MachineScheduler.cpp revision 2182977ff2cc8ff1259e3a2c3528651496d818d4
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "llvm/CodeGen/MachineScheduler.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/PriorityQueue.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/RegisterClassInfo.h"
26#include "llvm/CodeGen/ScheduleDFS.h"
27#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GraphWriter.h"
32#include "llvm/Support/raw_ostream.h"
33#include <queue>
34
35using namespace llvm;
36
37namespace llvm {
38cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
39                           cl::desc("Force top-down list scheduling"));
40cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
41                            cl::desc("Force bottom-up list scheduling"));
42}
43
44#ifndef NDEBUG
45static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
46  cl::desc("Pop up a window to show MISched dags after they are processed"));
47
48static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
49  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
50#else
51static bool ViewMISchedDAGs = false;
52#endif // NDEBUG
53
54// Experimental heuristics
55static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
56  cl::desc("Enable load clustering."), cl::init(true));
57
58// Experimental heuristics
59static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
60  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
61
62static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
63  cl::desc("Verify machine instrs before and after machine scheduling"));
64
65// DAG subtrees must have at least this many nodes.
66static const unsigned MinSubtreeSize = 8;
67
68//===----------------------------------------------------------------------===//
69// Machine Instruction Scheduling Pass and Registry
70//===----------------------------------------------------------------------===//
71
72MachineSchedContext::MachineSchedContext():
73    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
74  RegClassInfo = new RegisterClassInfo();
75}
76
77MachineSchedContext::~MachineSchedContext() {
78  delete RegClassInfo;
79}
80
81namespace {
82/// MachineScheduler runs after coalescing and before register allocation.
83class MachineScheduler : public MachineSchedContext,
84                         public MachineFunctionPass {
85public:
86  MachineScheduler();
87
88  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
89
90  virtual void releaseMemory() {}
91
92  virtual bool runOnMachineFunction(MachineFunction&);
93
94  virtual void print(raw_ostream &O, const Module* = 0) const;
95
96  static char ID; // Class identification, replacement for typeinfo
97};
98} // namespace
99
100char MachineScheduler::ID = 0;
101
102char &llvm::MachineSchedulerID = MachineScheduler::ID;
103
104INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
105                      "Machine Instruction Scheduler", false, false)
106INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
107INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
108INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
109INITIALIZE_PASS_END(MachineScheduler, "misched",
110                    "Machine Instruction Scheduler", false, false)
111
112MachineScheduler::MachineScheduler()
113: MachineFunctionPass(ID) {
114  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
115}
116
117void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.setPreservesCFG();
119  AU.addRequiredID(MachineDominatorsID);
120  AU.addRequired<MachineLoopInfo>();
121  AU.addRequired<AliasAnalysis>();
122  AU.addRequired<TargetPassConfig>();
123  AU.addRequired<SlotIndexes>();
124  AU.addPreserved<SlotIndexes>();
125  AU.addRequired<LiveIntervals>();
126  AU.addPreserved<LiveIntervals>();
127  MachineFunctionPass::getAnalysisUsage(AU);
128}
129
130MachinePassRegistry MachineSchedRegistry::Registry;
131
132/// A dummy default scheduler factory indicates whether the scheduler
133/// is overridden on the command line.
134static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
135  return 0;
136}
137
138/// MachineSchedOpt allows command line selection of the scheduler.
139static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
140               RegisterPassParser<MachineSchedRegistry> >
141MachineSchedOpt("misched",
142                cl::init(&useDefaultMachineSched), cl::Hidden,
143                cl::desc("Machine instruction scheduler to use"));
144
145static MachineSchedRegistry
146DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
147                     useDefaultMachineSched);
148
149/// Forward declare the standard machine scheduler. This will be used as the
150/// default scheduler if the target does not set a default.
151static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
152
153
154/// Decrement this iterator until reaching the top or a non-debug instr.
155static MachineBasicBlock::iterator
156priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
157  assert(I != Beg && "reached the top of the region, cannot decrement");
158  while (--I != Beg) {
159    if (!I->isDebugValue())
160      break;
161  }
162  return I;
163}
164
165/// If this iterator is a debug value, increment until reaching the End or a
166/// non-debug instruction.
167static MachineBasicBlock::iterator
168nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
169  for(; I != End; ++I) {
170    if (!I->isDebugValue())
171      break;
172  }
173  return I;
174}
175
176/// Top-level MachineScheduler pass driver.
177///
178/// Visit blocks in function order. Divide each block into scheduling regions
179/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
180/// consistent with the DAG builder, which traverses the interior of the
181/// scheduling regions bottom-up.
182///
183/// This design avoids exposing scheduling boundaries to the DAG builder,
184/// simplifying the DAG builder's support for "special" target instructions.
185/// At the same time the design allows target schedulers to operate across
186/// scheduling boundaries, for example to bundle the boudary instructions
187/// without reordering them. This creates complexity, because the target
188/// scheduler must update the RegionBegin and RegionEnd positions cached by
189/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
190/// design would be to split blocks at scheduling boundaries, but LLVM has a
191/// general bias against block splitting purely for implementation simplicity.
192bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
193  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
194
195  // Initialize the context of the pass.
196  MF = &mf;
197  MLI = &getAnalysis<MachineLoopInfo>();
198  MDT = &getAnalysis<MachineDominatorTree>();
199  PassConfig = &getAnalysis<TargetPassConfig>();
200  AA = &getAnalysis<AliasAnalysis>();
201
202  LIS = &getAnalysis<LiveIntervals>();
203  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
204
205  if (VerifyScheduling) {
206    DEBUG(LIS->print(dbgs()));
207    MF->verify(this, "Before machine scheduling.");
208  }
209  RegClassInfo->runOnMachineFunction(*MF);
210
211  // Select the scheduler, or set the default.
212  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
213  if (Ctor == useDefaultMachineSched) {
214    // Get the default scheduler set by the target.
215    Ctor = MachineSchedRegistry::getDefault();
216    if (!Ctor) {
217      Ctor = createConvergingSched;
218      MachineSchedRegistry::setDefault(Ctor);
219    }
220  }
221  // Instantiate the selected scheduler.
222  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
223
224  // Visit all machine basic blocks.
225  //
226  // TODO: Visit blocks in global postorder or postorder within the bottom-up
227  // loop tree. Then we can optionally compute global RegPressure.
228  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
229       MBB != MBBEnd; ++MBB) {
230
231    Scheduler->startBlock(MBB);
232
233    // Break the block into scheduling regions [I, RegionEnd), and schedule each
234    // region as soon as it is discovered. RegionEnd points the scheduling
235    // boundary at the bottom of the region. The DAG does not include RegionEnd,
236    // but the region does (i.e. the next RegionEnd is above the previous
237    // RegionBegin). If the current block has no terminator then RegionEnd ==
238    // MBB->end() for the bottom region.
239    //
240    // The Scheduler may insert instructions during either schedule() or
241    // exitRegion(), even for empty regions. So the local iterators 'I' and
242    // 'RegionEnd' are invalid across these calls.
243    unsigned RemainingInstrs = MBB->size();
244    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
245        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
246
247      // Avoid decrementing RegionEnd for blocks with no terminator.
248      if (RegionEnd != MBB->end()
249          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
250        --RegionEnd;
251        // Count the boundary instruction.
252        --RemainingInstrs;
253      }
254
255      // The next region starts above the previous region. Look backward in the
256      // instruction stream until we find the nearest boundary.
257      MachineBasicBlock::iterator I = RegionEnd;
258      for(;I != MBB->begin(); --I, --RemainingInstrs) {
259        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
260          break;
261      }
262      // Notify the scheduler of the region, even if we may skip scheduling
263      // it. Perhaps it still needs to be bundled.
264      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
265
266      // Skip empty scheduling regions (0 or 1 schedulable instructions).
267      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
268        // Close the current region. Bundle the terminator if needed.
269        // This invalidates 'RegionEnd' and 'I'.
270        Scheduler->exitRegion();
271        continue;
272      }
273      DEBUG(dbgs() << "********** MI Scheduling **********\n");
274      DEBUG(dbgs() << MF->getName()
275            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
276            << "\n  From: " << *I << "    To: ";
277            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
278            else dbgs() << "End";
279            dbgs() << " Remaining: " << RemainingInstrs << "\n");
280
281      // Schedule a region: possibly reorder instructions.
282      // This invalidates 'RegionEnd' and 'I'.
283      Scheduler->schedule();
284
285      // Close the current region.
286      Scheduler->exitRegion();
287
288      // Scheduling has invalidated the current iterator 'I'. Ask the
289      // scheduler for the top of it's scheduled region.
290      RegionEnd = Scheduler->begin();
291    }
292    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
293    Scheduler->finishBlock();
294  }
295  Scheduler->finalizeSchedule();
296  DEBUG(LIS->print(dbgs()));
297  if (VerifyScheduling)
298    MF->verify(this, "After machine scheduling.");
299  return true;
300}
301
302void MachineScheduler::print(raw_ostream &O, const Module* m) const {
303  // unimplemented
304}
305
306#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307void ReadyQueue::dump() {
308  dbgs() << "  " << Name << ": ";
309  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
310    dbgs() << Queue[i]->NodeNum << " ";
311  dbgs() << "\n";
312}
313#endif
314
315//===----------------------------------------------------------------------===//
316// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
317// preservation.
318//===----------------------------------------------------------------------===//
319
320ScheduleDAGMI::~ScheduleDAGMI() {
321  delete DFSResult;
322  DeleteContainerPointers(Mutations);
323  delete SchedImpl;
324}
325
326bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
327  if (SuccSU != &ExitSU) {
328    // Do not use WillCreateCycle, it assumes SD scheduling.
329    // If Pred is reachable from Succ, then the edge creates a cycle.
330    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
331      return false;
332    Topo.AddPred(SuccSU, PredDep.getSUnit());
333  }
334  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
335  // Return true regardless of whether a new edge needed to be inserted.
336  return true;
337}
338
339/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
340/// NumPredsLeft reaches zero, release the successor node.
341///
342/// FIXME: Adjust SuccSU height based on MinLatency.
343void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
344  SUnit *SuccSU = SuccEdge->getSUnit();
345
346  if (SuccEdge->isWeak()) {
347    --SuccSU->WeakPredsLeft;
348    if (SuccEdge->isCluster())
349      NextClusterSucc = SuccSU;
350    return;
351  }
352#ifndef NDEBUG
353  if (SuccSU->NumPredsLeft == 0) {
354    dbgs() << "*** Scheduling failed! ***\n";
355    SuccSU->dump(this);
356    dbgs() << " has been released too many times!\n";
357    llvm_unreachable(0);
358  }
359#endif
360  --SuccSU->NumPredsLeft;
361  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
362    SchedImpl->releaseTopNode(SuccSU);
363}
364
365/// releaseSuccessors - Call releaseSucc on each of SU's successors.
366void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
367  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
368       I != E; ++I) {
369    releaseSucc(SU, &*I);
370  }
371}
372
373/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
374/// NumSuccsLeft reaches zero, release the predecessor node.
375///
376/// FIXME: Adjust PredSU height based on MinLatency.
377void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
378  SUnit *PredSU = PredEdge->getSUnit();
379
380  if (PredEdge->isWeak()) {
381    --PredSU->WeakSuccsLeft;
382    if (PredEdge->isCluster())
383      NextClusterPred = PredSU;
384    return;
385  }
386#ifndef NDEBUG
387  if (PredSU->NumSuccsLeft == 0) {
388    dbgs() << "*** Scheduling failed! ***\n";
389    PredSU->dump(this);
390    dbgs() << " has been released too many times!\n";
391    llvm_unreachable(0);
392  }
393#endif
394  --PredSU->NumSuccsLeft;
395  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
396    SchedImpl->releaseBottomNode(PredSU);
397}
398
399/// releasePredecessors - Call releasePred on each of SU's predecessors.
400void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
401  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
402       I != E; ++I) {
403    releasePred(SU, &*I);
404  }
405}
406
407void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
408                                    MachineBasicBlock::iterator InsertPos) {
409  // Advance RegionBegin if the first instruction moves down.
410  if (&*RegionBegin == MI)
411    ++RegionBegin;
412
413  // Update the instruction stream.
414  BB->splice(InsertPos, BB, MI);
415
416  // Update LiveIntervals
417  LIS->handleMove(MI, /*UpdateFlags=*/true);
418
419  // Recede RegionBegin if an instruction moves above the first.
420  if (RegionBegin == InsertPos)
421    RegionBegin = MI;
422}
423
424bool ScheduleDAGMI::checkSchedLimit() {
425#ifndef NDEBUG
426  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
427    CurrentTop = CurrentBottom;
428    return false;
429  }
430  ++NumInstrsScheduled;
431#endif
432  return true;
433}
434
435/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
436/// crossing a scheduling boundary. [begin, end) includes all instructions in
437/// the region, including the boundary itself and single-instruction regions
438/// that don't get scheduled.
439void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
440                                MachineBasicBlock::iterator begin,
441                                MachineBasicBlock::iterator end,
442                                unsigned endcount)
443{
444  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
445
446  // For convenience remember the end of the liveness region.
447  LiveRegionEnd =
448    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
449}
450
451// Setup the register pressure trackers for the top scheduled top and bottom
452// scheduled regions.
453void ScheduleDAGMI::initRegPressure() {
454  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
455  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
456
457  // Close the RPTracker to finalize live ins.
458  RPTracker.closeRegion();
459
460  DEBUG(RPTracker.getPressure().dump(TRI));
461
462  // Initialize the live ins and live outs.
463  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
464  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
465
466  // Close one end of the tracker so we can call
467  // getMaxUpward/DownwardPressureDelta before advancing across any
468  // instructions. This converts currently live regs into live ins/outs.
469  TopRPTracker.closeTop();
470  BotRPTracker.closeBottom();
471
472  // Account for liveness generated by the region boundary.
473  if (LiveRegionEnd != RegionEnd)
474    BotRPTracker.recede();
475
476  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
477
478  // Cache the list of excess pressure sets in this region. This will also track
479  // the max pressure in the scheduled code for these sets.
480  RegionCriticalPSets.clear();
481  const std::vector<unsigned> &RegionPressure =
482    RPTracker.getPressure().MaxSetPressure;
483  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
484    unsigned Limit = TRI->getRegPressureSetLimit(i);
485    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
486          << "Limit " << Limit
487          << " Actual " << RegionPressure[i] << "\n");
488    if (RegionPressure[i] > Limit)
489      RegionCriticalPSets.push_back(PressureElement(i, 0));
490  }
491  DEBUG(dbgs() << "Excess PSets: ";
492        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
493          dbgs() << TRI->getRegPressureSetName(
494            RegionCriticalPSets[i].PSetID) << " ";
495        dbgs() << "\n");
496}
497
498// FIXME: When the pressure tracker deals in pressure differences then we won't
499// iterate over all RegionCriticalPSets[i].
500void ScheduleDAGMI::
501updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
502  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
503    unsigned ID = RegionCriticalPSets[i].PSetID;
504    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
505    if ((int)NewMaxPressure[ID] > MaxUnits)
506      MaxUnits = NewMaxPressure[ID];
507  }
508}
509
510/// schedule - Called back from MachineScheduler::runOnMachineFunction
511/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
512/// only includes instructions that have DAG nodes, not scheduling boundaries.
513///
514/// This is a skeletal driver, with all the functionality pushed into helpers,
515/// so that it can be easilly extended by experimental schedulers. Generally,
516/// implementing MachineSchedStrategy should be sufficient to implement a new
517/// scheduling algorithm. However, if a scheduler further subclasses
518/// ScheduleDAGMI then it will want to override this virtual method in order to
519/// update any specialized state.
520void ScheduleDAGMI::schedule() {
521  buildDAGWithRegPressure();
522
523  Topo.InitDAGTopologicalSorting();
524
525  postprocessDAG();
526
527  SmallVector<SUnit*, 8> TopRoots, BotRoots;
528  findRootsAndBiasEdges(TopRoots, BotRoots);
529
530  // Initialize the strategy before modifying the DAG.
531  // This may initialize a DFSResult to be used for queue priority.
532  SchedImpl->initialize(this);
533
534  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
535          SUnits[su].dumpAll(this));
536  if (ViewMISchedDAGs) viewGraph();
537
538  // Initialize ready queues now that the DAG and priority data are finalized.
539  initQueues(TopRoots, BotRoots);
540
541  bool IsTopNode = false;
542  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
543    assert(!SU->isScheduled && "Node already scheduled");
544    if (!checkSchedLimit())
545      break;
546
547    scheduleMI(SU, IsTopNode);
548
549    updateQueues(SU, IsTopNode);
550  }
551  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
552
553  placeDebugValues();
554
555  DEBUG({
556      unsigned BBNum = begin()->getParent()->getNumber();
557      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
558      dumpSchedule();
559      dbgs() << '\n';
560    });
561}
562
563/// Build the DAG and setup three register pressure trackers.
564void ScheduleDAGMI::buildDAGWithRegPressure() {
565  // Initialize the register pressure tracker used by buildSchedGraph.
566  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
567
568  // Account for liveness generate by the region boundary.
569  if (LiveRegionEnd != RegionEnd)
570    RPTracker.recede();
571
572  // Build the DAG, and compute current register pressure.
573  buildSchedGraph(AA, &RPTracker);
574
575  // Initialize top/bottom trackers after computing region pressure.
576  initRegPressure();
577}
578
579/// Apply each ScheduleDAGMutation step in order.
580void ScheduleDAGMI::postprocessDAG() {
581  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
582    Mutations[i]->apply(this);
583  }
584}
585
586void ScheduleDAGMI::computeDFSResult() {
587  if (!DFSResult)
588    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
589  DFSResult->clear();
590  ScheduledTrees.clear();
591  DFSResult->resize(SUnits.size());
592  DFSResult->compute(SUnits);
593  ScheduledTrees.resize(DFSResult->getNumSubtrees());
594}
595
596void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
597                                          SmallVectorImpl<SUnit*> &BotRoots) {
598  for (std::vector<SUnit>::iterator
599         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
600    SUnit *SU = &(*I);
601    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
602
603    // Order predecessors so DFSResult follows the critical path.
604    SU->biasCriticalPath();
605
606    // A SUnit is ready to top schedule if it has no predecessors.
607    if (!I->NumPredsLeft)
608      TopRoots.push_back(SU);
609    // A SUnit is ready to bottom schedule if it has no successors.
610    if (!I->NumSuccsLeft)
611      BotRoots.push_back(SU);
612  }
613  ExitSU.biasCriticalPath();
614}
615
616/// Identify DAG roots and setup scheduler queues.
617void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
618                               ArrayRef<SUnit*> BotRoots) {
619  NextClusterSucc = NULL;
620  NextClusterPred = NULL;
621
622  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
623  //
624  // Nodes with unreleased weak edges can still be roots.
625  // Release top roots in forward order.
626  for (SmallVectorImpl<SUnit*>::const_iterator
627         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
628    SchedImpl->releaseTopNode(*I);
629  }
630  // Release bottom roots in reverse order so the higher priority nodes appear
631  // first. This is more natural and slightly more efficient.
632  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
633         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
634    SchedImpl->releaseBottomNode(*I);
635  }
636
637  releaseSuccessors(&EntrySU);
638  releasePredecessors(&ExitSU);
639
640  SchedImpl->registerRoots();
641
642  // Advance past initial DebugValues.
643  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
644  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
645  TopRPTracker.setPos(CurrentTop);
646
647  CurrentBottom = RegionEnd;
648}
649
650/// Move an instruction and update register pressure.
651void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
652  // Move the instruction to its new location in the instruction stream.
653  MachineInstr *MI = SU->getInstr();
654
655  if (IsTopNode) {
656    assert(SU->isTopReady() && "node still has unscheduled dependencies");
657    if (&*CurrentTop == MI)
658      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
659    else {
660      moveInstruction(MI, CurrentTop);
661      TopRPTracker.setPos(MI);
662    }
663
664    // Update top scheduled pressure.
665    TopRPTracker.advance();
666    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
667    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
668  }
669  else {
670    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
671    MachineBasicBlock::iterator priorII =
672      priorNonDebug(CurrentBottom, CurrentTop);
673    if (&*priorII == MI)
674      CurrentBottom = priorII;
675    else {
676      if (&*CurrentTop == MI) {
677        CurrentTop = nextIfDebug(++CurrentTop, priorII);
678        TopRPTracker.setPos(CurrentTop);
679      }
680      moveInstruction(MI, CurrentBottom);
681      CurrentBottom = MI;
682    }
683    // Update bottom scheduled pressure.
684    BotRPTracker.recede();
685    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
686    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
687  }
688}
689
690/// Update scheduler queues after scheduling an instruction.
691void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
692  // Release dependent instructions for scheduling.
693  if (IsTopNode)
694    releaseSuccessors(SU);
695  else
696    releasePredecessors(SU);
697
698  SU->isScheduled = true;
699
700  if (DFSResult) {
701    unsigned SubtreeID = DFSResult->getSubtreeID(SU);
702    if (!ScheduledTrees.test(SubtreeID)) {
703      ScheduledTrees.set(SubtreeID);
704      DFSResult->scheduleTree(SubtreeID);
705      SchedImpl->scheduleTree(SubtreeID);
706    }
707  }
708
709  // Notify the scheduling strategy after updating the DAG.
710  SchedImpl->schedNode(SU, IsTopNode);
711}
712
713/// Reinsert any remaining debug_values, just like the PostRA scheduler.
714void ScheduleDAGMI::placeDebugValues() {
715  // If first instruction was a DBG_VALUE then put it back.
716  if (FirstDbgValue) {
717    BB->splice(RegionBegin, BB, FirstDbgValue);
718    RegionBegin = FirstDbgValue;
719  }
720
721  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
722         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
723    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
724    MachineInstr *DbgValue = P.first;
725    MachineBasicBlock::iterator OrigPrevMI = P.second;
726    if (&*RegionBegin == DbgValue)
727      ++RegionBegin;
728    BB->splice(++OrigPrevMI, BB, DbgValue);
729    if (OrigPrevMI == llvm::prior(RegionEnd))
730      RegionEnd = DbgValue;
731  }
732  DbgValues.clear();
733  FirstDbgValue = NULL;
734}
735
736#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
737void ScheduleDAGMI::dumpSchedule() const {
738  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
739    if (SUnit *SU = getSUnit(&(*MI)))
740      SU->dump(this);
741    else
742      dbgs() << "Missing SUnit\n";
743  }
744}
745#endif
746
747//===----------------------------------------------------------------------===//
748// LoadClusterMutation - DAG post-processing to cluster loads.
749//===----------------------------------------------------------------------===//
750
751namespace {
752/// \brief Post-process the DAG to create cluster edges between neighboring
753/// loads.
754class LoadClusterMutation : public ScheduleDAGMutation {
755  struct LoadInfo {
756    SUnit *SU;
757    unsigned BaseReg;
758    unsigned Offset;
759    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
760      : SU(su), BaseReg(reg), Offset(ofs) {}
761  };
762  static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
763                           const LoadClusterMutation::LoadInfo &RHS);
764
765  const TargetInstrInfo *TII;
766  const TargetRegisterInfo *TRI;
767public:
768  LoadClusterMutation(const TargetInstrInfo *tii,
769                      const TargetRegisterInfo *tri)
770    : TII(tii), TRI(tri) {}
771
772  virtual void apply(ScheduleDAGMI *DAG);
773protected:
774  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
775};
776} // anonymous
777
778bool LoadClusterMutation::LoadInfoLess(
779  const LoadClusterMutation::LoadInfo &LHS,
780  const LoadClusterMutation::LoadInfo &RHS) {
781  if (LHS.BaseReg != RHS.BaseReg)
782    return LHS.BaseReg < RHS.BaseReg;
783  return LHS.Offset < RHS.Offset;
784}
785
786void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
787                                                  ScheduleDAGMI *DAG) {
788  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
789  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
790    SUnit *SU = Loads[Idx];
791    unsigned BaseReg;
792    unsigned Offset;
793    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
794      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
795  }
796  if (LoadRecords.size() < 2)
797    return;
798  std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
799  unsigned ClusterLength = 1;
800  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
801    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
802      ClusterLength = 1;
803      continue;
804    }
805
806    SUnit *SUa = LoadRecords[Idx].SU;
807    SUnit *SUb = LoadRecords[Idx+1].SU;
808    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
809        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
810
811      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
812            << SUb->NodeNum << ")\n");
813      // Copy successor edges from SUa to SUb. Interleaving computation
814      // dependent on SUa can prevent load combining due to register reuse.
815      // Predecessor edges do not need to be copied from SUb to SUa since nearby
816      // loads should have effectively the same inputs.
817      for (SUnit::const_succ_iterator
818             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
819        if (SI->getSUnit() == SUb)
820          continue;
821        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
822        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
823      }
824      ++ClusterLength;
825    }
826    else
827      ClusterLength = 1;
828  }
829}
830
831/// \brief Callback from DAG postProcessing to create cluster edges for loads.
832void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
833  // Map DAG NodeNum to store chain ID.
834  DenseMap<unsigned, unsigned> StoreChainIDs;
835  // Map each store chain to a set of dependent loads.
836  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
837  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
838    SUnit *SU = &DAG->SUnits[Idx];
839    if (!SU->getInstr()->mayLoad())
840      continue;
841    unsigned ChainPredID = DAG->SUnits.size();
842    for (SUnit::const_pred_iterator
843           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
844      if (PI->isCtrl()) {
845        ChainPredID = PI->getSUnit()->NodeNum;
846        break;
847      }
848    }
849    // Check if this chain-like pred has been seen
850    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
851    unsigned NumChains = StoreChainDependents.size();
852    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
853      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
854    if (Result.second)
855      StoreChainDependents.resize(NumChains + 1);
856    StoreChainDependents[Result.first->second].push_back(SU);
857  }
858  // Iterate over the store chains.
859  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
860    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
861}
862
863//===----------------------------------------------------------------------===//
864// MacroFusion - DAG post-processing to encourage fusion of macro ops.
865//===----------------------------------------------------------------------===//
866
867namespace {
868/// \brief Post-process the DAG to create cluster edges between instructions
869/// that may be fused by the processor into a single operation.
870class MacroFusion : public ScheduleDAGMutation {
871  const TargetInstrInfo *TII;
872public:
873  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
874
875  virtual void apply(ScheduleDAGMI *DAG);
876};
877} // anonymous
878
879/// \brief Callback from DAG postProcessing to create cluster edges to encourage
880/// fused operations.
881void MacroFusion::apply(ScheduleDAGMI *DAG) {
882  // For now, assume targets can only fuse with the branch.
883  MachineInstr *Branch = DAG->ExitSU.getInstr();
884  if (!Branch)
885    return;
886
887  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
888    SUnit *SU = &DAG->SUnits[--Idx];
889    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
890      continue;
891
892    // Create a single weak edge from SU to ExitSU. The only effect is to cause
893    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
894    // need to copy predecessor edges from ExitSU to SU, since top-down
895    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
896    // of SU, we could create an artificial edge from the deepest root, but it
897    // hasn't been needed yet.
898    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
899    (void)Success;
900    assert(Success && "No DAG nodes should be reachable from ExitSU");
901
902    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
903    break;
904  }
905}
906
907//===----------------------------------------------------------------------===//
908// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
909//===----------------------------------------------------------------------===//
910
911namespace {
912/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
913/// the schedule.
914class ConvergingScheduler : public MachineSchedStrategy {
915public:
916  /// Represent the type of SchedCandidate found within a single queue.
917  /// pickNodeBidirectional depends on these listed by decreasing priority.
918  enum CandReason {
919    NoCand, SingleExcess, SingleCritical, Cluster,
920    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
921    TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
922    NodeOrder};
923
924#ifndef NDEBUG
925  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
926#endif
927
928  /// Policy for scheduling the next instruction in the candidate's zone.
929  struct CandPolicy {
930    bool ReduceLatency;
931    unsigned ReduceResIdx;
932    unsigned DemandResIdx;
933
934    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
935  };
936
937  /// Status of an instruction's critical resource consumption.
938  struct SchedResourceDelta {
939    // Count critical resources in the scheduled region required by SU.
940    unsigned CritResources;
941
942    // Count critical resources from another region consumed by SU.
943    unsigned DemandedResources;
944
945    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
946
947    bool operator==(const SchedResourceDelta &RHS) const {
948      return CritResources == RHS.CritResources
949        && DemandedResources == RHS.DemandedResources;
950    }
951    bool operator!=(const SchedResourceDelta &RHS) const {
952      return !operator==(RHS);
953    }
954  };
955
956  /// Store the state used by ConvergingScheduler heuristics, required for the
957  /// lifetime of one invocation of pickNode().
958  struct SchedCandidate {
959    CandPolicy Policy;
960
961    // The best SUnit candidate.
962    SUnit *SU;
963
964    // The reason for this candidate.
965    CandReason Reason;
966
967    // Register pressure values for the best candidate.
968    RegPressureDelta RPDelta;
969
970    // Critical resource consumption of the best candidate.
971    SchedResourceDelta ResDelta;
972
973    SchedCandidate(const CandPolicy &policy)
974    : Policy(policy), SU(NULL), Reason(NoCand) {}
975
976    bool isValid() const { return SU; }
977
978    // Copy the status of another candidate without changing policy.
979    void setBest(SchedCandidate &Best) {
980      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
981      SU = Best.SU;
982      Reason = Best.Reason;
983      RPDelta = Best.RPDelta;
984      ResDelta = Best.ResDelta;
985    }
986
987    void initResourceDelta(const ScheduleDAGMI *DAG,
988                           const TargetSchedModel *SchedModel);
989  };
990
991  /// Summarize the unscheduled region.
992  struct SchedRemainder {
993    // Critical path through the DAG in expected latency.
994    unsigned CriticalPath;
995
996    // Unscheduled resources
997    SmallVector<unsigned, 16> RemainingCounts;
998    // Critical resource for the unscheduled zone.
999    unsigned CritResIdx;
1000    // Number of micro-ops left to schedule.
1001    unsigned RemainingMicroOps;
1002
1003    void reset() {
1004      CriticalPath = 0;
1005      RemainingCounts.clear();
1006      CritResIdx = 0;
1007      RemainingMicroOps = 0;
1008    }
1009
1010    SchedRemainder() { reset(); }
1011
1012    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1013
1014    unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
1015      if (!SchedModel->hasInstrSchedModel())
1016        return 0;
1017
1018      return std::max(
1019        RemainingMicroOps * SchedModel->getMicroOpFactor(),
1020        RemainingCounts[CritResIdx]);
1021    }
1022  };
1023
1024  /// Each Scheduling boundary is associated with ready queues. It tracks the
1025  /// current cycle in the direction of movement, and maintains the state
1026  /// of "hazards" and other interlocks at the current cycle.
1027  struct SchedBoundary {
1028    ScheduleDAGMI *DAG;
1029    const TargetSchedModel *SchedModel;
1030    SchedRemainder *Rem;
1031
1032    ReadyQueue Available;
1033    ReadyQueue Pending;
1034    bool CheckPending;
1035
1036    // For heuristics, keep a list of the nodes that immediately depend on the
1037    // most recently scheduled node.
1038    SmallPtrSet<const SUnit*, 8> NextSUs;
1039
1040    ScheduleHazardRecognizer *HazardRec;
1041
1042    unsigned CurrCycle;
1043    unsigned IssueCount;
1044
1045    /// MinReadyCycle - Cycle of the soonest available instruction.
1046    unsigned MinReadyCycle;
1047
1048    // The expected latency of the critical path in this scheduled zone.
1049    unsigned ExpectedLatency;
1050
1051    // Resources used in the scheduled zone beyond this boundary.
1052    SmallVector<unsigned, 16> ResourceCounts;
1053
1054    // Cache the critical resources ID in this scheduled zone.
1055    unsigned CritResIdx;
1056
1057    // Is the scheduled region resource limited vs. latency limited.
1058    bool IsResourceLimited;
1059
1060    unsigned ExpectedCount;
1061
1062#ifndef NDEBUG
1063    // Remember the greatest min operand latency.
1064    unsigned MaxMinLatency;
1065#endif
1066
1067    void reset() {
1068      // A new HazardRec is created for each DAG and owned by SchedBoundary.
1069      delete HazardRec;
1070
1071      Available.clear();
1072      Pending.clear();
1073      CheckPending = false;
1074      NextSUs.clear();
1075      HazardRec = 0;
1076      CurrCycle = 0;
1077      IssueCount = 0;
1078      MinReadyCycle = UINT_MAX;
1079      ExpectedLatency = 0;
1080      ResourceCounts.resize(1);
1081      assert(!ResourceCounts[0] && "nonzero count for bad resource");
1082      CritResIdx = 0;
1083      IsResourceLimited = false;
1084      ExpectedCount = 0;
1085#ifndef NDEBUG
1086      MaxMinLatency = 0;
1087#endif
1088      // Reserve a zero-count for invalid CritResIdx.
1089      ResourceCounts.resize(1);
1090    }
1091
1092    /// Pending queues extend the ready queues with the same ID and the
1093    /// PendingFlag set.
1094    SchedBoundary(unsigned ID, const Twine &Name):
1095      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1096      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1097      HazardRec(0) {
1098      reset();
1099    }
1100
1101    ~SchedBoundary() { delete HazardRec; }
1102
1103    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1104              SchedRemainder *rem);
1105
1106    bool isTop() const {
1107      return Available.getID() == ConvergingScheduler::TopQID;
1108    }
1109
1110    unsigned getUnscheduledLatency(SUnit *SU) const {
1111      if (isTop())
1112        return SU->getHeight();
1113      return SU->getDepth() + SU->Latency;
1114    }
1115
1116    unsigned getCriticalCount() const {
1117      return ResourceCounts[CritResIdx];
1118    }
1119
1120    bool checkHazard(SUnit *SU);
1121
1122    void setLatencyPolicy(CandPolicy &Policy);
1123
1124    void releaseNode(SUnit *SU, unsigned ReadyCycle);
1125
1126    void bumpCycle();
1127
1128    void countResource(unsigned PIdx, unsigned Cycles);
1129
1130    void bumpNode(SUnit *SU);
1131
1132    void releasePending();
1133
1134    void removeReady(SUnit *SU);
1135
1136    SUnit *pickOnlyChoice();
1137  };
1138
1139private:
1140  ScheduleDAGMI *DAG;
1141  const TargetSchedModel *SchedModel;
1142  const TargetRegisterInfo *TRI;
1143
1144  // State of the top and bottom scheduled instruction boundaries.
1145  SchedRemainder Rem;
1146  SchedBoundary Top;
1147  SchedBoundary Bot;
1148
1149public:
1150  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1151  enum {
1152    TopQID = 1,
1153    BotQID = 2,
1154    LogMaxQID = 2
1155  };
1156
1157  ConvergingScheduler():
1158    DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1159
1160  virtual void initialize(ScheduleDAGMI *dag);
1161
1162  virtual SUnit *pickNode(bool &IsTopNode);
1163
1164  virtual void schedNode(SUnit *SU, bool IsTopNode);
1165
1166  virtual void releaseTopNode(SUnit *SU);
1167
1168  virtual void releaseBottomNode(SUnit *SU);
1169
1170  virtual void registerRoots();
1171
1172protected:
1173  void balanceZones(
1174    ConvergingScheduler::SchedBoundary &CriticalZone,
1175    ConvergingScheduler::SchedCandidate &CriticalCand,
1176    ConvergingScheduler::SchedBoundary &OppositeZone,
1177    ConvergingScheduler::SchedCandidate &OppositeCand);
1178
1179  void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
1180                           ConvergingScheduler::SchedCandidate &BotCand);
1181
1182  void tryCandidate(SchedCandidate &Cand,
1183                    SchedCandidate &TryCand,
1184                    SchedBoundary &Zone,
1185                    const RegPressureTracker &RPTracker,
1186                    RegPressureTracker &TempTracker);
1187
1188  SUnit *pickNodeBidirectional(bool &IsTopNode);
1189
1190  void pickNodeFromQueue(SchedBoundary &Zone,
1191                         const RegPressureTracker &RPTracker,
1192                         SchedCandidate &Candidate);
1193
1194#ifndef NDEBUG
1195  void traceCandidate(const SchedCandidate &Cand);
1196#endif
1197};
1198} // namespace
1199
1200void ConvergingScheduler::SchedRemainder::
1201init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1202  reset();
1203  if (!SchedModel->hasInstrSchedModel())
1204    return;
1205  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1206  for (std::vector<SUnit>::iterator
1207         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1208    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1209    RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
1210    for (TargetSchedModel::ProcResIter
1211           PI = SchedModel->getWriteProcResBegin(SC),
1212           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1213      unsigned PIdx = PI->ProcResourceIdx;
1214      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1215      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1216    }
1217  }
1218  for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
1219       PIdx != PEnd; ++PIdx) {
1220    if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
1221        >= (int)SchedModel->getLatencyFactor()) {
1222      CritResIdx = PIdx;
1223    }
1224  }
1225}
1226
1227void ConvergingScheduler::SchedBoundary::
1228init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1229  reset();
1230  DAG = dag;
1231  SchedModel = smodel;
1232  Rem = rem;
1233  if (SchedModel->hasInstrSchedModel())
1234    ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
1235}
1236
1237void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1238  DAG = dag;
1239  SchedModel = DAG->getSchedModel();
1240  TRI = DAG->TRI;
1241
1242  Rem.init(DAG, SchedModel);
1243  Top.init(DAG, SchedModel, &Rem);
1244  Bot.init(DAG, SchedModel, &Rem);
1245
1246  // Initialize resource counts.
1247
1248  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1249  // are disabled, then these HazardRecs will be disabled.
1250  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1251  const TargetMachine &TM = DAG->MF.getTarget();
1252  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1253  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1254
1255  assert((!ForceTopDown || !ForceBottomUp) &&
1256         "-misched-topdown incompatible with -misched-bottomup");
1257}
1258
1259void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1260  if (SU->isScheduled)
1261    return;
1262
1263  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1264       I != E; ++I) {
1265    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1266    unsigned MinLatency = I->getMinLatency();
1267#ifndef NDEBUG
1268    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
1269#endif
1270    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
1271      SU->TopReadyCycle = PredReadyCycle + MinLatency;
1272  }
1273  Top.releaseNode(SU, SU->TopReadyCycle);
1274}
1275
1276void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1277  if (SU->isScheduled)
1278    return;
1279
1280  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1281
1282  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1283       I != E; ++I) {
1284    if (I->isWeak())
1285      continue;
1286    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1287    unsigned MinLatency = I->getMinLatency();
1288#ifndef NDEBUG
1289    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
1290#endif
1291    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
1292      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
1293  }
1294  Bot.releaseNode(SU, SU->BotReadyCycle);
1295}
1296
1297void ConvergingScheduler::registerRoots() {
1298  Rem.CriticalPath = DAG->ExitSU.getDepth();
1299  // Some roots may not feed into ExitSU. Check all of them in case.
1300  for (std::vector<SUnit*>::const_iterator
1301         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1302    if ((*I)->getDepth() > Rem.CriticalPath)
1303      Rem.CriticalPath = (*I)->getDepth();
1304  }
1305  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1306}
1307
1308/// Does this SU have a hazard within the current instruction group.
1309///
1310/// The scheduler supports two modes of hazard recognition. The first is the
1311/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1312/// supports highly complicated in-order reservation tables
1313/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1314///
1315/// The second is a streamlined mechanism that checks for hazards based on
1316/// simple counters that the scheduler itself maintains. It explicitly checks
1317/// for instruction dispatch limitations, including the number of micro-ops that
1318/// can dispatch per cycle.
1319///
1320/// TODO: Also check whether the SU must start a new group.
1321bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1322  if (HazardRec->isEnabled())
1323    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1324
1325  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1326  if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
1327    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1328          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1329    return true;
1330  }
1331  return false;
1332}
1333
1334/// Compute the remaining latency to determine whether ILP should be increased.
1335void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
1336  // FIXME: compile time. In all, we visit four queues here one we should only
1337  // need to visit the one that was last popped if we cache the result.
1338  unsigned RemLatency = 0;
1339  for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
1340       I != E; ++I) {
1341    unsigned L = getUnscheduledLatency(*I);
1342    if (L > RemLatency)
1343      RemLatency = L;
1344  }
1345  for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
1346       I != E; ++I) {
1347    unsigned L = getUnscheduledLatency(*I);
1348    if (L > RemLatency)
1349      RemLatency = L;
1350  }
1351  unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
1352  if (RemLatency + ExpectedLatency >= CriticalPathLimit
1353      && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
1354    Policy.ReduceLatency = true;
1355    DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n');
1356  }
1357}
1358
1359void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1360                                                     unsigned ReadyCycle) {
1361
1362  if (ReadyCycle < MinReadyCycle)
1363    MinReadyCycle = ReadyCycle;
1364
1365  // Check for interlocks first. For the purpose of other heuristics, an
1366  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1367  if (ReadyCycle > CurrCycle || checkHazard(SU))
1368    Pending.push(SU);
1369  else
1370    Available.push(SU);
1371
1372  // Record this node as an immediate dependent of the scheduled node.
1373  NextSUs.insert(SU);
1374}
1375
1376/// Move the boundary of scheduled code by one cycle.
1377void ConvergingScheduler::SchedBoundary::bumpCycle() {
1378  unsigned Width = SchedModel->getIssueWidth();
1379  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
1380
1381  unsigned NextCycle = CurrCycle + 1;
1382  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1383  if (MinReadyCycle > NextCycle) {
1384    IssueCount = 0;
1385    NextCycle = MinReadyCycle;
1386  }
1387
1388  if (!HazardRec->isEnabled()) {
1389    // Bypass HazardRec virtual calls.
1390    CurrCycle = NextCycle;
1391  }
1392  else {
1393    // Bypass getHazardType calls in case of long latency.
1394    for (; CurrCycle != NextCycle; ++CurrCycle) {
1395      if (isTop())
1396        HazardRec->AdvanceCycle();
1397      else
1398        HazardRec->RecedeCycle();
1399    }
1400  }
1401  CheckPending = true;
1402  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
1403
1404  DEBUG(dbgs() << "  " << Available.getName()
1405        << " Cycle: " << CurrCycle << '\n');
1406}
1407
1408/// Add the given processor resource to this scheduled zone.
1409void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
1410                                                       unsigned Cycles) {
1411  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1412  DEBUG(dbgs() << "  " << SchedModel->getProcResource(PIdx)->Name
1413        << " +(" << Cycles << "x" << Factor
1414        << ") / " << SchedModel->getLatencyFactor() << '\n');
1415
1416  unsigned Count = Factor * Cycles;
1417  ResourceCounts[PIdx] += Count;
1418  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1419  Rem->RemainingCounts[PIdx] -= Count;
1420
1421  // Check if this resource exceeds the current critical resource by a full
1422  // cycle. If so, it becomes the critical resource.
1423  if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
1424      >= (int)SchedModel->getLatencyFactor()) {
1425    CritResIdx = PIdx;
1426    DEBUG(dbgs() << "  *** Critical resource "
1427          << SchedModel->getProcResource(PIdx)->Name << " x"
1428          << ResourceCounts[PIdx] << '\n');
1429  }
1430}
1431
1432/// Move the boundary of scheduled code by one SUnit.
1433void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
1434  // Update the reservation table.
1435  if (HazardRec->isEnabled()) {
1436    if (!isTop() && SU->isCall) {
1437      // Calls are scheduled with their preceding instructions. For bottom-up
1438      // scheduling, clear the pipeline state before emitting.
1439      HazardRec->Reset();
1440    }
1441    HazardRec->EmitInstruction(SU);
1442  }
1443  // Update resource counts and critical resource.
1444  if (SchedModel->hasInstrSchedModel()) {
1445    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1446    Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
1447    for (TargetSchedModel::ProcResIter
1448           PI = SchedModel->getWriteProcResBegin(SC),
1449           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1450      countResource(PI->ProcResourceIdx, PI->Cycles);
1451    }
1452  }
1453  if (isTop()) {
1454    if (SU->getDepth() > ExpectedLatency)
1455      ExpectedLatency = SU->getDepth();
1456  }
1457  else {
1458    if (SU->getHeight() > ExpectedLatency)
1459      ExpectedLatency = SU->getHeight();
1460  }
1461
1462  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
1463
1464  // Check the instruction group dispatch limit.
1465  // TODO: Check if this SU must end a dispatch group.
1466  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
1467
1468  // checkHazard prevents scheduling multiple instructions per cycle that exceed
1469  // issue width. However, we commonly reach the maximum. In this case
1470  // opportunistically bump the cycle to avoid uselessly checking everything in
1471  // the readyQ. Furthermore, a single instruction may produce more than one
1472  // cycle's worth of micro-ops.
1473  if (IssueCount >= SchedModel->getIssueWidth()) {
1474    DEBUG(dbgs() << "  *** Max instrs at cycle " << CurrCycle << '\n');
1475    bumpCycle();
1476  }
1477}
1478
1479/// Release pending ready nodes in to the available queue. This makes them
1480/// visible to heuristics.
1481void ConvergingScheduler::SchedBoundary::releasePending() {
1482  // If the available queue is empty, it is safe to reset MinReadyCycle.
1483  if (Available.empty())
1484    MinReadyCycle = UINT_MAX;
1485
1486  // Check to see if any of the pending instructions are ready to issue.  If
1487  // so, add them to the available queue.
1488  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
1489    SUnit *SU = *(Pending.begin()+i);
1490    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
1491
1492    if (ReadyCycle < MinReadyCycle)
1493      MinReadyCycle = ReadyCycle;
1494
1495    if (ReadyCycle > CurrCycle)
1496      continue;
1497
1498    if (checkHazard(SU))
1499      continue;
1500
1501    Available.push(SU);
1502    Pending.remove(Pending.begin()+i);
1503    --i; --e;
1504  }
1505  DEBUG(if (!Pending.empty()) Pending.dump());
1506  CheckPending = false;
1507}
1508
1509/// Remove SU from the ready set for this boundary.
1510void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
1511  if (Available.isInQueue(SU))
1512    Available.remove(Available.find(SU));
1513  else {
1514    assert(Pending.isInQueue(SU) && "bad ready count");
1515    Pending.remove(Pending.find(SU));
1516  }
1517}
1518
1519/// If this queue only has one ready candidate, return it. As a side effect,
1520/// defer any nodes that now hit a hazard, and advance the cycle until at least
1521/// one node is ready. If multiple instructions are ready, return NULL.
1522SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
1523  if (CheckPending)
1524    releasePending();
1525
1526  if (IssueCount > 0) {
1527    // Defer any ready instrs that now have a hazard.
1528    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
1529      if (checkHazard(*I)) {
1530        Pending.push(*I);
1531        I = Available.remove(I);
1532        continue;
1533      }
1534      ++I;
1535    }
1536  }
1537  for (unsigned i = 0; Available.empty(); ++i) {
1538    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
1539           "permanent hazard"); (void)i;
1540    bumpCycle();
1541    releasePending();
1542  }
1543  if (Available.size() == 1)
1544    return *Available.begin();
1545  return NULL;
1546}
1547
1548/// Record the candidate policy for opposite zones with different critical
1549/// resources.
1550///
1551/// If the CriticalZone is latency limited, don't force a policy for the
1552/// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
1553void ConvergingScheduler::balanceZones(
1554  ConvergingScheduler::SchedBoundary &CriticalZone,
1555  ConvergingScheduler::SchedCandidate &CriticalCand,
1556  ConvergingScheduler::SchedBoundary &OppositeZone,
1557  ConvergingScheduler::SchedCandidate &OppositeCand) {
1558
1559  if (!CriticalZone.IsResourceLimited)
1560    return;
1561  assert(SchedModel->hasInstrSchedModel() && "required schedmodel");
1562
1563  SchedRemainder *Rem = CriticalZone.Rem;
1564
1565  // If the critical zone is overconsuming a resource relative to the
1566  // remainder, try to reduce it.
1567  unsigned RemainingCritCount =
1568    Rem->RemainingCounts[CriticalZone.CritResIdx];
1569  if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
1570      > (int)SchedModel->getLatencyFactor()) {
1571    CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
1572    DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
1573          << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
1574          << '\n');
1575  }
1576  // If the other zone is underconsuming a resource relative to the full zone,
1577  // try to increase it.
1578  unsigned OppositeCount =
1579    OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
1580  if ((int)(OppositeZone.ExpectedCount - OppositeCount)
1581      > (int)SchedModel->getLatencyFactor()) {
1582    OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
1583    DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
1584          << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
1585          << '\n');
1586  }
1587}
1588
1589/// Determine if the scheduled zones exceed resource limits or critical path and
1590/// set each candidate's ReduceHeight policy accordingly.
1591void ConvergingScheduler::checkResourceLimits(
1592  ConvergingScheduler::SchedCandidate &TopCand,
1593  ConvergingScheduler::SchedCandidate &BotCand) {
1594
1595  // Set ReduceLatency to true if needed.
1596  Bot.setLatencyPolicy(BotCand.Policy);
1597  Top.setLatencyPolicy(TopCand.Policy);
1598
1599  // Handle resource-limited regions.
1600  if (Top.IsResourceLimited && Bot.IsResourceLimited
1601      && Top.CritResIdx == Bot.CritResIdx) {
1602    // If the scheduled critical resource in both zones is no longer the
1603    // critical remaining resource, attempt to reduce resource height both ways.
1604    if (Top.CritResIdx != Rem.CritResIdx) {
1605      TopCand.Policy.ReduceResIdx = Top.CritResIdx;
1606      BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
1607      DEBUG(dbgs() << "Reduce scheduled "
1608            << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
1609    }
1610    return;
1611  }
1612  // Handle latency-limited regions.
1613  if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
1614    // If the total scheduled expected latency exceeds the region's critical
1615    // path then reduce latency both ways.
1616    //
1617    // Just because a zone is not resource limited does not mean it is latency
1618    // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
1619    // to exceed expected latency.
1620    if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
1621        && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
1622      TopCand.Policy.ReduceLatency = true;
1623      BotCand.Policy.ReduceLatency = true;
1624      DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
1625            << " + " << Bot.ExpectedLatency << '\n');
1626    }
1627    return;
1628  }
1629  // The critical resource is different in each zone, so request balancing.
1630
1631  // Compute the cost of each zone.
1632  Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
1633  Top.ExpectedCount = std::max(
1634    Top.getCriticalCount(),
1635    Top.ExpectedCount * SchedModel->getLatencyFactor());
1636  Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
1637  Bot.ExpectedCount = std::max(
1638    Bot.getCriticalCount(),
1639    Bot.ExpectedCount * SchedModel->getLatencyFactor());
1640
1641  balanceZones(Top, TopCand, Bot, BotCand);
1642  balanceZones(Bot, BotCand, Top, TopCand);
1643}
1644
1645void ConvergingScheduler::SchedCandidate::
1646initResourceDelta(const ScheduleDAGMI *DAG,
1647                  const TargetSchedModel *SchedModel) {
1648  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
1649    return;
1650
1651  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1652  for (TargetSchedModel::ProcResIter
1653         PI = SchedModel->getWriteProcResBegin(SC),
1654         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1655    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
1656      ResDelta.CritResources += PI->Cycles;
1657    if (PI->ProcResourceIdx == Policy.DemandResIdx)
1658      ResDelta.DemandedResources += PI->Cycles;
1659  }
1660}
1661
1662/// Return true if this heuristic determines order.
1663static bool tryLess(unsigned TryVal, unsigned CandVal,
1664                    ConvergingScheduler::SchedCandidate &TryCand,
1665                    ConvergingScheduler::SchedCandidate &Cand,
1666                    ConvergingScheduler::CandReason Reason) {
1667  if (TryVal < CandVal) {
1668    TryCand.Reason = Reason;
1669    return true;
1670  }
1671  if (TryVal > CandVal) {
1672    if (Cand.Reason > Reason)
1673      Cand.Reason = Reason;
1674    return true;
1675  }
1676  return false;
1677}
1678
1679static bool tryGreater(unsigned TryVal, unsigned CandVal,
1680                       ConvergingScheduler::SchedCandidate &TryCand,
1681                       ConvergingScheduler::SchedCandidate &Cand,
1682                       ConvergingScheduler::CandReason Reason) {
1683  if (TryVal > CandVal) {
1684    TryCand.Reason = Reason;
1685    return true;
1686  }
1687  if (TryVal < CandVal) {
1688    if (Cand.Reason > Reason)
1689      Cand.Reason = Reason;
1690    return true;
1691  }
1692  return false;
1693}
1694
1695static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
1696  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
1697}
1698
1699/// Apply a set of heursitics to a new candidate. Heuristics are currently
1700/// hierarchical. This may be more efficient than a graduated cost model because
1701/// we don't need to evaluate all aspects of the model for each node in the
1702/// queue. But it's really done to make the heuristics easier to debug and
1703/// statistically analyze.
1704///
1705/// \param Cand provides the policy and current best candidate.
1706/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
1707/// \param Zone describes the scheduled zone that we are extending.
1708/// \param RPTracker describes reg pressure within the scheduled zone.
1709/// \param TempTracker is a scratch pressure tracker to reuse in queries.
1710void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
1711                                       SchedCandidate &TryCand,
1712                                       SchedBoundary &Zone,
1713                                       const RegPressureTracker &RPTracker,
1714                                       RegPressureTracker &TempTracker) {
1715
1716  // Always initialize TryCand's RPDelta.
1717  TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
1718                                  DAG->getRegionCriticalPSets(),
1719                                  DAG->getRegPressure().MaxSetPressure);
1720
1721  // Initialize the candidate if needed.
1722  if (!Cand.isValid()) {
1723    TryCand.Reason = NodeOrder;
1724    return;
1725  }
1726  // Avoid exceeding the target's limit.
1727  if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
1728              Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
1729    return;
1730  if (Cand.Reason == SingleExcess)
1731    Cand.Reason = MultiPressure;
1732
1733  // Avoid increasing the max critical pressure in the scheduled region.
1734  if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
1735              Cand.RPDelta.CriticalMax.UnitIncrease,
1736              TryCand, Cand, SingleCritical))
1737    return;
1738  if (Cand.Reason == SingleCritical)
1739    Cand.Reason = MultiPressure;
1740
1741  // Keep clustered nodes together to encourage downstream peephole
1742  // optimizations which may reduce resource requirements.
1743  //
1744  // This is a best effort to set things up for a post-RA pass. Optimizations
1745  // like generating loads of multiple registers should ideally be done within
1746  // the scheduler pass by combining the loads during DAG postprocessing.
1747  const SUnit *NextClusterSU =
1748    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
1749  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
1750                 TryCand, Cand, Cluster))
1751    return;
1752  // Currently, weak edges are for clustering, so we hard-code that reason.
1753  // However, deferring the current TryCand will not change Cand's reason.
1754  CandReason OrigReason = Cand.Reason;
1755  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
1756              getWeakLeft(Cand.SU, Zone.isTop()),
1757              TryCand, Cand, Cluster)) {
1758    Cand.Reason = OrigReason;
1759    return;
1760  }
1761  // Avoid critical resource consumption and balance the schedule.
1762  TryCand.initResourceDelta(DAG, SchedModel);
1763  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
1764              TryCand, Cand, ResourceReduce))
1765    return;
1766  if (tryGreater(TryCand.ResDelta.DemandedResources,
1767                 Cand.ResDelta.DemandedResources,
1768                 TryCand, Cand, ResourceDemand))
1769    return;
1770
1771  // Avoid serializing long latency dependence chains.
1772  if (Cand.Policy.ReduceLatency) {
1773    if (Zone.isTop()) {
1774      if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
1775          > Zone.ExpectedCount) {
1776        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
1777                    TryCand, Cand, TopDepthReduce))
1778          return;
1779      }
1780      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
1781                     TryCand, Cand, TopPathReduce))
1782        return;
1783    }
1784    else {
1785      if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
1786          > Zone.ExpectedCount) {
1787        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
1788                    TryCand, Cand, BotHeightReduce))
1789          return;
1790      }
1791      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
1792                     TryCand, Cand, BotPathReduce))
1793        return;
1794    }
1795  }
1796
1797  // Avoid increasing the max pressure of the entire region.
1798  if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
1799              Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
1800    return;
1801  if (Cand.Reason == SingleMax)
1802    Cand.Reason = MultiPressure;
1803
1804  // Prefer immediate defs/users of the last scheduled instruction. This is a
1805  // nice pressure avoidance strategy that also conserves the processor's
1806  // register renaming resources and keeps the machine code readable.
1807  if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
1808                 TryCand, Cand, NextDefUse))
1809    return;
1810
1811  // Fall through to original instruction order.
1812  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
1813      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
1814    TryCand.Reason = NodeOrder;
1815  }
1816}
1817
1818/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
1819/// more desirable than RHS from scheduling standpoint.
1820static bool compareRPDelta(const RegPressureDelta &LHS,
1821                           const RegPressureDelta &RHS) {
1822  // Compare each component of pressure in decreasing order of importance
1823  // without checking if any are valid. Invalid PressureElements are assumed to
1824  // have UnitIncrease==0, so are neutral.
1825
1826  // Avoid increasing the max critical pressure in the scheduled region.
1827  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
1828    DEBUG(dbgs() << "RP excess top - bot: "
1829          << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
1830    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
1831  }
1832  // Avoid increasing the max critical pressure in the scheduled region.
1833  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
1834    DEBUG(dbgs() << "RP critical top - bot: "
1835          << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
1836          << '\n');
1837    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
1838  }
1839  // Avoid increasing the max pressure of the entire region.
1840  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
1841    DEBUG(dbgs() << "RP current top - bot: "
1842          << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
1843          << '\n');
1844    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
1845  }
1846  return false;
1847}
1848
1849#ifndef NDEBUG
1850const char *ConvergingScheduler::getReasonStr(
1851  ConvergingScheduler::CandReason Reason) {
1852  switch (Reason) {
1853  case NoCand:         return "NOCAND    ";
1854  case SingleExcess:   return "REG-EXCESS";
1855  case SingleCritical: return "REG-CRIT  ";
1856  case Cluster:        return "CLUSTER   ";
1857  case SingleMax:      return "REG-MAX   ";
1858  case MultiPressure:  return "REG-MULTI ";
1859  case ResourceReduce: return "RES-REDUCE";
1860  case ResourceDemand: return "RES-DEMAND";
1861  case TopDepthReduce: return "TOP-DEPTH ";
1862  case TopPathReduce:  return "TOP-PATH  ";
1863  case BotHeightReduce:return "BOT-HEIGHT";
1864  case BotPathReduce:  return "BOT-PATH  ";
1865  case NextDefUse:     return "DEF-USE   ";
1866  case NodeOrder:      return "ORDER     ";
1867  };
1868  llvm_unreachable("Unknown reason!");
1869}
1870
1871void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
1872  PressureElement P;
1873  unsigned ResIdx = 0;
1874  unsigned Latency = 0;
1875  switch (Cand.Reason) {
1876  default:
1877    break;
1878  case SingleExcess:
1879    P = Cand.RPDelta.Excess;
1880    break;
1881  case SingleCritical:
1882    P = Cand.RPDelta.CriticalMax;
1883    break;
1884  case SingleMax:
1885    P = Cand.RPDelta.CurrentMax;
1886    break;
1887  case ResourceReduce:
1888    ResIdx = Cand.Policy.ReduceResIdx;
1889    break;
1890  case ResourceDemand:
1891    ResIdx = Cand.Policy.DemandResIdx;
1892    break;
1893  case TopDepthReduce:
1894    Latency = Cand.SU->getDepth();
1895    break;
1896  case TopPathReduce:
1897    Latency = Cand.SU->getHeight();
1898    break;
1899  case BotHeightReduce:
1900    Latency = Cand.SU->getHeight();
1901    break;
1902  case BotPathReduce:
1903    Latency = Cand.SU->getDepth();
1904    break;
1905  }
1906  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
1907  if (P.isValid())
1908    dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
1909           << ":" << P.UnitIncrease << " ";
1910  else
1911    dbgs() << "      ";
1912  if (ResIdx)
1913    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
1914  else
1915    dbgs() << "         ";
1916  if (Latency)
1917    dbgs() << " " << Latency << " cycles ";
1918  else
1919    dbgs() << "          ";
1920  dbgs() << '\n';
1921}
1922#endif
1923
1924/// Pick the best candidate from the top queue.
1925///
1926/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
1927/// DAG building. To adjust for the current scheduling location we need to
1928/// maintain the number of vreg uses remaining to be top-scheduled.
1929void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
1930                                            const RegPressureTracker &RPTracker,
1931                                            SchedCandidate &Cand) {
1932  ReadyQueue &Q = Zone.Available;
1933
1934  DEBUG(Q.dump());
1935
1936  // getMaxPressureDelta temporarily modifies the tracker.
1937  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
1938
1939  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
1940
1941    SchedCandidate TryCand(Cand.Policy);
1942    TryCand.SU = *I;
1943    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
1944    if (TryCand.Reason != NoCand) {
1945      // Initialize resource delta if needed in case future heuristics query it.
1946      if (TryCand.ResDelta == SchedResourceDelta())
1947        TryCand.initResourceDelta(DAG, SchedModel);
1948      Cand.setBest(TryCand);
1949      DEBUG(traceCandidate(Cand));
1950    }
1951  }
1952}
1953
1954static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
1955                      bool IsTop) {
1956  DEBUG(dbgs() << "Pick " << (IsTop ? "Top" : "Bot")
1957        << " SU(" << Cand.SU->NodeNum << ") "
1958        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
1959}
1960
1961/// Pick the best candidate node from either the top or bottom queue.
1962SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
1963  // Schedule as far as possible in the direction of no choice. This is most
1964  // efficient, but also provides the best heuristics for CriticalPSets.
1965  if (SUnit *SU = Bot.pickOnlyChoice()) {
1966    IsTopNode = false;
1967    return SU;
1968  }
1969  if (SUnit *SU = Top.pickOnlyChoice()) {
1970    IsTopNode = true;
1971    return SU;
1972  }
1973  CandPolicy NoPolicy;
1974  SchedCandidate BotCand(NoPolicy);
1975  SchedCandidate TopCand(NoPolicy);
1976  checkResourceLimits(TopCand, BotCand);
1977
1978  // Prefer bottom scheduling when heuristics are silent.
1979  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
1980  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
1981
1982  // If either Q has a single candidate that provides the least increase in
1983  // Excess pressure, we can immediately schedule from that Q.
1984  //
1985  // RegionCriticalPSets summarizes the pressure within the scheduled region and
1986  // affects picking from either Q. If scheduling in one direction must
1987  // increase pressure for one of the excess PSets, then schedule in that
1988  // direction first to provide more freedom in the other direction.
1989  if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
1990    IsTopNode = false;
1991    tracePick(BotCand, IsTopNode);
1992    return BotCand.SU;
1993  }
1994  // Check if the top Q has a better candidate.
1995  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
1996  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
1997
1998  // If either Q has a single candidate that minimizes pressure above the
1999  // original region's pressure pick it.
2000  if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
2001    if (TopCand.Reason < BotCand.Reason) {
2002      IsTopNode = true;
2003      tracePick(TopCand, IsTopNode);
2004      return TopCand.SU;
2005    }
2006    IsTopNode = false;
2007    tracePick(BotCand, IsTopNode);
2008    return BotCand.SU;
2009  }
2010  // Check for a salient pressure difference and pick the best from either side.
2011  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
2012    IsTopNode = true;
2013    tracePick(TopCand, IsTopNode);
2014    return TopCand.SU;
2015  }
2016  // Otherwise prefer the bottom candidate, in node order if all else failed.
2017  if (TopCand.Reason < BotCand.Reason) {
2018    IsTopNode = true;
2019    tracePick(TopCand, IsTopNode);
2020    return TopCand.SU;
2021  }
2022  IsTopNode = false;
2023  tracePick(BotCand, IsTopNode);
2024  return BotCand.SU;
2025}
2026
2027/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2028SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2029  if (DAG->top() == DAG->bottom()) {
2030    assert(Top.Available.empty() && Top.Pending.empty() &&
2031           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2032    return NULL;
2033  }
2034  SUnit *SU;
2035  do {
2036    if (ForceTopDown) {
2037      SU = Top.pickOnlyChoice();
2038      if (!SU) {
2039        CandPolicy NoPolicy;
2040        SchedCandidate TopCand(NoPolicy);
2041        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2042        assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2043        SU = TopCand.SU;
2044      }
2045      IsTopNode = true;
2046    }
2047    else if (ForceBottomUp) {
2048      SU = Bot.pickOnlyChoice();
2049      if (!SU) {
2050        CandPolicy NoPolicy;
2051        SchedCandidate BotCand(NoPolicy);
2052        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2053        assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2054        SU = BotCand.SU;
2055      }
2056      IsTopNode = false;
2057    }
2058    else {
2059      SU = pickNodeBidirectional(IsTopNode);
2060    }
2061  } while (SU->isScheduled);
2062
2063  if (SU->isTopReady())
2064    Top.removeReady(SU);
2065  if (SU->isBottomReady())
2066    Bot.removeReady(SU);
2067
2068  DEBUG(dbgs() << "Scheduling " << *SU->getInstr());
2069  return SU;
2070}
2071
2072/// Update the scheduler's state after scheduling a node. This is the same node
2073/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2074/// it's state based on the current cycle before MachineSchedStrategy does.
2075void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2076  if (IsTopNode) {
2077    SU->TopReadyCycle = Top.CurrCycle;
2078    Top.bumpNode(SU);
2079  }
2080  else {
2081    SU->BotReadyCycle = Bot.CurrCycle;
2082    Bot.bumpNode(SU);
2083  }
2084}
2085
2086/// Create the standard converging machine scheduler. This will be used as the
2087/// default scheduler if the target does not set a default.
2088static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2089  assert((!ForceTopDown || !ForceBottomUp) &&
2090         "-misched-topdown incompatible with -misched-bottomup");
2091  ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
2092  // Register DAG post-processors.
2093  if (EnableLoadCluster)
2094    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2095  if (EnableMacroFusion)
2096    DAG->addMutation(new MacroFusion(DAG->TII));
2097  return DAG;
2098}
2099static MachineSchedRegistry
2100ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2101                        createConvergingSched);
2102
2103//===----------------------------------------------------------------------===//
2104// ILP Scheduler. Currently for experimental analysis of heuristics.
2105//===----------------------------------------------------------------------===//
2106
2107namespace {
2108/// \brief Order nodes by the ILP metric.
2109struct ILPOrder {
2110  const SchedDFSResult *DFSResult;
2111  const BitVector *ScheduledTrees;
2112  bool MaximizeILP;
2113
2114  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2115
2116  /// \brief Apply a less-than relation on node priority.
2117  ///
2118  /// (Return true if A comes after B in the Q.)
2119  bool operator()(const SUnit *A, const SUnit *B) const {
2120    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2121    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2122    if (SchedTreeA != SchedTreeB) {
2123      // Unscheduled trees have lower priority.
2124      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2125        return ScheduledTrees->test(SchedTreeB);
2126
2127      // Trees with shallower connections have have lower priority.
2128      if (DFSResult->getSubtreeLevel(SchedTreeA)
2129          != DFSResult->getSubtreeLevel(SchedTreeB)) {
2130        return DFSResult->getSubtreeLevel(SchedTreeA)
2131          < DFSResult->getSubtreeLevel(SchedTreeB);
2132      }
2133    }
2134    if (MaximizeILP)
2135      return DFSResult->getILP(A) < DFSResult->getILP(B);
2136    else
2137      return DFSResult->getILP(A) > DFSResult->getILP(B);
2138  }
2139};
2140
2141/// \brief Schedule based on the ILP metric.
2142class ILPScheduler : public MachineSchedStrategy {
2143  /// In case all subtrees are eventually connected to a common root through
2144  /// data dependence (e.g. reduction), place an upper limit on their size.
2145  ///
2146  /// FIXME: A subtree limit is generally good, but in the situation commented
2147  /// above, where multiple similar subtrees feed a common root, we should
2148  /// only split at a point where the resulting subtrees will be balanced.
2149  /// (a motivating test case must be found).
2150  static const unsigned SubtreeLimit = 16;
2151
2152  ScheduleDAGMI *DAG;
2153  ILPOrder Cmp;
2154
2155  std::vector<SUnit*> ReadyQ;
2156public:
2157  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2158
2159  virtual void initialize(ScheduleDAGMI *dag) {
2160    DAG = dag;
2161    DAG->computeDFSResult();
2162    Cmp.DFSResult = DAG->getDFSResult();
2163    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2164    ReadyQ.clear();
2165  }
2166
2167  virtual void registerRoots() {
2168    // Restore the heap in ReadyQ with the updated DFS results.
2169    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2170  }
2171
2172  /// Implement MachineSchedStrategy interface.
2173  /// -----------------------------------------
2174
2175  /// Callback to select the highest priority node from the ready Q.
2176  virtual SUnit *pickNode(bool &IsTopNode) {
2177    if (ReadyQ.empty()) return NULL;
2178    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2179    SUnit *SU = ReadyQ.back();
2180    ReadyQ.pop_back();
2181    IsTopNode = false;
2182    DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): "
2183          << *SU->getInstr()
2184          << " ILP: " << DAG->getDFSResult()->getILP(SU)
2185          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2186          << DAG->getDFSResult()->getSubtreeLevel(
2187            DAG->getDFSResult()->getSubtreeID(SU)) << '\n');
2188    return SU;
2189  }
2190
2191  /// \brief Scheduler callback to notify that a new subtree is scheduled.
2192  virtual void scheduleTree(unsigned SubtreeID) {
2193    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2194  }
2195
2196  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2197  /// DFSResults, and resort the priority Q.
2198  virtual void schedNode(SUnit *SU, bool IsTopNode) {
2199    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2200  }
2201
2202  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2203
2204  virtual void releaseBottomNode(SUnit *SU) {
2205    ReadyQ.push_back(SU);
2206    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2207  }
2208};
2209} // namespace
2210
2211static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2212  return new ScheduleDAGMI(C, new ILPScheduler(true));
2213}
2214static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2215  return new ScheduleDAGMI(C, new ILPScheduler(false));
2216}
2217static MachineSchedRegistry ILPMaxRegistry(
2218  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2219static MachineSchedRegistry ILPMinRegistry(
2220  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2221
2222//===----------------------------------------------------------------------===//
2223// Machine Instruction Shuffler for Correctness Testing
2224//===----------------------------------------------------------------------===//
2225
2226#ifndef NDEBUG
2227namespace {
2228/// Apply a less-than relation on the node order, which corresponds to the
2229/// instruction order prior to scheduling. IsReverse implements greater-than.
2230template<bool IsReverse>
2231struct SUnitOrder {
2232  bool operator()(SUnit *A, SUnit *B) const {
2233    if (IsReverse)
2234      return A->NodeNum > B->NodeNum;
2235    else
2236      return A->NodeNum < B->NodeNum;
2237  }
2238};
2239
2240/// Reorder instructions as much as possible.
2241class InstructionShuffler : public MachineSchedStrategy {
2242  bool IsAlternating;
2243  bool IsTopDown;
2244
2245  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2246  // gives nodes with a higher number higher priority causing the latest
2247  // instructions to be scheduled first.
2248  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2249    TopQ;
2250  // When scheduling bottom-up, use greater-than as the queue priority.
2251  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2252    BottomQ;
2253public:
2254  InstructionShuffler(bool alternate, bool topdown)
2255    : IsAlternating(alternate), IsTopDown(topdown) {}
2256
2257  virtual void initialize(ScheduleDAGMI *) {
2258    TopQ.clear();
2259    BottomQ.clear();
2260  }
2261
2262  /// Implement MachineSchedStrategy interface.
2263  /// -----------------------------------------
2264
2265  virtual SUnit *pickNode(bool &IsTopNode) {
2266    SUnit *SU;
2267    if (IsTopDown) {
2268      do {
2269        if (TopQ.empty()) return NULL;
2270        SU = TopQ.top();
2271        TopQ.pop();
2272      } while (SU->isScheduled);
2273      IsTopNode = true;
2274    }
2275    else {
2276      do {
2277        if (BottomQ.empty()) return NULL;
2278        SU = BottomQ.top();
2279        BottomQ.pop();
2280      } while (SU->isScheduled);
2281      IsTopNode = false;
2282    }
2283    if (IsAlternating)
2284      IsTopDown = !IsTopDown;
2285    return SU;
2286  }
2287
2288  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2289
2290  virtual void releaseTopNode(SUnit *SU) {
2291    TopQ.push(SU);
2292  }
2293  virtual void releaseBottomNode(SUnit *SU) {
2294    BottomQ.push(SU);
2295  }
2296};
2297} // namespace
2298
2299static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2300  bool Alternate = !ForceTopDown && !ForceBottomUp;
2301  bool TopDown = !ForceBottomUp;
2302  assert((TopDown || !ForceTopDown) &&
2303         "-misched-topdown incompatible with -misched-bottomup");
2304  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2305}
2306static MachineSchedRegistry ShufflerRegistry(
2307  "shuffle", "Shuffle machine instructions alternating directions",
2308  createInstructionShuffler);
2309#endif // !NDEBUG
2310
2311//===----------------------------------------------------------------------===//
2312// GraphWriter support for ScheduleDAGMI.
2313//===----------------------------------------------------------------------===//
2314
2315#ifndef NDEBUG
2316namespace llvm {
2317
2318template<> struct GraphTraits<
2319  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2320
2321template<>
2322struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2323
2324  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2325
2326  static std::string getGraphName(const ScheduleDAG *G) {
2327    return G->MF.getName();
2328  }
2329
2330  static bool renderGraphFromBottomUp() {
2331    return true;
2332  }
2333
2334  static bool isNodeHidden(const SUnit *Node) {
2335    return (Node->NumPreds > 10 || Node->NumSuccs > 10);
2336  }
2337
2338  static bool hasNodeAddressLabel(const SUnit *Node,
2339                                  const ScheduleDAG *Graph) {
2340    return false;
2341  }
2342
2343  /// If you want to override the dot attributes printed for a particular
2344  /// edge, override this method.
2345  static std::string getEdgeAttributes(const SUnit *Node,
2346                                       SUnitIterator EI,
2347                                       const ScheduleDAG *Graph) {
2348    if (EI.isArtificialDep())
2349      return "color=cyan,style=dashed";
2350    if (EI.isCtrlDep())
2351      return "color=blue,style=dashed";
2352    return "";
2353  }
2354
2355  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
2356    std::string Str;
2357    raw_string_ostream SS(Str);
2358    SS << "SU(" << SU->NodeNum << ')';
2359    return SS.str();
2360  }
2361  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
2362    return G->getGraphNodeLabel(SU);
2363  }
2364
2365  static std::string getNodeAttributes(const SUnit *N,
2366                                       const ScheduleDAG *Graph) {
2367    std::string Str("shape=Mrecord");
2368    const SchedDFSResult *DFS =
2369      static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
2370    if (DFS) {
2371      Str += ",style=filled,fillcolor=\"#";
2372      Str += DOT::getColorString(DFS->getSubtreeID(N));
2373      Str += '"';
2374    }
2375    return Str;
2376  }
2377};
2378} // namespace llvm
2379#endif // NDEBUG
2380
2381/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
2382/// rendered using 'dot'.
2383///
2384void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
2385#ifndef NDEBUG
2386  ViewGraph(this, Name, false, Title);
2387#else
2388  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
2389         << "systems with Graphviz or gv!\n";
2390#endif  // NDEBUG
2391}
2392
2393/// Out-of-line implementation with no arguments is handy for gdb.
2394void ScheduleDAGMI::viewGraph() {
2395  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
2396}
2397