MachineSSAUpdater.cpp revision c688eb17b601d4820bd645ce7d189b3e20af0fab
1//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
11// class in lib/Transforms/Utils.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineSSAUpdater.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
29typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
30                IncomingPredInfoTy;
31
32static AvailableValsTy &getAvailableVals(void *AV) {
33  return *static_cast<AvailableValsTy*>(AV);
34}
35
36static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
37  return *static_cast<IncomingPredInfoTy*>(IPI);
38}
39
40
41MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
42                                     SmallVectorImpl<MachineInstr*> *NewPHI)
43  : AV(0), IPI(0), InsertedPHIs(NewPHI) {
44  TII = MF.getTarget().getInstrInfo();
45  MRI = &MF.getRegInfo();
46}
47
48MachineSSAUpdater::~MachineSSAUpdater() {
49  delete &getAvailableVals(AV);
50  delete &getIncomingPredInfo(IPI);
51}
52
53/// Initialize - Reset this object to get ready for a new set of SSA
54/// updates.  ProtoValue is the value used to name PHI nodes.
55void MachineSSAUpdater::Initialize(unsigned V) {
56  if (AV == 0)
57    AV = new AvailableValsTy();
58  else
59    getAvailableVals(AV).clear();
60
61  if (IPI == 0)
62    IPI = new IncomingPredInfoTy();
63  else
64    getIncomingPredInfo(IPI).clear();
65
66  VR = V;
67  VRC = MRI->getRegClass(VR);
68}
69
70/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
71/// the specified block.
72bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
73  return getAvailableVals(AV).count(BB);
74}
75
76/// AddAvailableValue - Indicate that a rewritten value is available in the
77/// specified block with the specified value.
78void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
79  getAvailableVals(AV)[BB] = V;
80}
81
82/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
83/// live at the end of the specified block.
84unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
85  return GetValueAtEndOfBlockInternal(BB);
86}
87
88static
89unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
90          SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
91  if (BB->empty())
92    return 0;
93
94  MachineBasicBlock::iterator I = BB->front();
95  if (I->getOpcode() != TargetInstrInfo::PHI)
96    return 0;
97
98  AvailableValsTy AVals;
99  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
100    AVals[PredValues[i].first] = PredValues[i].second;
101  while (I != BB->end() && I->getOpcode() == TargetInstrInfo::PHI) {
102    bool Same = true;
103    for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
104      unsigned SrcReg = I->getOperand(i).getReg();
105      MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
106      if (AVals[SrcBB] != SrcReg) {
107        Same = false;
108        break;
109      }
110    }
111    if (Same)
112      return I->getOperand(0).getReg();
113    ++I;
114  }
115  return 0;
116}
117
118/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
119/// a value of the given register class at the start of the specified basic
120/// block. It returns the virtual register defined by the instruction.
121static
122MachineInstr *InsertNewDef(unsigned Opcode,
123                           MachineBasicBlock *BB, MachineBasicBlock::iterator I,
124                           const TargetRegisterClass *RC,
125                           MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
126  unsigned NewVR = MRI->createVirtualRegister(RC);
127  return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
128}
129
130/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
131/// is live in the middle of the specified block.
132///
133/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
134/// important case: if there is a definition of the rewritten value after the
135/// 'use' in BB.  Consider code like this:
136///
137///      X1 = ...
138///   SomeBB:
139///      use(X)
140///      X2 = ...
141///      br Cond, SomeBB, OutBB
142///
143/// In this case, there are two values (X1 and X2) added to the AvailableVals
144/// set by the client of the rewriter, and those values are both live out of
145/// their respective blocks.  However, the use of X happens in the *middle* of
146/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
147/// merge the appropriate values, and this value isn't live out of the block.
148///
149unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
150  // If there is no definition of the renamed variable in this block, just use
151  // GetValueAtEndOfBlock to do our work.
152  if (!getAvailableVals(AV).count(BB))
153    return GetValueAtEndOfBlockInternal(BB);
154
155  // If there are no predecessors, just return undef.
156  if (BB->pred_empty()) {
157    // Insert an implicit_def to represent an undef value.
158    MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
159                                        BB, BB->getFirstTerminator(),
160                                        VRC, MRI, TII);
161    return NewDef->getOperand(0).getReg();
162  }
163
164  // Otherwise, we have the hard case.  Get the live-in values for each
165  // predecessor.
166  SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
167  unsigned SingularValue = 0;
168
169  bool isFirstPred = true;
170  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
171         E = BB->pred_end(); PI != E; ++PI) {
172    MachineBasicBlock *PredBB = *PI;
173    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
174    PredValues.push_back(std::make_pair(PredBB, PredVal));
175
176    // Compute SingularValue.
177    if (isFirstPred) {
178      SingularValue = PredVal;
179      isFirstPred = false;
180    } else if (PredVal != SingularValue)
181      SingularValue = 0;
182  }
183
184  // Otherwise, if all the merged values are the same, just use it.
185  if (SingularValue != 0)
186    return SingularValue;
187
188  // If an identical PHI is already in BB, just reuse it.
189  unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
190  if (DupPHI)
191    return DupPHI;
192
193  // Otherwise, we do need a PHI: insert one now.
194  MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
195  MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
196                                           Loc, VRC, MRI, TII);
197
198  // Fill in all the predecessors of the PHI.
199  MachineInstrBuilder MIB(InsertedPHI);
200  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
201    MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
202
203  // See if the PHI node can be merged to a single value.  This can happen in
204  // loop cases when we get a PHI of itself and one other value.
205  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
206    InsertedPHI->eraseFromParent();
207    return ConstVal;
208  }
209
210  // If the client wants to know about all new instructions, tell it.
211  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
212
213  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
214  return InsertedPHI->getOperand(0).getReg();
215}
216
217static
218MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
219                                         MachineOperand *U) {
220  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
221    if (&MI->getOperand(i) == U)
222      return MI->getOperand(i+1).getMBB();
223  }
224
225  llvm_unreachable("MachineOperand::getParent() failure?");
226  return 0;
227}
228
229/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
230/// which use their value in the corresponding predecessor.
231void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
232  MachineInstr *UseMI = U.getParent();
233  unsigned NewVR = 0;
234  if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
235    MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
236    NewVR = GetValueAtEndOfBlockInternal(SourceBB);
237  } else {
238    NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
239  }
240
241  U.setReg(NewVR);
242}
243
244void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
245  MRI->replaceRegWith(OldReg, NewReg);
246
247  AvailableValsTy &AvailableVals = getAvailableVals(AV);
248  for (DenseMap<MachineBasicBlock*, unsigned>::iterator
249         I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
250    if (I->second == OldReg)
251      I->second = NewReg;
252}
253
254/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
255/// for the specified BB and if so, return it.  If not, construct SSA form by
256/// walking predecessors inserting PHI nodes as needed until we get to a block
257/// where the value is available.
258///
259unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
260  AvailableValsTy &AvailableVals = getAvailableVals(AV);
261
262  // Query AvailableVals by doing an insertion of null.
263  std::pair<AvailableValsTy::iterator, bool> InsertRes =
264    AvailableVals.insert(std::make_pair(BB, 0));
265
266  // Handle the case when the insertion fails because we have already seen BB.
267  if (!InsertRes.second) {
268    // If the insertion failed, there are two cases.  The first case is that the
269    // value is already available for the specified block.  If we get this, just
270    // return the value.
271    if (InsertRes.first->second != 0)
272      return InsertRes.first->second;
273
274    // Otherwise, if the value we find is null, then this is the value is not
275    // known but it is being computed elsewhere in our recursion.  This means
276    // that we have a cycle.  Handle this by inserting a PHI node and returning
277    // it.  When we get back to the first instance of the recursion we will fill
278    // in the PHI node.
279    MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
280    MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
281                                        VRC, MRI,TII);
282    unsigned NewVR = NewPHI->getOperand(0).getReg();
283    InsertRes.first->second = NewVR;
284    return NewVR;
285  }
286
287  // If there are no predecessors, then we must have found an unreachable block
288  // just return 'undef'.  Since there are no predecessors, InsertRes must not
289  // be invalidated.
290  if (BB->pred_empty()) {
291    // Insert an implicit_def to represent an undef value.
292    MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
293                                        BB, BB->getFirstTerminator(),
294                                        VRC, MRI, TII);
295    return InsertRes.first->second = NewDef->getOperand(0).getReg();
296  }
297
298  // Okay, the value isn't in the map and we just inserted a null in the entry
299  // to indicate that we're processing the block.  Since we have no idea what
300  // value is in this block, we have to recurse through our predecessors.
301  //
302  // While we're walking our predecessors, we keep track of them in a vector,
303  // then insert a PHI node in the end if we actually need one.  We could use a
304  // smallvector here, but that would take a lot of stack space for every level
305  // of the recursion, just use IncomingPredInfo as an explicit stack.
306  IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
307  unsigned FirstPredInfoEntry = IncomingPredInfo.size();
308
309  // As we're walking the predecessors, keep track of whether they are all
310  // producing the same value.  If so, this value will capture it, if not, it
311  // will get reset to null.  We distinguish the no-predecessor case explicitly
312  // below.
313  unsigned SingularValue = 0;
314  bool isFirstPred = true;
315  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
316         E = BB->pred_end(); PI != E; ++PI) {
317    MachineBasicBlock *PredBB = *PI;
318    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
319    IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
320
321    // Compute SingularValue.
322    if (isFirstPred) {
323      SingularValue = PredVal;
324      isFirstPred = false;
325    } else if (PredVal != SingularValue)
326      SingularValue = 0;
327  }
328
329  /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
330  /// this block is involved in a loop, a no-entry PHI node will have been
331  /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
332  /// above.
333  unsigned &InsertedVal = AvailableVals[BB];
334
335  // If all the predecessor values are the same then we don't need to insert a
336  // PHI.  This is the simple and common case.
337  if (SingularValue) {
338    // If a PHI node got inserted, replace it with the singlar value and delete
339    // it.
340    if (InsertedVal) {
341      MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
342      // Be careful about dead loops.  These RAUW's also update InsertedVal.
343      assert(InsertedVal != SingularValue && "Dead loop?");
344      ReplaceRegWith(InsertedVal, SingularValue);
345      OldVal->eraseFromParent();
346    }
347
348    InsertedVal = SingularValue;
349
350    // Drop the entries we added in IncomingPredInfo to restore the stack.
351    IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
352                           IncomingPredInfo.end());
353    return InsertedVal;
354  }
355
356
357  // Otherwise, we do need a PHI: insert one now if we don't already have one.
358  MachineInstr *InsertedPHI;
359  if (InsertedVal == 0) {
360    MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
361    InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
362                               VRC, MRI, TII);
363    InsertedVal = InsertedPHI->getOperand(0).getReg();
364  } else {
365    InsertedPHI = MRI->getVRegDef(InsertedVal);
366  }
367
368  // Fill in all the predecessors of the PHI.
369  MachineInstrBuilder MIB(InsertedPHI);
370  for (IncomingPredInfoTy::iterator I =
371         IncomingPredInfo.begin()+FirstPredInfoEntry,
372         E = IncomingPredInfo.end(); I != E; ++I)
373    MIB.addReg(I->second).addMBB(I->first);
374
375  // Drop the entries we added in IncomingPredInfo to restore the stack.
376  IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
377                         IncomingPredInfo.end());
378
379  // See if the PHI node can be merged to a single value.  This can happen in
380  // loop cases when we get a PHI of itself and one other value.
381  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
382    MRI->replaceRegWith(InsertedVal, ConstVal);
383    InsertedPHI->eraseFromParent();
384    InsertedVal = ConstVal;
385  } else {
386    DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
387
388    // If the client wants to know about all new instructions, tell it.
389    if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
390  }
391
392  return InsertedVal;
393}
394