MachineSSAUpdater.cpp revision 723be602ecdfde30a50c3afe1780575fdf8f0f56
1//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
11// class in lib/Transforms/Utils.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineSSAUpdater.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
29typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
30                IncomingPredInfoTy;
31
32static AvailableValsTy &getAvailableVals(void *AV) {
33  return *static_cast<AvailableValsTy*>(AV);
34}
35
36static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
37  return *static_cast<IncomingPredInfoTy*>(IPI);
38}
39
40
41MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
42                                     SmallVectorImpl<MachineInstr*> *NewPHI)
43  : AV(0), IPI(0), InsertedPHIs(NewPHI) {
44  TII = MF.getTarget().getInstrInfo();
45  MRI = &MF.getRegInfo();
46}
47
48MachineSSAUpdater::~MachineSSAUpdater() {
49  delete &getAvailableVals(AV);
50  delete &getIncomingPredInfo(IPI);
51}
52
53/// Initialize - Reset this object to get ready for a new set of SSA
54/// updates.  ProtoValue is the value used to name PHI nodes.
55void MachineSSAUpdater::Initialize(unsigned V) {
56  if (AV == 0)
57    AV = new AvailableValsTy();
58  else
59    getAvailableVals(AV).clear();
60
61  if (IPI == 0)
62    IPI = new IncomingPredInfoTy();
63  else
64    getIncomingPredInfo(IPI).clear();
65
66  VR = V;
67  VRC = MRI->getRegClass(VR);
68}
69
70/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
71/// the specified block.
72bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
73  return getAvailableVals(AV).count(BB);
74}
75
76/// AddAvailableValue - Indicate that a rewritten value is available in the
77/// specified block with the specified value.
78void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
79  getAvailableVals(AV)[BB] = V;
80}
81
82/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
83/// live at the end of the specified block.
84unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
85  return GetValueAtEndOfBlockInternal(BB);
86}
87
88/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
89/// a value of the given register class at the start of the specified basic
90/// block. It returns the virtual register defined by the instruction.
91static
92MachineInstr *InsertNewDef(unsigned Opcode,
93                           MachineBasicBlock *BB, MachineBasicBlock::iterator I,
94                           const TargetRegisterClass *RC,
95                           MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
96  unsigned NewVR = MRI->createVirtualRegister(RC);
97  return BuildMI(*BB, I, I->getDebugLoc(), TII->get(Opcode), NewVR);
98}
99
100
101/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
102/// is live in the middle of the specified block.
103///
104/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
105/// important case: if there is a definition of the rewritten value after the
106/// 'use' in BB.  Consider code like this:
107///
108///      X1 = ...
109///   SomeBB:
110///      use(X)
111///      X2 = ...
112///      br Cond, SomeBB, OutBB
113///
114/// In this case, there are two values (X1 and X2) added to the AvailableVals
115/// set by the client of the rewriter, and those values are both live out of
116/// their respective blocks.  However, the use of X happens in the *middle* of
117/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
118/// merge the appropriate values, and this value isn't live out of the block.
119///
120unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
121  // If there is no definition of the renamed variable in this block, just use
122  // GetValueAtEndOfBlock to do our work.
123  if (!getAvailableVals(AV).count(BB))
124    return GetValueAtEndOfBlock(BB);
125
126  // If there are no predecessors, just return undef.
127  if (BB->pred_empty())
128    return ~0U;  // Sentinel value representing undef.
129
130  // Otherwise, we have the hard case.  Get the live-in values for each
131  // predecessor.
132  SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
133  unsigned SingularValue = 0;
134
135  bool isFirstPred = true;
136  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
137         E = BB->pred_end(); PI != E; ++PI) {
138    MachineBasicBlock *PredBB = *PI;
139    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
140    PredValues.push_back(std::make_pair(PredBB, PredVal));
141
142    // Compute SingularValue.
143    if (isFirstPred) {
144      SingularValue = PredVal;
145      isFirstPred = false;
146    } else if (PredVal != SingularValue)
147      SingularValue = 0;
148  }
149
150  // Otherwise, if all the merged values are the same, just use it.
151  if (SingularValue != 0)
152    return SingularValue;
153
154  // Otherwise, we do need a PHI: insert one now.
155  MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
156                                           BB->front(), VRC, MRI, TII);
157
158  // Fill in all the predecessors of the PHI.
159  MachineInstrBuilder MIB(InsertedPHI);
160  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
161    MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
162
163  // See if the PHI node can be merged to a single value.  This can happen in
164  // loop cases when we get a PHI of itself and one other value.
165  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
166    InsertedPHI->eraseFromParent();
167    return ConstVal;
168  }
169
170  // If the client wants to know about all new instructions, tell it.
171  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
172
173  DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
174  return InsertedPHI->getOperand(0).getReg();
175}
176
177static
178MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
179                                         MachineOperand *U) {
180  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
181    if (&MI->getOperand(i) == U)
182      return MI->getOperand(i+1).getMBB();
183  }
184
185  llvm_unreachable("MachineOperand::getParent() failure?");
186  return 0;
187}
188
189/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
190/// which use their value in the corresponding predecessor.
191void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
192  MachineInstr *UseMI = U.getParent();
193  unsigned NewVR = 0;
194  if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
195    MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
196    NewVR = GetValueAtEndOfBlock(SourceBB);
197    // Insert an implicit_def to represent an undef value.
198    MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
199                                        SourceBB,SourceBB->getFirstTerminator(),
200                                        VRC, MRI, TII);
201    NewVR = NewDef->getOperand(0).getReg();
202  } else {
203    NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
204    if (NewVR == ~0U) {
205      // Insert an implicit_def to represent an undef value.
206      MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
207                                          UseMI->getParent(), UseMI,
208                                          VRC, MRI, TII);
209      NewVR = NewDef->getOperand(0).getReg();
210    }
211  }
212
213  U.setReg(NewVR);
214}
215
216/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
217/// for the specified BB and if so, return it.  If not, construct SSA form by
218/// walking predecessors inserting PHI nodes as needed until we get to a block
219/// where the value is available.
220///
221unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
222  AvailableValsTy &AvailableVals = getAvailableVals(AV);
223
224  // Query AvailableVals by doing an insertion of null.
225  std::pair<AvailableValsTy::iterator, bool> InsertRes =
226    AvailableVals.insert(std::make_pair(BB, 0));
227
228  // Handle the case when the insertion fails because we have already seen BB.
229  if (!InsertRes.second) {
230    // If the insertion failed, there are two cases.  The first case is that the
231    // value is already available for the specified block.  If we get this, just
232    // return the value.
233    if (InsertRes.first->second != 0)
234      return InsertRes.first->second;
235
236    // Otherwise, if the value we find is null, then this is the value is not
237    // known but it is being computed elsewhere in our recursion.  This means
238    // that we have a cycle.  Handle this by inserting a PHI node and returning
239    // it.  When we get back to the first instance of the recursion we will fill
240    // in the PHI node.
241    MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(),
242                                        VRC, MRI,TII);
243    unsigned NewVR = NewPHI->getOperand(0).getReg();
244    InsertRes.first->second = NewVR;
245    return NewVR;
246  }
247
248  // If there are no predecessors, then we must have found an unreachable block
249  // just return 'undef'.  Since there are no predecessors, InsertRes must not
250  // be invalidated.
251  if (BB->pred_empty())
252    return InsertRes.first->second = ~0U;  // Sentinel value representing undef.
253
254  // Okay, the value isn't in the map and we just inserted a null in the entry
255  // to indicate that we're processing the block.  Since we have no idea what
256  // value is in this block, we have to recurse through our predecessors.
257  //
258  // While we're walking our predecessors, we keep track of them in a vector,
259  // then insert a PHI node in the end if we actually need one.  We could use a
260  // smallvector here, but that would take a lot of stack space for every level
261  // of the recursion, just use IncomingPredInfo as an explicit stack.
262  IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
263  unsigned FirstPredInfoEntry = IncomingPredInfo.size();
264
265  // As we're walking the predecessors, keep track of whether they are all
266  // producing the same value.  If so, this value will capture it, if not, it
267  // will get reset to null.  We distinguish the no-predecessor case explicitly
268  // below.
269  unsigned SingularValue = 0;
270  bool isFirstPred = true;
271  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
272         E = BB->pred_end(); PI != E; ++PI) {
273    MachineBasicBlock *PredBB = *PI;
274    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
275    IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
276
277    // Compute SingularValue.
278    if (isFirstPred) {
279      SingularValue = PredVal;
280      isFirstPred = false;
281    } else if (PredVal != SingularValue)
282      SingularValue = 0;
283  }
284
285  /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
286  /// this block is involved in a loop, a no-entry PHI node will have been
287  /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
288  /// above.
289  unsigned &InsertedVal = AvailableVals[BB];
290
291  // If all the predecessor values are the same then we don't need to insert a
292  // PHI.  This is the simple and common case.
293  if (SingularValue) {
294    // If a PHI node got inserted, replace it with the singlar value and delete
295    // it.
296    if (InsertedVal) {
297      MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
298      // Be careful about dead loops.  These RAUW's also update InsertedVal.
299      assert(InsertedVal != SingularValue && "Dead loop?");
300      MRI->replaceRegWith(InsertedVal, SingularValue);
301      OldVal->eraseFromParent();
302    }
303
304    InsertedVal = SingularValue;
305
306    // Drop the entries we added in IncomingPredInfo to restore the stack.
307    IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
308                           IncomingPredInfo.end());
309    return InsertedVal;
310  }
311
312
313  // Otherwise, we do need a PHI: insert one now if we don't already have one.
314  MachineInstr *InsertedPHI;
315  if (InsertedVal == 0) {
316    InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(),
317                               VRC, MRI, TII);
318    InsertedVal = InsertedPHI->getOperand(0).getReg();
319  } else {
320    InsertedPHI = MRI->getVRegDef(InsertedVal);
321  }
322
323  // Fill in all the predecessors of the PHI.
324  bool IsUndef = true;
325  MachineInstrBuilder MIB(InsertedPHI);
326  for (IncomingPredInfoTy::iterator I =
327         IncomingPredInfo.begin()+FirstPredInfoEntry,
328         E = IncomingPredInfo.end(); I != E; ++I) {
329    if (I->second == ~0U)
330      continue;
331    IsUndef = false;
332    MIB.addReg(I->second).addMBB(I->first);
333  }
334
335  // Drop the entries we added in IncomingPredInfo to restore the stack.
336  IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
337                         IncomingPredInfo.end());
338
339  // See if the PHI node can be merged to a single value.  This can happen in
340  // loop cases when we get a PHI of itself and one other value.
341  if (IsUndef) {
342    InsertedPHI->eraseFromParent();
343    InsertedVal = ~0U;
344  } else if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
345    MRI->replaceRegWith(InsertedVal, ConstVal);
346    InsertedPHI->eraseFromParent();
347    InsertedVal = ConstVal;
348  } else {
349    DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
350
351    // If the client wants to know about all new instructions, tell it.
352    if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
353  }
354
355  return InsertedVal;
356}
357