MachineSSAUpdater.cpp revision 18552eb96f80811caa9f48141219ebeb2eadc5b3
1//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
11// class in lib/Transforms/Utils.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineSSAUpdater.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
29typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
30                IncomingPredInfoTy;
31
32static AvailableValsTy &getAvailableVals(void *AV) {
33  return *static_cast<AvailableValsTy*>(AV);
34}
35
36static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
37  return *static_cast<IncomingPredInfoTy*>(IPI);
38}
39
40
41MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
42                                     SmallVectorImpl<MachineInstr*> *NewPHI)
43  : AV(0), IPI(0), InsertedPHIs(NewPHI) {
44  TII = MF.getTarget().getInstrInfo();
45  MRI = &MF.getRegInfo();
46}
47
48MachineSSAUpdater::~MachineSSAUpdater() {
49  delete &getAvailableVals(AV);
50  delete &getIncomingPredInfo(IPI);
51}
52
53/// Initialize - Reset this object to get ready for a new set of SSA
54/// updates.  ProtoValue is the value used to name PHI nodes.
55void MachineSSAUpdater::Initialize(unsigned V) {
56  if (AV == 0)
57    AV = new AvailableValsTy();
58  else
59    getAvailableVals(AV).clear();
60
61  if (IPI == 0)
62    IPI = new IncomingPredInfoTy();
63  else
64    getIncomingPredInfo(IPI).clear();
65
66  VR = V;
67  VRC = MRI->getRegClass(VR);
68}
69
70/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
71/// the specified block.
72bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
73  return getAvailableVals(AV).count(BB);
74}
75
76/// AddAvailableValue - Indicate that a rewritten value is available in the
77/// specified block with the specified value.
78void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
79  getAvailableVals(AV)[BB] = V;
80}
81
82/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
83/// live at the end of the specified block.
84unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
85  return GetValueAtEndOfBlockInternal(BB);
86}
87
88/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
89/// a value of the given register class at the start of the specified basic
90/// block. It returns the virtual register defined by the instruction.
91static
92MachineInstr *InsertNewDef(unsigned Opcode,
93                           MachineBasicBlock *BB, MachineBasicBlock::iterator I,
94                           const TargetRegisterClass *RC,
95                           MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
96  unsigned NewVR = MRI->createVirtualRegister(RC);
97  return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
98}
99
100
101/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
102/// is live in the middle of the specified block.
103///
104/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
105/// important case: if there is a definition of the rewritten value after the
106/// 'use' in BB.  Consider code like this:
107///
108///      X1 = ...
109///   SomeBB:
110///      use(X)
111///      X2 = ...
112///      br Cond, SomeBB, OutBB
113///
114/// In this case, there are two values (X1 and X2) added to the AvailableVals
115/// set by the client of the rewriter, and those values are both live out of
116/// their respective blocks.  However, the use of X happens in the *middle* of
117/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
118/// merge the appropriate values, and this value isn't live out of the block.
119///
120unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
121  // If there is no definition of the renamed variable in this block, just use
122  // GetValueAtEndOfBlock to do our work.
123  if (!getAvailableVals(AV).count(BB))
124    return GetValueAtEndOfBlock(BB);
125
126  // If there are no predecessors, just return undef.
127  if (BB->pred_empty()) {
128    // Insert an implicit_def to represent an undef value.
129    MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
130                                        BB, BB->getFirstTerminator(),
131                                        VRC, MRI, TII);
132    return NewDef->getOperand(0).getReg();
133  }
134
135  // Otherwise, we have the hard case.  Get the live-in values for each
136  // predecessor.
137  SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
138  unsigned SingularValue = 0;
139
140  bool isFirstPred = true;
141  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
142         E = BB->pred_end(); PI != E; ++PI) {
143    MachineBasicBlock *PredBB = *PI;
144    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
145    PredValues.push_back(std::make_pair(PredBB, PredVal));
146
147    // Compute SingularValue.
148    if (isFirstPred) {
149      SingularValue = PredVal;
150      isFirstPred = false;
151    } else if (PredVal != SingularValue)
152      SingularValue = 0;
153  }
154
155  // Otherwise, if all the merged values are the same, just use it.
156  if (SingularValue != 0)
157    return SingularValue;
158
159  // Otherwise, we do need a PHI: insert one now.
160  MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
161  MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
162                                           Loc, VRC, MRI, TII);
163
164  // Fill in all the predecessors of the PHI.
165  MachineInstrBuilder MIB(InsertedPHI);
166  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
167    MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
168
169  // See if the PHI node can be merged to a single value.  This can happen in
170  // loop cases when we get a PHI of itself and one other value.
171  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
172    InsertedPHI->eraseFromParent();
173    return ConstVal;
174  }
175
176  // If the client wants to know about all new instructions, tell it.
177  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
178
179  DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
180  return InsertedPHI->getOperand(0).getReg();
181}
182
183static
184MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
185                                         MachineOperand *U) {
186  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
187    if (&MI->getOperand(i) == U)
188      return MI->getOperand(i+1).getMBB();
189  }
190
191  llvm_unreachable("MachineOperand::getParent() failure?");
192  return 0;
193}
194
195/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
196/// which use their value in the corresponding predecessor.
197void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
198  MachineInstr *UseMI = U.getParent();
199  unsigned NewVR = 0;
200  if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
201    MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
202    NewVR = GetValueAtEndOfBlock(SourceBB);
203  } else {
204    NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
205  }
206
207  U.setReg(NewVR);
208}
209
210/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
211/// for the specified BB and if so, return it.  If not, construct SSA form by
212/// walking predecessors inserting PHI nodes as needed until we get to a block
213/// where the value is available.
214///
215unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
216  AvailableValsTy &AvailableVals = getAvailableVals(AV);
217
218  // Query AvailableVals by doing an insertion of null.
219  std::pair<AvailableValsTy::iterator, bool> InsertRes =
220    AvailableVals.insert(std::make_pair(BB, 0));
221
222  // Handle the case when the insertion fails because we have already seen BB.
223  if (!InsertRes.second) {
224    // If the insertion failed, there are two cases.  The first case is that the
225    // value is already available for the specified block.  If we get this, just
226    // return the value.
227    if (InsertRes.first->second != 0)
228      return InsertRes.first->second;
229
230    // Otherwise, if the value we find is null, then this is the value is not
231    // known but it is being computed elsewhere in our recursion.  This means
232    // that we have a cycle.  Handle this by inserting a PHI node and returning
233    // it.  When we get back to the first instance of the recursion we will fill
234    // in the PHI node.
235    MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
236    MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
237                                        VRC, MRI,TII);
238    unsigned NewVR = NewPHI->getOperand(0).getReg();
239    InsertRes.first->second = NewVR;
240    return NewVR;
241  }
242
243  // If there are no predecessors, then we must have found an unreachable block
244  // just return 'undef'.  Since there are no predecessors, InsertRes must not
245  // be invalidated.
246  if (BB->pred_empty()) {
247    // Insert an implicit_def to represent an undef value.
248    MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
249                                        BB, BB->getFirstTerminator(),
250                                        VRC, MRI, TII);
251    return InsertRes.first->second = NewDef->getOperand(0).getReg();
252  }
253
254  // Okay, the value isn't in the map and we just inserted a null in the entry
255  // to indicate that we're processing the block.  Since we have no idea what
256  // value is in this block, we have to recurse through our predecessors.
257  //
258  // While we're walking our predecessors, we keep track of them in a vector,
259  // then insert a PHI node in the end if we actually need one.  We could use a
260  // smallvector here, but that would take a lot of stack space for every level
261  // of the recursion, just use IncomingPredInfo as an explicit stack.
262  IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
263  unsigned FirstPredInfoEntry = IncomingPredInfo.size();
264
265  // As we're walking the predecessors, keep track of whether they are all
266  // producing the same value.  If so, this value will capture it, if not, it
267  // will get reset to null.  We distinguish the no-predecessor case explicitly
268  // below.
269  unsigned SingularValue = 0;
270  bool isFirstPred = true;
271  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
272         E = BB->pred_end(); PI != E; ++PI) {
273    MachineBasicBlock *PredBB = *PI;
274    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
275    IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
276
277    // Compute SingularValue.
278    if (isFirstPred) {
279      SingularValue = PredVal;
280      isFirstPred = false;
281    } else if (PredVal != SingularValue)
282      SingularValue = 0;
283  }
284
285  /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
286  /// this block is involved in a loop, a no-entry PHI node will have been
287  /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
288  /// above.
289  unsigned &InsertedVal = AvailableVals[BB];
290
291  // If all the predecessor values are the same then we don't need to insert a
292  // PHI.  This is the simple and common case.
293  if (SingularValue) {
294    // If a PHI node got inserted, replace it with the singlar value and delete
295    // it.
296    if (InsertedVal) {
297      MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
298      // Be careful about dead loops.  These RAUW's also update InsertedVal.
299      assert(InsertedVal != SingularValue && "Dead loop?");
300      MRI->replaceRegWith(InsertedVal, SingularValue);
301      OldVal->eraseFromParent();
302    }
303
304    InsertedVal = SingularValue;
305
306    // Drop the entries we added in IncomingPredInfo to restore the stack.
307    IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
308                           IncomingPredInfo.end());
309    return InsertedVal;
310  }
311
312
313  // Otherwise, we do need a PHI: insert one now if we don't already have one.
314  MachineInstr *InsertedPHI;
315  if (InsertedVal == 0) {
316    MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
317    InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
318                               VRC, MRI, TII);
319    InsertedVal = InsertedPHI->getOperand(0).getReg();
320  } else {
321    InsertedPHI = MRI->getVRegDef(InsertedVal);
322  }
323
324  // Fill in all the predecessors of the PHI.
325  MachineInstrBuilder MIB(InsertedPHI);
326  for (IncomingPredInfoTy::iterator I =
327         IncomingPredInfo.begin()+FirstPredInfoEntry,
328         E = IncomingPredInfo.end(); I != E; ++I)
329    MIB.addReg(I->second).addMBB(I->first);
330
331  // Drop the entries we added in IncomingPredInfo to restore the stack.
332  IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
333                         IncomingPredInfo.end());
334
335  // See if the PHI node can be merged to a single value.  This can happen in
336  // loop cases when we get a PHI of itself and one other value.
337  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
338    MRI->replaceRegWith(InsertedVal, ConstVal);
339    InsertedPHI->eraseFromParent();
340    InsertedVal = ConstVal;
341  } else {
342    DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
343
344    // If the client wants to know about all new instructions, tell it.
345    if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
346  }
347
348  return InsertedVal;
349}
350