statement.  This often causes
683    // code to be hoisted that wasn't going to be executed, and increases
684    // register pressure in a situation where it's likely to matter.
685    if (BB->succ_size() >= 25)
686      NumChildren = 0;
687
688    OpenChildren[Node] = NumChildren;
689    // Add children in reverse order as then the next popped worklist node is
690    // the first child of this node.  This means we ultimately traverse the
691    // DOM tree in exactly the same order as if we'd recursed.
692    for (int i = (int)NumChildren-1; i >= 0; --i) {
693      MachineDomTreeNode *Child = Children[i];
694      ParentMap[Child] = Node;
695      WorkList.push_back(Child);
696    }
697  } while (!WorkList.empty());
698
699  if (Scopes.size() != 0) {
700    MachineBasicBlock *Preheader = getCurPreheader();
701    if (!Preheader)
702      return;
703
704    // Compute registers which are livein into the loop headers.
705    RegSeen.clear();
706    BackTrace.clear();
707    InitRegPressure(Preheader);
708  }
709
710  // Now perform LICM.
711  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
712    MachineDomTreeNode *Node = Scopes[i];
713    MachineBasicBlock *MBB = Node->getBlock();
714
715    MachineBasicBlock *Preheader = getCurPreheader();
716    if (!Preheader)
717      continue;
718
719    EnterScope(MBB);
720
721    // Process the block
722    SpeculationState = SpeculateUnknown;
723    for (MachineBasicBlock::iterator
724         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
725      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
726      MachineInstr *MI = &*MII;
727      if (!Hoist(MI, Preheader))
728        UpdateRegPressure(MI);
729      MII = NextMII;
730    }
731
732    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
733    ExitScopeIfDone(Node, OpenChildren, ParentMap);
734  }
735}
736
737static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
738  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
739}
740
741/// getRegisterClassIDAndCost - For a given MI, register, and the operand
742/// index, return the ID and cost of its representative register class.
743void
744MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
745                                       unsigned Reg, unsigned OpIdx,
746                                       unsigned &RCId, unsigned &RCCost) const {
747  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
748  EVT VT = *RC->vt_begin();
749  if (VT == MVT::Untyped) {
750    RCId = RC->getID();
751    RCCost = 1;
752  } else {
753    RCId = TLI->getRepRegClassFor(VT)->getID();
754    RCCost = TLI->getRepRegClassCostFor(VT);
755  }
756}
757
758/// InitRegPressure - Find all virtual register references that are liveout of
759/// the preheader to initialize the starting "register pressure". Note this
760/// does not count live through (livein but not used) registers.
761void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
762  std::fill(RegPressure.begin(), RegPressure.end(), 0);
763
764  // If the preheader has only a single predecessor and it ends with a
765  // fallthrough or an unconditional branch, then scan its predecessor for live
766  // defs as well. This happens whenever the preheader is created by splitting
767  // the critical edge from the loop predecessor to the loop header.
768  if (BB->pred_size() == 1) {
769    MachineBasicBlock *TBB = 0, *FBB = 0;
770    SmallVector<MachineOperand, 4> Cond;
771    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
772      InitRegPressure(*BB->pred_begin());
773  }
774
775  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
776       MII != E; ++MII) {
777    MachineInstr *MI = &*MII;
778    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
779      const MachineOperand &MO = MI->getOperand(i);
780      if (!MO.isReg() || MO.isImplicit())
781        continue;
782      unsigned Reg = MO.getReg();
783      if (!TargetRegisterInfo::isVirtualRegister(Reg))
784        continue;
785
786      bool isNew = RegSeen.insert(Reg);
787      unsigned RCId, RCCost;
788      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
789      if (MO.isDef())
790        RegPressure[RCId] += RCCost;
791      else {
792        bool isKill = isOperandKill(MO, MRI);
793        if (isNew && !isKill)
794          // Haven't seen this, it must be a livein.
795          RegPressure[RCId] += RCCost;
796        else if (!isNew && isKill)
797          RegPressure[RCId] -= RCCost;
798      }
799    }
800  }
801}
802
803/// UpdateRegPressure - Update estimate of register pressure after the
804/// specified instruction.
805void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
806  if (MI->isImplicitDef())
807    return;
808
809  SmallVector<unsigned, 4> Defs;
810  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
811    const MachineOperand &MO = MI->getOperand(i);
812    if (!MO.isReg() || MO.isImplicit())
813      continue;
814    unsigned Reg = MO.getReg();
815    if (!TargetRegisterInfo::isVirtualRegister(Reg))
816      continue;
817
818    bool isNew = RegSeen.insert(Reg);
819    if (MO.isDef())
820      Defs.push_back(Reg);
821    else if (!isNew && isOperandKill(MO, MRI)) {
822      unsigned RCId, RCCost;
823      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
824      if (RCCost > RegPressure[RCId])
825        RegPressure[RCId] = 0;
826      else
827        RegPressure[RCId] -= RCCost;
828    }
829  }
830
831  unsigned Idx = 0;
832  while (!Defs.empty()) {
833    unsigned Reg = Defs.pop_back_val();
834    unsigned RCId, RCCost;
835    getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
836    RegPressure[RCId] += RCCost;
837    ++Idx;
838  }
839}
840
841/// isLoadFromGOTOrConstantPool - Return true if this machine instruction
842/// loads from global offset table or constant pool.
843static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
844  assert (MI.mayLoad() && "Expected MI that loads!");
845  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
846         E = MI.memoperands_end(); I != E; ++I) {
847    if (const Value *V = (*I)->getValue()) {
848      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
849        if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
850          return true;
851    }
852  }
853  return false;
854}
855
856/// IsLICMCandidate - Returns true if the instruction may be a suitable
857/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
858/// not safe to hoist it.
859bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
860  // Check if it's safe to move the instruction.
861  bool DontMoveAcrossStore = true;
862  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
863    return false;
864
865  // If it is load then check if it is guaranteed to execute by making sure that
866  // it dominates all exiting blocks. If it doesn't, then there is a path out of
867  // the loop which does not execute this load, so we can't hoist it. Loads
868  // from constant memory are not safe to speculate all the time, for example
869  // indexed load from a jump table.
870  // Stores and side effects are already checked by isSafeToMove.
871  if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
872      !IsGuaranteedToExecute(I.getParent()))
873    return false;
874
875  return true;
876}
877
878/// IsLoopInvariantInst - Returns true if the instruction is loop
879/// invariant. I.e., all virtual register operands are defined outside of the
880/// loop, physical registers aren't accessed explicitly, and there are no side
881/// effects that aren't captured by the operands or other flags.
882///
883bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
884  if (!IsLICMCandidate(I))
885    return false;
886
887  // The instruction is loop invariant if all of its operands are.
888  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
889    const MachineOperand &MO = I.getOperand(i);
890
891    if (!MO.isReg())
892      continue;
893
894    unsigned Reg = MO.getReg();
895    if (Reg == 0) continue;
896
897    // Don't hoist an instruction that uses or defines a physical register.
898    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
899      if (MO.isUse()) {
900        // If the physreg has no defs anywhere, it's just an ambient register
901        // and we can freely move its uses. Alternatively, if it's allocatable,
902        // it could get allocated to something with a def during allocation.
903        if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
904          return false;
905        // Otherwise it's safe to move.
906        continue;
907      } else if (!MO.isDead()) {
908        // A def that isn't dead. We can't move it.
909        return false;
910      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
911        // If the reg is live into the loop, we can't hoist an instruction
912        // which would clobber it.
913        return false;
914      }
915    }
916
917    if (!MO.isUse())
918      continue;
919
920    assert(MRI->getVRegDef(Reg) &&
921           "Machine instr not mapped for this vreg?!");
922
923    // If the loop contains the definition of an operand, then the instruction
924    // isn't loop invariant.
925    if (CurLoop->contains(MRI->getVRegDef(Reg)))
926      return false;
927  }
928
929  // If we got this far, the instruction is loop invariant!
930  return true;
931}
932
933
934/// HasAnyPHIUse - Return true if the specified register is used by any
935/// phi node.
936bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
937  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
938         UE = MRI->use_end(); UI != UE; ++UI) {
939    MachineInstr *UseMI = &*UI;
940    if (UseMI->isPHI())
941      return true;
942    // Look pass copies as well.
943    if (UseMI->isCopy()) {
944      unsigned Def = UseMI->getOperand(0).getReg();
945      if (TargetRegisterInfo::isVirtualRegister(Def) &&
946          HasAnyPHIUse(Def))
947        return true;
948    }
949  }
950  return false;
951}
952
953/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
954/// and an use in the current loop, return true if the target considered
955/// it 'high'.
956bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
957                                        unsigned DefIdx, unsigned Reg) const {
958  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
959    return false;
960
961  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
962         E = MRI->use_nodbg_end(); I != E; ++I) {
963    MachineInstr *UseMI = &*I;
964    if (UseMI->isCopyLike())
965      continue;
966    if (!CurLoop->contains(UseMI->getParent()))
967      continue;
968    for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
969      const MachineOperand &MO = UseMI->getOperand(i);
970      if (!MO.isReg() || !MO.isUse())
971        continue;
972      unsigned MOReg = MO.getReg();
973      if (MOReg != Reg)
974        continue;
975
976      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
977        return true;
978    }
979
980    // Only look at the first in loop use.
981    break;
982  }
983
984  return false;
985}
986
987/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
988/// the operand latency between its def and a use is one or less.
989bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
990  if (MI.isAsCheapAsAMove() || MI.isCopyLike())
991    return true;
992  if (!InstrItins || InstrItins->isEmpty())
993    return false;
994
995  bool isCheap = false;
996  unsigned NumDefs = MI.getDesc().getNumDefs();
997  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
998    MachineOperand &DefMO = MI.getOperand(i);
999    if (!DefMO.isReg() || !DefMO.isDef())
1000      continue;
1001    --NumDefs;
1002    unsigned Reg = DefMO.getReg();
1003    if (TargetRegisterInfo::isPhysicalRegister(Reg))
1004      continue;
1005
1006    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
1007      return false;
1008    isCheap = true;
1009  }
1010
1011  return isCheap;
1012}
1013
1014/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
1015/// if hoisting an instruction of the given cost matrix can cause high
1016/// register pressure.
1017bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
1018  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1019       CI != CE; ++CI) {
1020    if (CI->second <= 0)
1021      continue;
1022
1023    unsigned RCId = CI->first;
1024    unsigned Limit = RegLimit[RCId];
1025    int Cost = CI->second;
1026    for (unsigned i = BackTrace.size(); i != 0; --i) {
1027      SmallVector<unsigned, 8> &RP = BackTrace[i-1];
1028      if (RP[RCId] + Cost >= Limit)
1029        return true;
1030    }
1031  }
1032
1033  return false;
1034}
1035
1036/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
1037/// current block and update their register pressures to reflect the effect
1038/// of hoisting MI from the current block to the preheader.
1039void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1040  if (MI->isImplicitDef())
1041    return;
1042
1043  // First compute the 'cost' of the instruction, i.e. its contribution
1044  // to register pressure.
1045  DenseMap<unsigned, int> Cost;
1046  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1047    const MachineOperand &MO = MI->getOperand(i);
1048    if (!MO.isReg() || MO.isImplicit())
1049      continue;
1050    unsigned Reg = MO.getReg();
1051    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1052      continue;
1053
1054    unsigned RCId, RCCost;
1055    getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
1056    if (MO.isDef()) {
1057      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1058      if (CI != Cost.end())
1059        CI->second += RCCost;
1060      else
1061        Cost.insert(std::make_pair(RCId, RCCost));
1062    } else if (isOperandKill(MO, MRI)) {
1063      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1064      if (CI != Cost.end())
1065        CI->second -= RCCost;
1066      else
1067        Cost.insert(std::make_pair(RCId, -RCCost));
1068    }
1069  }
1070
1071  // Update register pressure of blocks from loop header to current block.
1072  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1073    SmallVector<unsigned, 8> &RP = BackTrace[i];
1074    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1075         CI != CE; ++CI) {
1076      unsigned RCId = CI->first;
1077      RP[RCId] += CI->second;
1078    }
1079  }
1080}
1081
1082/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1083/// the given loop invariant.
1084bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1085  if (MI.isImplicitDef())
1086    return true;
1087
1088  // If the instruction is cheap, only hoist if it is re-materilizable. LICM
1089  // will increase register pressure. It's probably not worth it if the
1090  // instruction is cheap.
1091  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
1092  // these tend to help performance in low register pressure situation. The
1093  // trade off is it may cause spill in high pressure situation. It will end up
1094  // adding a store in the loop preheader. But the reload is no more expensive.
1095  // The side benefit is these loads are frequently CSE'ed.
1096  if (IsCheapInstruction(MI)) {
1097    if (!TII->isTriviallyReMaterializable(&MI, AA))
1098      return false;
1099  } else {
1100    // Estimate register pressure to determine whether to LICM the instruction.
1101    // In low register pressure situation, we can be more aggressive about
1102    // hoisting. Also, favors hoisting long latency instructions even in
1103    // moderately high pressure situation.
1104    // FIXME: If there are long latency loop-invariant instructions inside the
1105    // loop at this point, why didn't the optimizer's LICM hoist them?
1106    DenseMap<unsigned, int> Cost;
1107    for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1108      const MachineOperand &MO = MI.getOperand(i);
1109      if (!MO.isReg() || MO.isImplicit())
1110        continue;
1111      unsigned Reg = MO.getReg();
1112      if (!TargetRegisterInfo::isVirtualRegister(Reg))
1113        continue;
1114
1115      unsigned RCId, RCCost;
1116      getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1117      if (MO.isDef()) {
1118        if (HasHighOperandLatency(MI, i, Reg)) {
1119          ++NumHighLatency;
1120          return true;
1121        }
1122
1123        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1124        if (CI != Cost.end())
1125          CI->second += RCCost;
1126        else
1127          Cost.insert(std::make_pair(RCId, RCCost));
1128      } else if (isOperandKill(MO, MRI)) {
1129        // Is a virtual register use is a kill, hoisting it out of the loop
1130        // may actually reduce register pressure or be register pressure
1131        // neutral.
1132        DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1133        if (CI != Cost.end())
1134          CI->second -= RCCost;
1135        else
1136          Cost.insert(std::make_pair(RCId, -RCCost));
1137      }
1138    }
1139
1140    // Visit BBs from header to current BB, if hoisting this doesn't cause
1141    // high register pressure, then it's safe to proceed.
1142    if (!CanCauseHighRegPressure(Cost)) {
1143      ++NumLowRP;
1144      return true;
1145    }
1146
1147    // Do not "speculate" in high register pressure situation. If an
1148    // instruction is not guaranteed to be executed in the loop, it's best to be
1149    // conservative.
1150    if (AvoidSpeculation &&
1151        (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)))
1152      return false;
1153
1154    // High register pressure situation, only hoist if the instruction is going to
1155    // be remat'ed.
1156    if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1157        !MI.isInvariantLoad(AA))
1158      return false;
1159  }
1160
1161  // If result(s) of this instruction is used by PHIs outside of the loop, then
1162  // don't hoist it if the instruction because it will introduce an extra copy.
1163  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1164    const MachineOperand &MO = MI.getOperand(i);
1165    if (!MO.isReg() || !MO.isDef())
1166      continue;
1167    if (HasAnyPHIUse(MO.getReg()))
1168      return false;
1169  }
1170
1171  return true;
1172}
1173
1174MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1175  // Don't unfold simple loads.
1176  if (MI->canFoldAsLoad())
1177    return 0;
1178
1179  // If not, we may be able to unfold a load and hoist that.
1180  // First test whether the instruction is loading from an amenable
1181  // memory location.
1182  if (!MI->isInvariantLoad(AA))
1183    return 0;
1184
1185  // Next determine the register class for a temporary register.
1186  unsigned LoadRegIndex;
1187  unsigned NewOpc =
1188    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1189                                    /*UnfoldLoad=*/true,
1190                                    /*UnfoldStore=*/false,
1191                                    &LoadRegIndex);
1192  if (NewOpc == 0) return 0;
1193  const MCInstrDesc &MID = TII->get(NewOpc);
1194  if (MID.getNumDefs() != 1) return 0;
1195  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
1196  // Ok, we're unfolding. Create a temporary register and do the unfold.
1197  unsigned Reg = MRI->createVirtualRegister(RC);
1198
1199  MachineFunction &MF = *MI->getParent()->getParent();
1200  SmallVector<MachineInstr *, 2> NewMIs;
1201  bool Success =
1202    TII->unfoldMemoryOperand(MF, MI, Reg,
1203                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1204                             NewMIs);
1205  (void)Success;
1206  assert(Success &&
1207         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1208         "succeeded!");
1209  assert(NewMIs.size() == 2 &&
1210         "Unfolded a load into multiple instructions!");
1211  MachineBasicBlock *MBB = MI->getParent();
1212  MachineBasicBlock::iterator Pos = MI;
1213  MBB->insert(Pos, NewMIs[0]);
1214  MBB->insert(Pos, NewMIs[1]);
1215  // If unfolding produced a load that wasn't loop-invariant or profitable to
1216  // hoist, discard the new instructions and bail.
1217  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1218    NewMIs[0]->eraseFromParent();
1219    NewMIs[1]->eraseFromParent();
1220    return 0;
1221  }
1222
1223  // Update register pressure for the unfolded instruction.
1224  UpdateRegPressure(NewMIs[1]);
1225
1226  // Otherwise we successfully unfolded a load that we can hoist.
1227  MI->eraseFromParent();
1228  return NewMIs[0];
1229}
1230
1231void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1232  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1233    const MachineInstr *MI = &*I;
1234    unsigned Opcode = MI->getOpcode();
1235    DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1236      CI = CSEMap.find(Opcode);
1237    if (CI != CSEMap.end())
1238      CI->second.push_back(MI);
1239    else {
1240      std::vector<const MachineInstr*> CSEMIs;
1241      CSEMIs.push_back(MI);
1242      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1243    }
1244  }
1245}
1246
1247const MachineInstr*
1248MachineLICM::LookForDuplicate(const MachineInstr *MI,
1249                              std::vector<const MachineInstr*> &PrevMIs) {
1250  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1251    const MachineInstr *PrevMI = PrevMIs[i];
1252    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1253      return PrevMI;
1254  }
1255  return 0;
1256}
1257
1258bool MachineLICM::EliminateCSE(MachineInstr *MI,
1259          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1260  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1261  // the undef property onto uses.
1262  if (CI == CSEMap.end() || MI->isImplicitDef())
1263    return false;
1264
1265  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1266    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1267
1268    // Replace virtual registers defined by MI by their counterparts defined
1269    // by Dup.
1270    SmallVector<unsigned, 2> Defs;
1271    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1272      const MachineOperand &MO = MI->getOperand(i);
1273
1274      // Physical registers may not differ here.
1275      assert((!MO.isReg() || MO.getReg() == 0 ||
1276              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1277              MO.getReg() == Dup->getOperand(i).getReg()) &&
1278             "Instructions with different phys regs are not identical!");
1279
1280      if (MO.isReg() && MO.isDef() &&
1281          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1282        Defs.push_back(i);
1283    }
1284
1285    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1286    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1287      unsigned Idx = Defs[i];
1288      unsigned Reg = MI->getOperand(Idx).getReg();
1289      unsigned DupReg = Dup->getOperand(Idx).getReg();
1290      OrigRCs.push_back(MRI->getRegClass(DupReg));
1291
1292      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1293        // Restore old RCs if more than one defs.
1294        for (unsigned j = 0; j != i; ++j)
1295          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1296        return false;
1297      }
1298    }
1299
1300    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1301      unsigned Idx = Defs[i];
1302      unsigned Reg = MI->getOperand(Idx).getReg();
1303      unsigned DupReg = Dup->getOperand(Idx).getReg();
1304      MRI->replaceRegWith(Reg, DupReg);
1305      MRI->clearKillFlags(DupReg);
1306    }
1307
1308    MI->eraseFromParent();
1309    ++NumCSEed;
1310    return true;
1311  }
1312  return false;
1313}
1314
1315/// MayCSE - Return true if the given instruction will be CSE'd if it's
1316/// hoisted out of the loop.
1317bool MachineLICM::MayCSE(MachineInstr *MI) {
1318  unsigned Opcode = MI->getOpcode();
1319  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1320    CI = CSEMap.find(Opcode);
1321  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1322  // the undef property onto uses.
1323  if (CI == CSEMap.end() || MI->isImplicitDef())
1324    return false;
1325
1326  return LookForDuplicate(MI, CI->second) != 0;
1327}
1328
1329/// Hoist - When an instruction is found to use only loop invariant operands
1330/// that are safe to hoist, this instruction is called to do the dirty work.
1331///
1332bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1333  // First check whether we should hoist this instruction.
1334  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1335    // If not, try unfolding a hoistable load.
1336    MI = ExtractHoistableLoad(MI);
1337    if (!MI) return false;
1338  }
1339
1340  // Now move the instructions to the predecessor, inserting it before any
1341  // terminator instructions.
1342  DEBUG({
1343      dbgs() << "Hoisting " << *MI;
1344      if (Preheader->getBasicBlock())
1345        dbgs() << " to MachineBasicBlock "
1346               << Preheader->getName();
1347      if (MI->getParent()->getBasicBlock())
1348        dbgs() << " from MachineBasicBlock "
1349               << MI->getParent()->getName();
1350      dbgs() << "\n";
1351    });
1352
1353  // If this is the first instruction being hoisted to the preheader,
1354  // initialize the CSE map with potential common expressions.
1355  if (FirstInLoop) {
1356    InitCSEMap(Preheader);
1357    FirstInLoop = false;
1358  }
1359
1360  // Look for opportunity to CSE the hoisted instruction.
1361  unsigned Opcode = MI->getOpcode();
1362  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1363    CI = CSEMap.find(Opcode);
1364  if (!EliminateCSE(MI, CI)) {
1365    // Otherwise, splice the instruction to the preheader.
1366    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1367
1368    // Update register pressure for BBs from header to this block.
1369    UpdateBackTraceRegPressure(MI);
1370
1371    // Clear the kill flags of any register this instruction defines,
1372    // since they may need to be live throughout the entire loop
1373    // rather than just live for part of it.
1374    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1375      MachineOperand &MO = MI->getOperand(i);
1376      if (MO.isReg() && MO.isDef() && !MO.isDead())
1377        MRI->clearKillFlags(MO.getReg());
1378    }
1379
1380    // Add to the CSE map.
1381    if (CI != CSEMap.end())
1382      CI->second.push_back(MI);
1383    else {
1384      std::vector<const MachineInstr*> CSEMIs;
1385      CSEMIs.push_back(MI);
1386      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1387    }
1388  }
1389
1390  ++NumHoisted;
1391  Changed = true;
1392
1393  return true;
1394}
1395
1396MachineBasicBlock *MachineLICM::getCurPreheader() {
1397  // Determine the block to which to hoist instructions. If we can't find a
1398  // suitable loop predecessor, we can't do any hoisting.
1399
1400  // If we've tried to get a preheader and failed, don't try again.
1401  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1402    return 0;
1403
1404  if (!CurPreheader) {
1405    CurPreheader = CurLoop->getLoopPreheader();
1406    if (!CurPreheader) {
1407      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1408      if (!Pred) {
1409        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1410        return 0;
1411      }
1412
1413      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1414      if (!CurPreheader) {
1415        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1416        return 0;
1417      }
1418    }
1419  }
1420  return CurPreheader;
1421}
1422